Solar concentrator for a tower-mounted central receiver

Information

  • Patent Grant
  • 10551089
  • Patent Number
    10,551,089
  • Date Filed
    Wednesday, August 3, 2016
    7 years ago
  • Date Issued
    Tuesday, February 4, 2020
    4 years ago
Abstract
A solar concentrator may have a horizontal circular track on the ground, a tower centered on a vertical axis of the track, and a rotatable structure around the track having an upper, concave mounting surface approximating the shape of part of a sphere centered on the top of the tower. Articulated concave mirrors are attached to the rotatable structure, and the mirrors have a focal length approximately equal to the radius of a sphere portion formed by the concave mounting surface. Sunlight is focused at a receiver mounted atop the tower, and the receiver may convert sunlight into thermal or electrical energy. As the position of the Sun changes, sunlight is maintained on the receiver by turning the rotatable structure toward the Sun, turning the receiver about said vertical axis to face the mirrors, and articulating the mirrors toward the receiver in response to the changing elevation of the Sun.
Description
FIELD OF INVENTION

The present invention relates to solar energy.


BACKGROUND

The present invention is a solar collector that reflects and concentrates sunlight to a central tower-mounted receiver. It may be used, for example, with a thermal receiver to generate heat to be stored and later used to generate electricity after sunset. Such dispatchable generation of electricity may have applications both on and off-grid, as a complement to daytime photovoltaic generation.


In the past, three principal geometries have been used to concentrate sunlight for thermal generation: steerable dish, trough, and heliostats around a central tower. Of the three geometries, dish collectors have the highest optical efficiency (lowest obliquity losses) as the reflector surface always faces the sun directly. The receiver is mounted at the focus of the dish and moves with the tracker. However, dish collectors are not always cost effective. They may have high structural costs because the structure must remain undistorted as it changes orientation tracking the sun, and may, in some instances, also need to withstand rare gale force winds. Dish collectors are in addition limited to relatively small reflector aperture.


Trough reflectors only focus light in one axis, and are thus limited to relatively low concentration.


Large central receiver plants may have a field of heliostat reflectors positioned on the ground around a tower mounted receiver. Each heliostat mirror is turned in two axes to direct sunlight to the receiver. Such collectors have deficiencies in collection efficiency, field efficiency and degree of concentration.


In the case of heliostat reflectors, collection efficiency, as measured by power concentrated per unit area of mirror collector, depends on how any given heliostat is oriented at given time of day, and is reduced for those heliostats oriented with high obliquity loss. Obliquity is the ratio of the area of sunlight reflected by the heliostat to its full mirror area. It is high for a heliostat when the shadow of the receiver falls near it, but low when a heliostat lies between the sun and tower.


Field efficiency is measured by the ratio of mirror to ground area. Heliostats located near the edge of the field to increase concentration must be spaced well apart to avoid self-shadowing, thus reducing overall field efficiency. Increasing the areal density of the field causes the receiver to see a better-filled solid angle, increasing concentration, but this high density increases shadowing losses.


The degree of concentration achievable on the central receiver is also limited by heliostats at the edge of the field. Even for the ideal case when each heliostat mirror is curved to focus a solar image on the receiver, the outer heliostats will form a larger solar image than inner-field heliostats. The receiver size must thus be increased, and the average concentration decreased to accommodate the largest image produced by the most distant heliostats.


In the past, attempts have been made to overcome some of the above limitations. For example, U.S. Patent publication No. 20120325313, to Cheung, et al., and U.S. Pat. No. 9,029,747, to Osello, are directed to systems with mobilized heliostats on circular tracks about a central tower receiver, driven so as to minimize obliquity losses. The heliostats are moved around the tracks to maintain the same azimuthal geometry relative to each other, so that each heliostat needs only motion about a single additional axis to direct sunlight to the tower. U.S. Patent publication No. 2014/0116419, to Ruiz Hernandez, is directed to a system in which heliostats are also driven around circular tracks through the day, clustering opposite the sun, and a central receiver rotated to face the heliostats. These systems reduce obliquity loss, but do not overcome the above limits to field efficiency and optical concentration common to all systems operated with heliostats near ground level.


There thus remains a need for a central receiver system with high optical concentration, high field efficiency, and low self-shadowing losses. Solar collection high optical concentration is valuable for operating receivers at high temperature, required to increase the thermodynamic limit to conversion efficiency. High temperature receivers (>600 degrees C.) have been developed to generate electricity using efficient Rankine and Brayton cycles. At the same time, the collector field preferably combines high concentration with low obliquity loss, low self-shadowing losses and inexpensive mechanical structure. An advance over the present state of the art is needed.


SUMMARY OF THE INVENTION

The present invention is a solar concentrator that focuses sunlight to a central receiver mounted atop a tower. A mobile amphitheater-like structure moves on a circular track about the tower and supports an array of concave mirrors that reflect and focus sunlight onto the receiver. The mirrors are carried in tiered arcs that together approximate the shape of part of a sphere centered on the top of the tower, so the mirrors are all at approximately the same distance from the receiver. Sunlight is focused to the central receiver throughout the day by means of turning the mobile structure to face the sun, turning the receiver to face the structure, and articulating the mirrors individually so that each one focuses sunlight from changing solar elevation into the receiver. In some embodiments, PV modules may be carried on the opposite (sun-side) of the tracks and be moved also on the tracks so as to face the sun through the day and provide direct electrical output during the day.


