SOLAR CELLS PROVIDED WITH COLOR MODULATION AND METHOD FOR FABRICATING THE SAME

Information

  • Patent Application
  • 20170263792
  • Publication Number
    20170263792
  • Date Filed
    May 25, 2017
    7 years ago
  • Date Published
    September 14, 2017
    6 years ago
Abstract
Solar cells provided with color modulation and a method for fabricating the same are disclosed. The solar cell includes a photoelectric conversion layer and a color-modulating layer provided over the photoelectric conversion layer. The photoelectric conversion layer is employed for generating electrical energy from incident light and the color-modulating layer is used to modulate colorful appearance. The color-modulating layer is composed of at least one dielectric layer which is free of granules.
Description
BACKGROUND OF THE INVENTION
1. Field of the Invention

The present inventions relates to photovoltaic cells capable of converting solar radiation into usable electrical energy. More specifically, the present invention relates to solar cells provided with color modulation and a method for fabricating the same.


2. Description of the Prior Art

Solar cells or photovoltaic cells are devices that convert light energy of sunlight into electrical energy by means of photoelectric conversion mechanism. From the view point of global environmental conservation, the solar cell is highly expected to generate electricity and actively developed for widespread commercialization in recent years. Buildings, vehicles and other objects may be covered in part with solar cells to maximize the use of solar energy. For decorative or aesthetic reasons, solar cell units may be required to have different colors. As an example, when the solar cells are employed to cover roofs or walls of buildings, different colors maybe required for being integrated into the color (s) of the buildings or surrounding environment in consideration of design choice or aesthetic appearance.


Conventional approaches, such as U.S. Pat. Nos. 5,725,006 and 6,049,035, for providing solar cells with different colors may require additional manufacturing process or may deteriorate the photoelectric conversion efficiency of the solar cells. Therefore, it is desirable to provide solar cells with variable colors without complicated designs or processes or without too much impact on the solar power conversion efficiency thereof.


SUMMARY OF THE INVENTION

One objective of the present invention is to provide solar cells provided with color modulation and a method for fabricating the same. The solar cell includes a photoelectric conversion layer and a color-modulating layer provided over the photoelectric conversion layer. The photoelectric conversion layer is employed for generating electrical energy from incident light and the color-modulating layer is used to modulate colorful appearance.


One embodiment of the present invention discloses solar cell comprising:

    • a photoelectric conversion layer for generating electrical energy from incident light;
    • at least one first electrode and at least one second electrode formed over the photoelectric conversion layer for outputting the electrical energy; and
    • a color-modulating layer provided over the photoelectric conversion layer to modulate colorful appearance thereof.


The solar cell in accordance with the present invention further comprises a protective layer formed over the color-modulating layer and a transparent layer formed over the protective layer.


Another embodiment of the present invention discloses a method for fabricating a solar cell comprising the steps of:

    • providing a photoelectric conversion layer;
    • forming at least one first electrode and at least one second electrode over the photoelectric conversion layer; and
    • forming a color-modulating layer over the photoelectric conversion layer to modulate colorful appearance thereof.


The method in accordance with the present invention further comprises the steps of forming a protective layer over the color-modulating layer and forming a transparent layer over the protective layer.





BRIEF DESCRIPTION OF THE DRAWINGS

Other features and advantages of the present invention will be apparent from the detailed description of the invention that follows, taken in conjunction with the accompanying drawings of which:



FIGS. 1-5 schematically illustrate a process for fabricating solar cells in accordance with one preferred embodiment of the present invention in cross-sectional views of partial presentation;



FIG. 6 illustrates the reflective spectrum of a solar cell as exemplified in Example I;



FIG. 7 illustrates the refractive index vs. wavelength curve of a color-modulating layer in Example II;



FIG. 8 illustrates the reflective spectrum of a solar cell as exemplified in Example II;



FIG. 9 illustrates the refractive index vs. wavelength curve of a color-modulating layer in Example III;



FIG. 10 illustrates the reflective spectrum of a solar cell as exemplified in Example III; and



FIG. 11 illustrates the reflective spectrum of a solar cell as exemplified in Example IV.





