1. Field of the Invention
The present invention relates to the domain of semiconductor components, especially solar cells, and relates to a crystalline solar cell having an n- or p-doped semiconductor substrate and a passivated backside.
2. Description of the Related Art
Silicon solar cells having a “passivated backside” have improved optical aluminizing and a greatly improved passivation of the back surface compared to the aluminum back surface field (BSF) that has been produced in a standard manner up to now, cf. A Götzbarger et al., “Sonnenenergie: Photovoltaik” (Solar Energy: Photovoltaics), B. G. Teubner Stuttgart, 1997. The cell concept produced thereby is called “Passivated Emitter and Rear Cell” (PERC). In this context, the dielectric passivation adapted to the backside doping is opened locally at many small points, so that the metal layer deposited on the passivating layer is not able to contact the semiconductor, but only at a small surface portion of the backside, in order to minimize the strong recombination of the electron hole pairs at metallized surfaces.
The metallizing of the backside is made up in most cases of aluminum, and is deposited over a large surface on the entire backside, as a rule, using vacuum vapor deposition technology or sputtering.
Documents relating to such solar cells as well as methods for their production, and are connected to backside patterning steps and/or the backside driving in of doping substances, are the likes of published German patent document DE 195 25 720 C2, published German patent application document DE 10 2007 059 486 A1 or published German patent application document DE 10 2008 013 446 A1, as well as published German patent application document DE 10 2008 033 169 A1 (both of the latter from ErSol Solar Energy AG).
Such documents as published Japanese patent application document JP 2005 027 309 A, DE 10 2008 017 312 A1 or published German patent application document DE 10 2008 020 796 A1 are concerned with the efficient production of reliable connecting patterns, particularly those having soldered connections.
The method “laser fired contacts” (LFC) is known, in which the metallization is fired through on the backside passivation using laser pulses, so that a prior opening of the passivating layer becomes unnecessary, cf. “Laserstrahlverfahren zur Fertigung kristalliner Silizium-Solarzellen” (Laser Beam Method for Producing Crystalline Silicon Solar Cells), Dissertation by Eric Schneiderlöchner, Albert-Ludwigs-Universität Freiburg im Breisgau (2004) or (earlier) published German patent application document DE 199 15 666 A1.
In the case of p-doped wafers, the formation of “local BSF regions” at the contact points in the backside passivation is undertaken simply by alloying the aluminum into the p− or p+ surface. This takes place at temperatures above the Al—Si eutectic temperature of 577° C. For this it is necessary that the backside passivation layer and also the front side emitter (after the sintering of the front side silver paste) survive these temperatures undamaged.
In the case of n-doped wafers, in which the emitter (p-n junction) is produced on the backside using boron or aluminum doping, the formation of the Al—Si eutectic, which, as a rule, would melt a few micrometers in depth, would lead to a breakthrough through the thin p+ emitter into the n-base and there it would lead to a short circuit to the base. For that reason, the metallization has to be tempered at low temperatures (e.g. 400° C., optionally also in forming gas), in order to produce a sufficiently good ohmic contact to the emitter surface, without damaging the cell. This makes impossible the firing of a normal screen printing paste for the subsequent depositing of a silver layer, that is able to be soldered, on the aluminum.
All the PERC technologies, known from the related art, have the following disadvantages:
The solar cell proposed is distinguished by a thin dielectric cover layer covering the first metal layer, which has a first regular arrangement of narrow line-type openings and a second regular arrangement of essentially wider line-type or extended island-type openings, the first and second opening arrangement being aligned at an angle, particularly transversely to each other. It is distinguished further by a highly conductive second metal layer that is able to be soldered at the exposed surface in the openings of the first and second opening arrangement which contacts the first metal layer there.
The solar cell according to the present invention, having a passivated and large area metalized backside, which was reinforced chemically or galvanically in the narrow finger areas and current collecting busbar or soldering pad areas that were opened in the dielectric cover layer, has in any case, in expedient embodiments, the following advantages compared to the related art:
In one embodiment that is technical and expedient from a cost point of view, the second metal layer has at least one metal from the group including Pd, Ni, Ag, Cu and Sn. In this instance, the second layer in particular has a sequence of metal layers, particularly the layer sequence Pd/Ni/Ag or Ni/Cu/Sn.
Moreover, it is provided that the second metal layer be produced by a chemically or galvanically deposited reinforcement layer.
One additional design provides that the thin dielectric cover layer has at least one material from the group including silicon oxide, silicon nitride, aluminum oxide, aluminum nitride and titanium oxide.
In a first variant the substrate involves a p-doped silicon substrate having a phosphorus-doped emitter on the first main surface. In one embodiment alternative to this, the semiconductor substrate is an n-doped silicon substrate having a boron or aluminum-doped p+ emitter on the second main surface.
In particular, the first and second openings in the thin dielectric cover layer are formed by masked ion etching, especially in the same system in which the cover layer is produced. Alternatively to this it may be provided that the first and second openings in the thin dielectric cover layer are formed by laser ablation or by etching while using an etching paste that is applied using screen printing or inkjet pressure.
It remains open in all the figures whether a p-doped or an n-doped wafer is involved. In the case of the n-material, the emitter may be situated either on the front side or the backside. In the latter case, as a rule, a doping for a front surface field (FSF) is produced on the front side.
The starting point of the following description is an almost completely produced solar cell that may be contacted on both sides on p- or n-doped silicon 1 (
The surface is coated using chemical vapor deposition (CVD) or physical vapor deposition (PVD, that is, vapor deposition or sputtering) using a passivating layer or layer sequence 4, selected and optimized with respect to doping polarity and doping concentration, which has been locally removed (opened) using a technique known per se from the related art. The point grid thus created, in which the local contact openings 5 are situated, goes by the layer resistance of the surface: in the case of undoped surfaces (PERC cell) the distance apart of points D is less than for doped surfaces (PERT cell, that is, full surface doped cell).
The first process step according to the present invention begins with the full-surface coating (known per se from the related art) using a metal layer sequence 6 (
Finally, in all cases (in the same system, without interrupting the vacuum) the entire backside is covered with a thin dielectric thin layer 7. In this context, all deposited layers lie both on passivating layer sequence 4 and on the semiconductor surface exposed in local openings 5 in the passivating layer. Cover layer 7 may be an oxide or a nitride of the aluminum or the silicon. It may be vapor-deposited or sputtered reactively from the metal target or deposited using RF sputtering from the dielectric target.
In the second step, using a suitable technique, the dielectric cover layer is opened (
At 90° to the course of narrow openings 8, wider areas 9a or 9b are opened simultaneously, i.e. in the same opening step, in the dielectric cover layer, in which later solderable busbars and soldering pads are to be produced. Busbar strips 9a (
Incidentally, the execution of the method is not restricted to the abovementioned examples and emphasized aspects, but only by the range of protection of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
10 2010 028 189.1 | Apr 2010 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2011/052954 | 3/1/2011 | WO | 00 | 1/4/2013 |