Because mirror array and cavity receiver rotate together about the same axis, according to the solar azimuth angle, each mirror maintains a fixed position relative to the receiver aperture. The individual mirror articulation required to accommodate changes in solar elevation is for the geometry of this invention no more than 25°, and may be made about a single axis whose orientation depends on the position of the mirror within the array.


In one embodiment of the invention, the circular track comprises two or more concentric rails, and the rigid, amphitheater-shaped structure to support the mirrors rides around on the track with no mechanical connection to the tower.


In another embodiment, the supporting structure is comprised of multiple flat, trapezoidal panel segments that may be assembled on the ground and then lifted into place. The panels may be interlocked to form a rigid, approximately conical/spherical structure once they are raised into operating position. Panels ride at their base on trucks on a singular circular inner track. Cables from the central tower extend to each panel to lift it into place. During high wind or for washing and maintenance, the panels may be lowered to the ground by the cables into a stow position.


For one embodiment of the present invention, ray tracing modeling shows a concentration of 2050× (compared to the ˜1000× of typical central receiver plants) and optical efficiency up to 90% (compared to ˜70% of typical prior art). These optical efficiency percentages represent the effective reflector aperture including obliquity factor and shadowing losses as a percentage of the physical mirror area, annualized and DNI weighted. A specific, dimensioned preferred embodiment of the present invention occupies an 80 meter diameter circle and delivers 1.4 MW of sunlight at 2050× concentration.


According to the present invention, a solar concentrator comprises a horizontal circular track, a tower centered on the vertical axis of said track, a movable mirror support structure, rotatable around said track and having an upper, concave mounting surface configured substantially in the shape of part of a sphere centered on a focal point wherein said focal point is located coincident with a point on said tower, and a plurality of articulated concave mirrors mounted on said concave mounting surface of said movable mirror support structure, said mirrors having a focal length substantially equal to the radius of said sphere. A receiver is mounted on the tower at said focal point, said receiver being rotatable about said vertical axis and operative to convert concentrated sunlight into thermal or electrical energy, and wherein sunlight is focused onto said receiver by said mirrors throughout the day by rotating said movable mirror support structure around said circular track to face the sun, by turning said receiver to face said movable mirror support structure, and by articulating said mirrors in response to changing solar elevation.


It is an object of the present invention to provide a solar concentrator to efficiently deliver strongly concentrated sunlight to a central, tower mounted receiver, with low obliquity losses and high field efficiency.


It is another object of the invention to use a structure that may be lightly and inexpensively built, yet withstand very high wind.


It is a further object of the invention to provide for initial cost effective construction at moderate scale as well as large scale so as to provide for inexpensive design iterations and testing and evolution of novel receivers and turbines of very high efficiency.


This invention features a single amphitheater-shaped structure supporting mirrors on tiered levels. The geometry is configured so that the mirrors at approximately equal distance from a high, tower mounted central receiver.


It is another feature of the invention that the amphitheater-shaped structure is rotated on a circular track throughout the day to follow the sun from east to west.


It is another feature of the invention that, to focus sunlight on the receiver no matter the solar elevation angle, the mirrors are individually articulated.


It is another feature of the invention that the mirrors may be made all with the same concave shape to focus sunlight on the receiver.


It is another feature of the invention that it may be used to power a tower-mounted receiver of the cavity type, tilted down at fixed angle and rotated so as to directly face the moving mirrors throughout the day.


It is another feature of the invention that the amphitheater-shaped supporting structure may be constructed so it can be lowered to the ground in high wind or for mirror cleaning.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1a is a perspective diagram illustrating a preferred embodiment of a solar concentrator according to the present invention in a position corresponding to morning.



FIG. 1b is a perspective diagram illustrating a preferred embodiment of a solar concentrator according to the present invention in a position corresponding to noon.



FIG. 1c is a perspective diagram illustrating a preferred embodiment of a solar concentrator according to the present invention in a position corresponding to late afternoon.



FIG. 2a is a schematic cross section diagram illustrating three articulated mirrors on a rigid support structure riding on a two-rail track, and shows the mirrors tilted when the sun is at the zenith.



FIG. 2b is a schematic cross section diagram of the apparatus illustrated in FIG. 2a, and shows the mirrors tilted when the sun is at low elevation.



FIG. 3 is a perspective diagram of a preferred embodiment illustrating a rotating rigid mirror support structure turning on a single rail track with supporting cables connecting to the central tower.



FIG. 4a is a perspective diagram of a preferred embodiment with hinged trapezoidal panels, and illustrates the panels lifted by cables into the operational position with the panels interlocked.



FIG. 4b is a perspective diagram of the same preferred embodiment illustrated in FIG. 4a, and shows the trapezoidal panels unlocked and lowered to the ground.



FIG. 5 is a ray diagram illustrating a specific embodiment used to calculate optical efficiency and concentration of the reflector.



FIG. 6 is a ray diagram illustrating the rays entering a receiver cavity.



FIG. 7 is a contour plot illustrating the concentration of sunlight at a receiver surface.