DETAILED DESCRIPTION

Certain terms are used through the description and following claims to refer to particular elements. As one skilled in the art will appreciate, solar cell manufacturers may refer to an element by different names. This document does not intend to distinguish between elements that differ in name but not function. In the following description and in the claims, the terms “include” and “comprise” are used in an open-ended fashion, and thus should be interpreted to mean “include, but not limited to . . . .” Also, the term “formed on” or formed over” are intended to mean either indirect or direct contact between two layers. Accordingly, if an upper layer is “formed on” or “formed over” a lower layer, two layers maybe direct contact with each other, or an intermediate layer may be inserted or deposed between the two layers.



FIGS. 1 through 5 schematically illustrates the process flow for fabricating a solar cell unit 1 according to one preferred embodiment of the present invention in cross-sectional views of partial representation. Referring to FIG. 1, an n-type semiconductor layer 12 is formed on a p-type semiconductor substrate 10 so as to form a p-n junction 14 therebetween. As such, an electric field can be established at the p-n junction 14. Light striking on this electric field may separate the positive charge carriers and the negative charge carriers, thus creating an electrical current passing through the p-n junction 14, which is so-called photoelectric conversion mechanism. Generally speaking, the combination of the p-type semiconductor substrate 10 and the n-type semiconductor layer 12 constitutes a photoelectric conversion layer 11 which is employed to generate electrical energy from incident light. The p-type semiconductor substrate 10 may be a p-type silicon substrate such that the n-type semiconductor layer 12 can be conformably deposited over the p-type semiconductor substrate 10 or formed by means of doping n-type impurities into the p-type semiconductor substrate 10. Alternately, an n-type semiconductor substrate in combination of a p-type semiconductor layer can be utilized to constitute the photoelectric conversion layer 11 as well. Generally speaking, the photoelectric conversion layer 11 may be made of one or more semiconductor materials, such as single crystalline, polycrystalline, amorphous state of semiconductor material such as silicon, germanium or the like.


As shown in FIG. 2, the transparent anti-reflection layer 16 is formed over the photoelectric conversion layer 11 and may be made of silicon nitride by means of an evaporation method, a sputtering method, a print screen method, a CVD method or any other methods that are known to the persons skilled in the art. The anti-reflection layer is employed to protect the solar cell unit 1, serving as a passivation layer, and also decreases reflective loss on the unit surface. Preferably, the anti-reflection layer 16 has a thickness ranging from 1 nm to 500 nm.


Conductive layers 18 and 20 are thereafter formed over opposite surfaces of the photoelectric conversion layer 11 by an evaporation method, a sputtering method, a print screen method, a CVD method or any other methods that are known to the persons skilled in the art. As shown in FIG. 3, the conductive layer 18 is formed over the front surface of the photoelectric conversion layer 11 and, therefore, on the anti-reflection layer 16. The conductive layer 20 is formed over the back surface of the photoelectric conversion layer 11 in contact with the p-type substrate 10. The conductive layer 18 or 20 may be made of metal or alloy, for example, gold, silver, aluminum, copper, or platinum or the like, and could be made of transparent conductive oxide (TCO) layer such as ITO film or a ZnO film as well.


The conductive layer 18 can be subject to heat treatment such that conductive material contained in the conductive layer 18 can pass through the anti-reflection layer 16 to be in contact with the n-type semiconductor layer 12 by means of spiking effect. In addition, the conductive layers 18 and 20 can be patterned into parallel lines to form front electrodes 22 and back electrodes 24 respectively. As shown in FIG. 4, the front electrodes 22 are electrically connected with the n-type semiconductor layer 12 and the back electrodes 24 are electrically connected to the p-type semiconductor substrate 10. Accordingly, the front electrodes 22 and the back electrodes 24 are formed to become two electrical terminals for the photoelectric conversion layer 11. In other words, the electrodes 22 and 24 are used to charge or discharge the electrical energy generated from the photoelectric conversion layer 11 if the solar cell unit 1 is subject to light of sunlight.