FIG. 8a is a diagram showing a top-down view of the obliquity factor (optical efficiency) computed for two modeled concentrating reflector arrays, where one modeled array represents the present invention, and the other modeled array is for a flat, ground level array representing flat heliostat or horizontally mobile reflector arrays. FIG. 8a shows the arrays at midmorning on the winter solstice.



FIG. 8b is diagram of the two modeled concentrating reflector arrays illustrated in FIG. 8a, but FIG. 8b shows the arrays at noon on the solar equinox.



FIG. 8c is diagram of the two modeled concentrating reflector arrays illustrated in FIG. 8a, but FIG. 8c shows the arrays at evening on the summer solstice.



FIG. 9a shows a method to make back-silvered mirrors from sheets of glass, and illustrates the starting point for the method.



FIG. 9b shows a later step in the method illustrated in FIG. 9a, where the glass has been heated, softened, and plastically deformed under its own weight into a concave shape.





DETAILED DESCRIPTION


FIG. 1a, FIG. 1b, and FIG. 1c show three configurations through the day (morning, noon, and evening, respectively) of a preferred embodiment of the invention. The horizontal circular track 1 is centered on a vertical tower 2. A mobile amphitheater-like structure 3 rides clockwise through the day on the track 1 around the vertical tower 2. The inner surface 30 of the structure 3 that faces the tower 2 has the approximate shape of a section of a sphere, or a part of a sphere. The top of the tower 2 is at the center of the sphere. An array of concave mirrors 4 is mounted on the inner surface 30 of the structure 3. Each mirror 4 is individually articulated so that incoming rays of sunlight 100 are reflected as rays 110 to a solar receiver 5 mounted on top of the tower 2. The mobile structure 3 rotates around the track 1 throughout the day to maintain the center of the array of mirrors 4 opposite the sun. The receiver 5 is rotated on top of the tower 2 in synchronization with the structure 3, so as to face the center of the array of mirrors 4. The receiver may convert the sunlight into heat, which may be transferred by a transfer medium for storage in a thermal reservoir for dispatchable energy generation, or the sunlight may be converted by the receiver 5 into electricity. The receiver 5 may be of the cavity type to minimize radiative losses.



FIG. 2a and FIG. 2b show a schematic detail in cross section of three tiered, articulated mirrors on a rigid support structure on a two-rail track. The mirrors 41, 42, and 43 are individually oriented to keep incoming rays of sunlight 100 reflected (as rays 110 shown in FIG. 1a, for example) to the receiver 5, independent of changes in solar elevation. FIG. 2a and FIG. 2b show three tiers of mirrors, but it will be apparent to those skilled in the art that any number of tiers may be used. FIG. 2a shows the mirrors 4 articulated upward, to direct sunlight 100 coming from high elevation near midday toward the receiver 5. The three mirrors shown, 41, 42, and 43 are articulated individually to obtain the strongest concentration at the receiver. Thus mirror 41 is tilted so incoming ray 101 is reflected as ray 111 to the receiver 5, mirror 42 is tilted so incoming ray 102 is reflected as ray 112 to the receiver 5 and mirror 43 is tilted so incoming ray 103 is reflected as ray 113 to the receiver 5. FIG. 2b shows the mirrors now articulated downward, to direct sunlight 100 coming from low elevation near sunrise and sunset still to the same receiver 5 atop the tower 2. For each mirror the articulation angle depends on both the position of the mirror in the array and the solar elevation angle. The articulation may be approximated by rotation about a single axis, or may be accomplished with dual axes, with both of them restricted to small motions. In general, the range of articulation for any mirror will be no more than ±25°, to cover all solar elevations from zenith to horizon, significantly less than the larger rotations in azimuth and elevation needed for heliostats used in a conventional solar concentrator architecture for central receiver. FIG. 2a and FIG. 2b illustrate also a preferred embodiment wherein the rigid structure 3 is supported entirely by wheels or bogies 15 that ride on concentric rails of track 1.



FIG. 3 is a perspective diagram of a preferred embodiment illustrating the structure 3 riding on a single rail track 1 and supported in part by cables 7 that connect to the central tower 2 via a bearing 9 concentric with the tower axis that turns with the structure 3. The tower 2 is preferably supported by guy wires 11 that may connect to the ground inside the track 1. Preferably the cables 7 that connect the structure 3 to the bearing 9 and tower 2 are held by winches 10 that may be mounted on the bearing 9 or on the structure 3. The winches 10 may monitor tension in the cables 7 and maintain that tension within a specified range. An upper portion of the tower 2 may rotate with the receiver 5 in synchronization with the mobile reflector structure 3. Preferably the cables 7 that connect the structure 3 to the tower 2 connect to the upper, rotating portion of the tower 2.



FIG. 4a and FIG. 4b are perspective diagrams of a preferred embodiment illustrating the structure 3 comprising multiple trapezoidal flat panels 12 that interlock to form an approximately conical arc when in operating position, as in FIG. 4a, but the panels 12 can also be separated and lowered to be flat on the ground, as shown in FIG. 4b. Preferably the panels 12 are raised into position and lowered to the ground by cables 7 and winches 10 that connect to the tower 2. In operation the panels 12 are supported in part at their bases by wheels or bogies 15 riding on a single rail track 1, and in part by tension in the cables 7 that connect to the central tower 2 via the bearing 9. In this embodiment, the structure 3 preferably has at least one hinge 8 near the track 1 that allows one or multiple structure panels 12 to be lowered to the ground.



FIG. 5 is an optical ray diagram of an illustrative dimensioned embodiment of the type shown in FIG. 4a and FIG. 4b, here with four trapezoidal panels 12 turning on a single rail track 1. Table 1 lists the design parameters used in this illustrative embodiment. The size of the reflectors on panels 12 is modeled as 1.65 m square, a standard size for back-silvered mirrors shaped from float glass. Such mirrors have been proven reliable in solar concentrators. This concentrator uses a total of 552 of these reflectors across four panels 12, for a total reflector area of 1458 m2. All the mirrors are curved with the same focal length of 40 m.


The optical performance has been evaluated by non-sequential ray tracing software, using as input the parameters shown in Table 2.



FIG. 6 shows reflected sunlight rays 110 from across the full aperture, as computed by the model, arriving at the entrance aperture 13 of the receiver 5. The receiver entrance aperture 13 has a diameter of 0.85 m and an area of 0.567 m2, a factor 2570 times smaller than the primary collection area.



FIG. 7 shows a contour plot of the optical concentration of sunlight calculated using the same illustrative embodiment shown in FIG. 5 with the parameters of Table 1 and Table 2. The concentration is calculated including assumed combined mirror and tracking errors of 3.0 mrad RMS and a reflectivity and soiling factor of 89%. At the center the optical concentration is over 7000×, while over the full 0.85 m diameter receiver entrance aperture 13 the average optical concentration is 2050×. Spillage (rays 110 that landed outside the receiver entrance aperture 13) was calculated to be 1.5%.


The performance of this illustrative embodiment is summarized in Table 3.



FIG. 8a, FIG. 8b, and FIG. 8c are top-down views of the obliquity factor computed for two modeled concentrating reflector arrays. The left array 14 is for a model of representing the present invention. The right array 16 is for a flat, ground level array representing flat heliostat or horizontally mobile reflector arrays. FIG. 8a, FIG. 8b, and FIG. 8c consist of contour maps of the obliquity factor or optical efficiency of the reflector arrays. The model assumes an array of small mirrors that each track to reflect sunlight to a receiver 5 at the top of a central tower 2. The obliquity factor or optical efficiency at each point is the ratio of the area of sunlight reflected by the reflector to its full mirror area. FIG. 8a shows the arrays at midmorning on the winter solstice. The approximately spherical array 14 has an optical efficiency greater than 0.9 over nearly the entire array. The flat array 16 has a large area with efficiency for some heliostats toward the sun below 0.6. FIG. 8b shows the arrays at noon on the solar equinox. Again, the present invention 14 has an optical efficiency greater than 0.9 over nearly the entire array. Heliostats in the array 16 have generally better efficiency than on the solstice, however it still has a large area with efficiency below 0.7. FIG. 8c shows the arrays at evening on the summer solstice. The present invention array 14 has an optical efficiency greater than 0.9 over most of the array while the flat heliostat array 16 has a large area with efficiency below 0.6.



FIG. 9a and FIG. 9b show a method to make back-silvered mirrors 4 from glass sheets 45 that may be back-silvered after shaping. As shown in FIG. 9a, the starting point is a flat glass sheet 45 supported only at its corners 46 by an open frame 47. The frame 47 supports the glass sheet 45 until the glass sheet 45 is softened and plastically deformed under its own weight into a concave shaped glass sheet 48, as shown in FIG. 9b. The edges of the glass sheet 48 come to rest on the curved sides 49 of the frame 47, defining their shape, as shown in FIG. 9b. Heating is continued until the center of the glass sheet 48 has drooped to the depth required for the correct overall shape, as shown in FIG. 9b. The glass sheet 48 may then be annealed or strengthened by rapid cooling with air jets. This method of manufacture involves no contact with the glass sheet 45, 48 except at the perimeter, and thus does not degrade the specularity of the original flat glass sheet 45, which may be of float glass with very high specular reflection on both sides. After the glass sheet 48 has been shaped in accordance with the method shown in FIG. 9a and FIG. 9b, the back of the glass sheet 48 may be silvered in accordance with conventional techniques known in the art.


Those skilled in the art, after having the benefit of this disclosure, will appreciate that modifications and changes may be made to the embodiments described herein, different design parameters and materials may be substituted, equivalent features may be used, changes may be made in the assembly, and additional elements and steps may be added, all without departing from the scope and spirit of the invention. For example, the receiver 5 would preferably be located at the top of the tower 2; however, the receiver 5 could also be located at a point lower than the top, without adversely impacting the operation of the invention. The horizontal circular track 1 would preferably be located on the ground; however, one could position the track 1 above ground and nevertheless achieve many, if not all, of the advantages of the invention. This disclosure has set forth certain presently preferred embodiments and examples only, and no attempt has been made to describe every variation and embodiment that is encompassed within the scope of the present invention. The scope of the invention is therefore defined by the claims appended hereto, and is not limited to the specific examples set forth in the detailed description.