According to the present invention, the color-modulating layer 26 is formed over the anti-reflection layer 16 so as to provide the solar cell unit 1 with variable colors. The color-modulating layer 26 may be composed of one or more dielectric material over the anti-reflection layer 16 under a vacuum or near-vacuum environment by a coating method, an evaporation method (such as e-gun), a sputtering method, a CVD method or other methods if suitable and feasible.


Various dielectric materials or combination of thereof may be utilized. In some examples, materials such as oxides (SnO2, Al2O3, SiO2, ZnO, Y2O3, Ta2O5, TiO2, Cr2O3, etc.), fluorides (MgF2, Na3AlF6, etc.), sulphides (ZnS, PbS, CdS, etc.), nitrides (Si3N4, AlN, AlOxNy, etc.), tellurides (CdTe, etc.) and selenides (PbSe), and/or the like. In various examples, the thickness of the color-modulating layer 26 may range from 1 nm or less to 5000 nm depending on various applications.


By providing color-modulating layer 26 over the anti-reflection layer 16, desirable visual effect may be achieved without suffering from conversion efficiency loss and using complicated manufacturing methods.


Thereafter, a protective layer 28 and a transparent layer 30 are sequentially formed to cover the color-modulating layer 26. The protective layer 28 is a transparent film made of, preferably, ethylene vinyl acetate (EVA) or polyvinyl butyral (PVB) in order to prevent the solar cell unit from direct exposure to sun and rain or subject to humidity. The transparent layer 30 is preferably made of treated or nontreated glass.


It is noted that the step sequence of the aforementioned embodiment can be modified in consideration of practical use. Therefore, the exemplified embodiment cannot be used to interpret the scope of claims in limiting sense.


There are some examples are provided for reference as follows.


EXAMPLE I

The photoelectric conversion layer 11 is made of a silicon layer of a first conductivity type formed in/on a silicon substrate of a second conductivity type. If the first conductivity type is p-type, the second conductivity type is n-type. To the contrary, the second conductivity type is p-type if the first conductivity type is n-type. As an example, the photoelectric conversion layer 11 is formed of silicon has a refractive index (n) in the range of 3.4˜3.6 and has thickness in the range of 140˜250 μtm. The anti-reflective layer 16 is formed of silicon nitride having a refractive index (n) in the range of 1.8˜2.2 and a thickness in the range of 60˜120 nm. It is noted that no color-modulating layer 26 is formed to overlie the underlying layers to be compared with Examples II, III and IV. Accordingly, the reflective spectrum thereof is measured and illustrated in FIG. 6. The CIE L*a*b* values thereof are measured to be 34.92, 1.73 and −29.49, respectively.


EXAMPLE II

The photoelectric conversion layer 11 is made of a silicon layer of a first conductivity type formed in/on a silicon substrate of a second conductivity type. If the first conductivity type is p-type, the second conductivity type is n-type. To the contrary, the second conductivity type is p-type if the first conductivity type is n-type. As an example, the photoelectric conversion layer 11 is formed of silicon has a refractive index (n) in the range of 3.4˜3.6 and has thickness in the range of 140˜250 μm. The anti-reflective layer 16 is formed of silicon nitride having a refractive index (n) in the range of 1.8˜2.2 and a thickness in the range of 60˜120 nm. The color-modulating layer 26 is made of a material having a thickness of about 1,600˜2,000 Å and a refractive index vs. wavelength curve as shown in FIG. 7. As such, the reflective spectrum thereof is measured and illustrated in FIG. 8. The CIE L*a*b* values are measured to be 56.65, −18,54 and 23.76, respectively.


EXAMPLES III

The photoelectric conversion layer 11 is made of a silicon layer of a first conductivity type formed in/on a silicon substrate of a second conductivity type. If the first conductivity type is p-type, the second conductivity type is n-type. To the contrary, the second conductivity type is p-type if the first conductivity type is n-type. As an example, the photoelectric conversion layer 11 is formed of silicon has a refractive index (n) in the range of 3.4˜3.6 and has thickness in the range of 140˜250 μm. The anti-reflective layer 16 is formed of silicon nitride having a refractive index (n) in the range of 1.8˜2.2 and a thickness in the range of 60˜120 nm. The color-modulating layer 26 is made of a material having a thickness of about 800˜1,200 Å and a refractive index vs. wavelength curve as shown in FIG. 9. As such, the reflective spectrum thereof is measured and illustrated in FIG. 10. The CIE L*a*b* values are measured to be 22, 14.41 and −8.29, respectively.