TABLE 1





Parameter
Value







Number of panels
4









Radius at base of panels
20
m


Radius at top of panels
40
m


Height at top of panels
20
m








Angle subtended by panel assembly at tower
120°


Size of individual reflectors
1.65 m × 1.65 m


Reflector optical prescription
40 m focal length, spherical


Number of reflectors
552 









Total reflector area
1458
m2


Height of cavity receiver entrance
40
m








Diameter of cavity receiver
0.85 m diameter


entrance



















TABLE 2







Parameter
Value









Solar Disk
+/−4.6 mrad



Mirror/Tracking Ray Errors
3.0 mrad RMS



Reflectivity and Soiling Factors
89.0%




















TABLE 3









Field Optical Efficiency (30° elevation)
90.9%



Spillage
1.5%



Average Aperture Concentration
2050X









Claims
  • 1. A solar concentrator comprising: a horizontal circular track;a tower centered on a vertical axis of said track;a movable mirror support structure, rotatable around said track and having an upper, concave mounting surface configured substantially in a shape of part of a sphere centered on a focal point, wherein said focal point is located coincident with a point on said tower such that a radius of the sphere spans between the concave mounting surface and the tower, wherein the concave mounting surface spans and follows a portion of the horizontal circular track;a plurality of articulated concave mirrors mounted on said concave mounting surface of said movable mirror support structure, said mirrors having a focal length substantially equal to the radius of said sphere; anda receiver mounted on the tower at said focal point, said receiver being rotatable about said vertical axis and operative to convert concentrated sunlight into thermal or electrical energy;wherein sunlight is focused onto said receiver by said mirrors throughout a day by rotating said movable mirror support structure around said track to face the sun, by turning said receiver to face said movable mirror support structure, and by articulating said mirrors in response to changing solar elevation.
  • 2. The solar concentrator of claim 1, in which said track comprises two or more concentric rails, and said movable mirror support structure is rigidly constructed and is driven around on said rails without mechanical connection to said tower.
  • 3. The solar concentrator of claim 1, in which said track comprises a single circular inner rail and said movable mirror support structure is rigidly constructed and rides on one or more trucks on said rail, with cables to said tower to balance any outward overturning moment.
  • 4. The solar concentrator of claim 3, wherein said track is located on a ground surface, and said movable mirror support structure is composed of one or more flat panels that are rigidly locked together during operation, wherein said flat panels are configured to be unlocked and lowered to the ground surface from hinges at their bases, by extending said cables from said tower.
  • 5. The solar concentrator of claim 1, wherein said mirrors are concave mirrors of back-silvered glass, wherein said mirrors are made by a method in which a flat glass sheet is heated, softened and plastically deformed into a concave shape while being supported from a perimeter of the glass sheet.
  • 6. The solar concentrator of claim 1, wherein energy provided by said receiver is stored for later use, and further comprising PV panels mounted on said tracks opposite said movable mirror support structure, said PV panels providing electricity during the day.
  • 7. A system comprising a plurality of solar concentrators according to claim 1, wherein said receivers of the plurality of solar concentrators are operative to heat fluid with sunlight, and the fluid heated by the receivers of the plurality of solar concentrators is transferred to a central energy conversion facility.
CROSS REFERENCE TO RELATED APPLICATION

This application is a U.S. National Phase filing under 35 U.S.C. § 371 of PCT/US2016/045355, filed on Aug. 3, 2016, which claims priority to U.S. Provisional Patent Application Ser. No. 62/200,570 filed on Aug. 3, 2015, both of which are incorporated herein by reference in their entirety.

PCT Information
Filing Document Filing Date Country Kind
PCT/US2016/045355 8/3/2016 WO 00
Publishing Document Publishing Date Country Kind
WO2017/024038 2/9/2017 WO A
US Referenced Citations (141)
Number Name Date Kind
608755 Cottle Aug 1898 A
642196 Belcher Jan 1900 A
670917 Eneas Mar 1901 A
811274 Carter Jan 1906 A
2661672 Fairbanks Dec 1953 A
2827690 Brown Mar 1958 A
2904612 Regnier Sep 1959 A
3427200 Ernest et al. Feb 1969 A
3552941 Giffen Jan 1971 A
3586492 McMaster Jun 1971 A
3756797 Akeyoshi Sep 1973 A
3977773 Hubbard Aug 1976 A
4074996 Hagedorn Feb 1978 A
4088470 Bourg et al. May 1978 A
4105429 Delgado Aug 1978 A
4107521 Winters Aug 1978 A
4154219 Gupta et al. May 1979 A
4180414 Diamond et al. Dec 1979 A
4202715 Ziemba May 1980 A
4217147 Ziemba Aug 1980 A
4245895 Wildenrotter Jan 1981 A
4313746 Juras Feb 1982 A
4354193 Werner Oct 1982 A
4395581 Girard Jul 1983 A
4404565 Gurney et al. Sep 1983 A
4436373 Kirsch Mar 1984 A
4461278 Mori Jul 1984 A
4473065 Bates Sep 1984 A
4525196 Fecik et al. Jun 1985 A
4535961 Sobeczak Aug 1985 A
4547650 Arditty Oct 1985 A
4568156 Dane Feb 1986 A
4575207 August Mar 1986 A
4616909 Dane Oct 1986 A
4678292 Miyatani et al. Jul 1987 A
4805006 Yamagushi et al. Feb 1989 A
4830678 Todorof et al. May 1989 A
4909819 McMaster Mar 1990 A
4999059 Bagno Mar 1991 A
5118543 McColl Jun 1992 A
5129934 Koss Jul 1992 A
5143535 Herrington Sep 1992 A
5147437 Bristol Sep 1992 A
5169456 Johnson Dec 1992 A
5215567 Clark Jun 1993 A
5281249 Hampton et al. Jan 1994 A
5363116 Allen Nov 1994 A
5460659 Krut Oct 1995 A
5593901 Oswald et al. Jan 1997 A
5695538 Goolsbay Dec 1997 A
5697999 Reunamaki Dec 1997 A
5787878 Ratliff, Jr. Aug 1998 A
5849056 May Dec 1998 A
6034319 Falbel Mar 2000 A
6091017 Stern Jul 2000 A
6123067 Warrick Sep 2000 A
6257022 Caplan et al. Jul 2001 B1
6301932 Allen et al. Oct 2001 B1
6375135 Eason et al. Apr 2002 B1
6378339 Zalesak et al. Apr 2002 B1
6498290 Lawheed Dec 2002 B1
6541694 Winston Apr 2003 B2
6563040 Hayden et al. May 2003 B2
6566635 Matsen et al. May 2003 B1
6629436 Skeen Oct 2003 B1
6739729 Blackmon et al. May 2004 B1
6848442 Haber Feb 2005 B2
6895145 Ho May 2005 B2
7076965 Lasich Jul 2006 B2
7258320 Tai Aug 2007 B2
7297865 Terao et al. Nov 2007 B2
7380549 Ratliff Jun 2008 B1
7503189 Fukuyama et al. Mar 2009 B2
7506847 Bailey Mar 2009 B2
8082755 Angel Dec 2011 B2
8319697 Conrad Nov 2012 B2
8350145 Angel Jan 2013 B2
8430090 Angel Apr 2013 B2
8505867 Conrad Aug 2013 B2
8604333 Angel Dec 2013 B2
8662072 Butler Mar 2014 B2
9318635 Luo Apr 2016 B2
20010036024 Wood Nov 2001 A1
20030005954 Emoto et al. Jan 2003 A1
20030070705 Hayden et al. Apr 2003 A1
20040107731 Doehring et al. Jun 2004 A1
20050051205 Mook et al. Mar 2005 A1
20050081909 Paull Apr 2005 A1
20050166957 Imoto et al. Aug 2005 A1
20060054162 Romeo Mar 2006 A1
20060057847 Yanagawa et al. Mar 2006 A1
20060231133 Fork Oct 2006 A1
20060243319 Kusek et al. Nov 2006 A1
20070012934 Abu-Ageel Jan 2007 A1
20070089774 Lasich Apr 2007 A1
20070089778 Horne et al. Apr 2007 A1
20070095341 Kaneff May 2007 A1
20070256726 Ford et al. Nov 2007 A1
20070272666 O'Brien Nov 2007 A1
20080000516 Shifman Jan 2008 A1
20080047605 Benitez et al. Feb 2008 A1
20080053513 Palmer Mar 2008 A1
20080092877 Monsebroten Apr 2008 A1
20080185034 Corio Aug 2008 A1
20090032102 Chen et al. Feb 2009 A1
20090056790 Tian Mar 2009 A1
20090126778 Brounne et al. May 2009 A1
20090277224 Angel et al. Nov 2009 A1
20090277498 Angel Nov 2009 A1
20100037937 Sater Feb 2010 A1
20100095999 Menon Apr 2010 A1
20100126556 Benitez et al. May 2010 A1
20100139645 Whipple Jun 2010 A1
20120174966 Snipes Jul 2012 A1
20120192919 Mizuyama Aug 2012 A1
20120229911 Rodriguez-Parada et al. Sep 2012 A1
20120260908 Orsello Oct 2012 A1
20120312349 Farberov Dec 2012 A1
20120316017 Chiel Dec 2012 A1
20120318324 Ning et al. Dec 2012 A1
20130068285 Ni et al. Mar 2013 A1
20130206935 Majid et al. Aug 2013 A1
20130323415 Brackley Dec 2013 A1
20140053607 Angel et al. Feb 2014 A1
20140090687 Den Boer et al. Apr 2014 A1
20140116419 Hernandez et al. May 2014 A1
20140130843 Kostuk et al. May 2014 A1
20140160784 Badahdah et al. Jun 2014 A1
20140201109 Tilley Jul 2014 A1
20140209146 Park Jul 2014 A1
20140238387 Kroyzer et al. Aug 2014 A1
20140251308 Wyle et al. Sep 2014 A1
20140261387 Hansen Sep 2014 A1
20140261392 Lambrecht Sep 2014 A1
20140374550 Straeter Dec 2014 A1
20150303867 Angel Oct 2015 A1
20150316639 Russ Nov 2015 A1
20150323124 Erdos Nov 2015 A1