EXAMPLES IV

The photoelectric conversion layer 11 is made of a silicon layer of a first conductivity type formed in/on a silicon substrate of a second conductivity type. If the first conductivity type is p-type, the second conductivity type is n-type. To the contrary, the second conductivity type is p-type if the first conductivity type is n-type. As an example, the photoelectric conversion layer 11 is formed of silicon has a refractive index (n) in the range of 3.4˜3.6 and has thickness in the range of 140˜250 μm. The anti-reflective layer 16 is formed of silicon nitride having a refractive index (n) in the range of 1.8˜2.2 and a thickness in the range of 60˜120 nm. The color-modulating layer 26 is composed of multiple layers; that is, three layers are provided in this example. In the example, a first layer is provided with a refractive index (n1) in the range of 2.15˜2.55 and a thickness in the range of 750˜1100 Å; a second layer is provided with a refractive index (n2) in the range of 3.6˜4.0 and a thickness in the range of 1,550˜1,950 Å; a third layer is provided with a refractive index (n3) on the range of 2.15˜2.55 and a thickness in the range of 960˜1360 Å. The first, second and third layers are stacked sequentially from bottom to top. Therefore, the reflective spectrum thereof is measured and illustrated in FIG. 11. The CIE L*a*b* values are measured to be 47.05, 28.63 and ˜13.77, respectively.


The examples given hereinbefore show that the present invention provides those skilled in the art with the means to design solar cells with color-modulating layer having the most simple structure possible and sufficient efficiency, while exhibiting a predetermined color, so that they are well suited to serve as building material or whatever aesthetic appearance of which is an important requirement.


Although the invention has been described above by the embodiment and the examples, the invention is not limited to the foregoing embodiments and examples but can be variously modified. The material of the color modulation is not always limited to any of the materials in the lists but can be freely sets as long as the external color of the solar cell can be adjusted by using color modulation property of the color-modulating layer 26. More specifically, the material of the color-modulating layer 26 may be, for example, oxides, fluorides, sulphides, nitrides, tellurides and selenides of a kind other than the kinds listed above, or a material other than oxides, fluorides, sulphides, nitrides, tellurides and selenides.


Obviously, many modifications and variations of the present invention are possible in the light of the above teachings. It is therefore to be understood that within the scope of appended claims, the invention may be practiced otherwise than as specifically described.

Claims
  • 1. A solar cell comprising: a photoelectric conversion layer for generating electrical energy from incident light;at least one first electrode and at least one second electrode formed over opposite surfaces of the photoelectric conversion layer for outputting the electrical energy; anda color-modulating layer composed of at least one dielectric layer which is free of granules and deposited over the photoelectric conversion layer to modulate colorful appearance thereof, the color-modulating layer being formed over at least one first electrode;wherein each of the at least one dielectric layer is consisting of at least one selected from a group consisting of oxides, fluorides, sulphides, nitrides, tellurides and selenides and the color-modulating layer has a thickness in the range of about 1 nm to 5,000 nm.
  • 2. The solar cell as claimed in claim 1, further comprising a passivation layer laminated between the color-modulating layer and the photoelectric conversion layer.
  • 3. The solar cell as claimed in claim 2, wherein the at least one first electrode is provided in contact with the photoelectric conversion layer through the passivation layer, and the color-modulating layer is composed of one or more films and has a thickness greater than a thickness of the passivation layer.
  • 4. The solar cell as claimed in claim 3, wherein the color-modulating layer is composed of a plurality of dielectric layer stacked from bottom to top, each of the dielectric layer has a thickness less than or equal to 200 nm, and a refractive index of one of the dielectric layer is different from a refractive index of another one of the dielectric layer positioned thereon or thereunder.
  • 5. The solar cell as claimed in claim 1, wherein the photoelectric conversion layer has a textured surface.
  • 6. The solar cell as claimed in claim 1, wherein the photoelectric conversion layer has a non-textured surface.
  • 7. The solar cell as claimed in claim 1, further comprising a protective layer and a transparent layer sequentially formed over the color-modulating layer.
  • 8. The solar cell as claimed in claim 7, wherein the protective layer has a refractive index in the range of 1.4˜1.6.
  • 9. The solar cell as claimed in claim 8, wherein the protective layer is made of at least one of ethylene vinyl acetate (EVA) and polyvinyl butyral (PVB).
  • 10. The solar cell as claimed in claim 7, wherein the transparent layer has a refractive index in the range of 1.4˜1.6.
  • 11. The solar cell as claimed in claim 10, wherein the transparent layer is made of glass.
  • 12. A solar cell, comprising: a photoelectric conversion layer for generating electrical energy from incident light;at least one first electrode and at least one second electrode formed over the photoelectric conversion layer for outputting the electrical energy; anda color-modulating layer formed over the photoelectric conversion layer to modulate colorful appearance thereof, the color-modulating layer composed of at least one dielectric layer which is free of granules;wherein the at least one first electrode and the at least one second electrode are formed over the same surface of the photoelectric conversion layer.
  • 13. A method of fabricating a solar cell, the method comprising: providing a photoelectric conversion layer;forming at least one first electrode and at least one second electrode over opposite surfaces of the photoelectric conversion layer; anddepositing a color-modulating layer composed of at least one dielectric layer over the photoelectric conversion layer to modulate colorful appearance thereof, the at least one dielectric layer being free of granules, and the color-modulating layer being formed over at least one first electrode;wherein each of the at least one dielectric layer is consisting of at least one selected from a group consisting of oxides, fluorides, sulphides, nitrides, tellurides and selenides and the color-modulating layer has a thickness in the range of about 1 nm to 5,000 nm.
  • 14. The method as claimed in claim 13, further comprising a step of forming a passivation layer laminated between the color-modulating layer and the photoelectric conversion layer.
  • 15. The method as claimed in claim 14, further comprising a step of forming the at least one first electrode in contact with the photoelectric conversion layer through the passivation layer, wherein the color-modulating layer is composed of one or more films and has a thickness greater than a thickness of the passivation layer.
  • 16. The method as claimed in claim 13, wherein the step of forming the color-modulating layer is performed under a vacuum environment.
  • 17. The method as claimed in claim 16, wherein the color-modulating layer is formed through a coating method, an evaporation method, a sputtering method, or a chemical vapor deposition method.
  • 18. The method as claimed in claim 13, wherein the photoelectric conversion layer has a textured surface.
  • 19. The method as claimed in claim 13, wherein the photoelectric conversion layer has a non-textured surface.
  • 20. The method as claimed in claim 13, further comprising: forming a protective layer over the color-modulating layer; andforming a transparent layer over the protective layer.
  • 21. The method as claimed in claim 20, wherein the protective layer has a refractive index in the range of 1.4˜1.6.
  • 22. The method as claimed in claim 21, wherein the protective layer is made of at least one of ethylene vinyl acetate (EVA) and polyvinyl butyral (PVB).
  • 23. The method as claimed in claim 20, wherein the transparent layer has a refractive index in the range of 1.4˜1.6.
  • 24. The method as claimed in claim 23, wherein the transparent layer is made of glass.
  • 25. A method of fabricating a solar cell, comprising: providing a photoelectric conversion layer;forming at least one first electrode and at least one second electrode over the photoelectric conversion layer; anddepositing a color-modulating layer composed of at least one dielectric layer over the photoelectric conversion layer to modulate colorful appearance thereof, the at least one dielectric layer being free of granules;wherein the at least one first electrode and the at least one second electrode are formed over the same surface of the photoelectric conversion layer.
CROSS REFERENCE TO RELATED APPLICATIONS

This patent application is a continuation application and claims priority of U.S. patent application Ser. No. 12/468,606, filed on May 19, 2009, which claims the benefit of U.S. provisional application No. 61/088,779, filed Aug. 14, 2008, and the entire contents of which are incorporated herein by reference.

Provisional Applications (1)
Number Date Country
61088779 Aug 2008 US
Continuations (1)
Number Date Country
Parent 12468606 May 2009 US
Child 15605924 US