20160079461 Angel Mar 2016 A1
20160238189 Angel Aug 2016 A1
20160251093 Hijmans Sep 2016 A1
Foreign Referenced Citations (36)
Number Date Country
2009246638 Nov 2009 AU
2722714 Jul 2014 CA
2597897 Jan 2004 CN
2599483 Jan 2004 CN
3104690 Aug 1982 DE
202007016715 Mar 2008 DE
1903155 Mar 2008 EP
1956662 Aug 2008 EP
1956662 Dec 2009 EP
2434343 Apr 1980 FR
770097 Mar 1957 GB
1529409 Oct 1978 GB
2471816 Oct 2012 GB
491610 Jan 1974 JP
58194751 Nov 1983 JP
6060934 Apr 1985 JP
2003069069 Jun 1986 JP
63021229 Jan 1988 JP
0598895 Apr 1993 JP
8194103 Jul 1996 JP
61119081 Mar 2000 JP
2000091612 Mar 2000 JP
2000243983 Sep 2000 JP
2003258291 Sep 2003 JP
2005206458 Aug 2005 JP
332104 Nov 2007 TW
WO2005042420 May 2005 WO
WO2008013976 Jan 2008 WO
WO2008043871 Apr 2008 WO
WO2009008996 Jan 2009 WO
WO2009121174 Oct 2009 WO
WO2010051599 May 2010 WO
WO2010091391 Aug 2010 WO
WO2012032462 Mar 2012 WO
WO 2012097260 Jul 2012 WO
WO2015117134 Aug 2015 WO
Non-Patent Literature Citations (108)
Entry
Royne et al., Cooling of Photovoltaic Cells Under Concentrated Illumination: A Critical Review, Solar Energy Materials and Solar Cells, vol. 86, Issue 4, Apr. 1, 2005, pp. 451-483.
Kinsey et al., Concentrator Multijunction Solar Cell Characteristics Under Variable Intensity and Temperature, Progress in Photovoltaics: Research and Applications, Prog. Photovolt: Res. Appl.2008;16:503-508.
Sarah Kurtz, Opportunities and Challenges for Development of a Mature Concentrating Photovoltaic Power Industry, Technical Report : NREL/TP-5200-43208, Nov. 2012.
Ortabasi et al., Dish/photovoltaic cavity converter (PVCC) system for ultimate solar-to-electricty conversion efficiency-general concept and first performance predictions, Conference Record of the Twenty-Ninth IEEE Photovoltaic Specialists Conference, 2002.
International Preliminary Report on Patentability dated May 6, 2016 from International Application PCT/US2014/061584.
International Search Report and Written Opinion dated Jan. 27, 2015 from corresponding International Application PCT/US2014/061584.
International Preliminary Report on Patentability dated Jun. 11, 2015 from corresponding International Application PCT/US2013/071974.
International Search Report and Written Opinion dated Apr. 2,2014 from corresponding International Application PCT/US2013/071974.
Nishi et al., USPTO Translation of JP-60-60934, created Dec. 2015, pp. 1-22.
International Search Report and Written Opinion dated Aug. 25, 2009 from International Application PCT/US2009/043381.
International Search Report and Written Opinion from Int'l Application No. PCT/US09/043377 dated May 28, 2010.
International Preliminary Report on Patentability from Int'l Application No. PCT/US09/043381 dated Aug. 16, 2010.
International Search Report and Written Opinion from Int'l Application No. PCT/US09/043378 dated Jun. 9, 2010.
Reply to EPO Communication Pursuant to Rules 161(1) and 162 EPC from related EPC Application No. 09 747 260.9, based on PCT/US2009/043378.
International Preliminary Report on Patentability from Int'l Application No. PCT/US2009/043377 (corrected version) dated Jan. 20, 2011.
Reply to EPO Communication Pursuant to Rules 161(1) and 162 EPC from corresponding EPC Application No. 09 747 261.7, based on PCT/US2009/043381.
Reply to EPO Communication Pursuant to Rules 161(1) and 162 EPC from related EPC Application No. 09 747 259.1, based on PCT/US2009/043377.
Office Action dated Nov. 23, 2012 in German Application No. 11 2009 001 132.2-33.
Office Action dated Oct. 25, 2012 in Japanese Application No. 2011-509577.
Office Action dated Sep. 29, 2012 in Chinese Application No. 200980116969.2.
Office Action dated Oct. 30, 2012 in Application No. GB1019206.0.
Office Action dated Nov. 16, 2012 in Chinese Application No. 200980116959.9.
Office Action dated Nov. 23, 2012 in German Application No. 11 2009 001 135.7-33.
Office Action dated Dec. 4, 2012 in Mexican Application No. MX/a/2010/012356.
Office Action dated Sep. 13, 2012 in Mexican Application No. MX/a/2010/012355.
Examination Report dated Sep. 25, 2012 in European Application No. 09747261.7.
Office Action dated Aug. 22, 2012 in Japanese Application No. 2011-509579.
Examiner's Report dated Aug. 15, 2012 in Australian Application No. 2009246638.
Office Action dated Sep. 15, 2012 in Japanese Application No. 2011-509578.
Examination Report dated Jul. 10, 2012 in European Application No. 09747261.7.
Examination Report dated May 21, 2012 in European Application No. 09747260.9.
Office Action dated Jul. 13, 2012 in Mexican Application No. MX/a/2010/12356.
Combined Search and Examination Report dated Jul. 24, 2012 in Great Britain Application No. 1203267.8.
Examination Report dated Jul. 24, 2012 in Great Britain Application No. 1019139.3.
Office Action dated Jul. 3, 2012 in Chinese Application No. 20090116968.8.
Examiner's Report dated Feb. 23, 2012 in European Application No. 09747259.1.
Examiner's Report dated Feb. 26, 2012 in Great Britain Application No. 1019206.0.
AU; Examination Report dated May 9, 2011 in Application No. 2009246637.
GB; Examination Report dated Sep. 16, 2011 in Application No. GB1019160.9.
AU; Examination Report dated Oct. 4, 2011 in Application No. 2009246639.
DE; Office Action dated Jan. 10, 2012 in Application No. 11 2009 001 131.4-45.
AU; Examination Report dated May 10, 2011 in Application No. 2009246638.
KR; Notification of Provisional Rejection dated in Sep. 8, 2011 in Application No. 10-2010-7025551.
PCT; International Preliminary Report on Patentability dated Mar. 29, 2011 in Application No. PCT/US2009/043378.
GB; Examination Report dated Sep. 16, 2011 in Application No. GB1019139.3.
GB; Examination Report dated Jan. 11, 2012 in Application No. GB1019139.3.
USPTO; Restriction Requirement dated Dec. 2, 2016 in U.S. Appl. No. 14/632,637.
USPTO; Non-Final Office Action dated Jun. 17, 2015 in U.S. Appl. No. 14/071,417.
USPTO; Final Office Action dated Jan. 8, 2016 in U.S. Appl. No. 14/071,417.
USPTO; Advisory Action dated Mar. 24, 2016 in U.S. Appl. No. 14/071,417.
USPTO; Non-Final Office Action dated Aug. 17, 2016 in U.S. Appl. No. 14/071,417.
USPTO; Notice of Allowance dated Aug. 24, 2011 in U.S. Appl. No. 12/463,026.
USPTO; Notice of Allowance dated Oct. 4, 2012 in U.S. Appl. No. 12/463,016.
USPTO; Office Action dated Jan. 20, 2012 in U.S. Appl. No. 12/463,016.
USPTO; Office Action Restriction dated Oct. 11, 2011 in U.S. Appl. No. 12/463,016.
USPTO; Restriction Requirement dated Aug. 31, 2012 in U.S. Appl. No. 12/463,001.
USPTO; Non-Final Office Action dated Nov. 21, 2012 in U.S. Appl. No. 12/463,001.
USPTO; Notice of Allowance dated Mar. 5, 2013 in U.S. Appl. No. 12/463,001.
USPTO; Non-Final Office Action dated Feb. 14, 2013 in U.S. Appl. No. 13/302,084.
USPTO; Final Office Action dated May 29, 2013 in U.S. Appl. No. 13/302,084.
USPTO; Notice of Allowance dated Aug. 7, 2013 in U.S. Appl. No. 13/302,084.
USPTO; Non-Final Office Action dated Dec. 29, 2016 in U.S. Appl. No. 15/030,692.
USPTO; Restriction Requirement Office Action dated Feb. 14, 2017 in. U.S. Appl. No. 14/647,589.
USPTO; Final Office Action dated Apr. 21, 2017 in U.S. Appl. No. 14/071,417.
USPTO; Notice of Allowance dated May 1, 2017 in U.S. Appl. No. 15/030,692.
USPTO; Non-Final Office Action dated Jun. 20, 2017 in U.S. Appl. No. 14/647,589.
USPTO; Advisory Action dated Aug. 1, 2017 in U.S. Appl. No. 14/071,417.
USPTO; Non-Final Office Action dated Sep. 29, 2017 in U.S. Appl. No. 14/071,417.
USPTO; Notice of Allowance dated Apr. 12, 2018 in U.S. Appl. No. 14/647,589.
USPTO; Final Office Action dated Apr. 27, 2018 in U.S. Appl. No. 14/071,417.
USPTO; Restriction requirement Office Action dated Apr. 5, 2018 in U.S. Appl. No. 15/543,625.
Office Action dated Nov. 23, 2012 in Ferman Application No. 11 2009 001 132.2-33.
Decision to Grant Pursuant to Article 97(1) EPC dated Mar. 28, 2013 from EP Application No. 09747261.7.
DE; Office Action dated Jun. 30, 2015 in Application No. 11 2009 001 131.4-45.
DE; Office Action dated Mar. 13, 2018 in Application No. 11 2009 001 131.4-45.
MX; 1st Office Action dated May 27, 2013 in Mexico Application No. 10/12354.
MX; 2nd Office Action dated Dec. 21, 2013 in Mexico Application No. 10/12354.
MX; 3rd Office Action dated Aug. 5, 2014 in Mexico Application No. 10/12354.
CN 2nd OA dated Oct. 14, 2013 in Chinese Application No. 200980116959.9.
IN First Examination Report dated Oct. 13, 2014 in Indian Application No. 4323/KOLNP/2010.
CA First Office Action dated Nov. 27, 2012 in Canadian App No. 2722714.
Canadian Notice of Allowance dated Mar. 14, 2014 in Canadian App No. 2722714.
EP Comunication pursuant to Article 94(3) EPC dated Jul. 8, 2015 in EP Application No. 09747260.9.
DE Office Action dated Apr. 12, 2018 in German Application No. 112008001135.7.
JP Notice of Allowance dated May 21, 2013 from JP Application No. 2011-509578.
CN 2nd Office Action dated Jun. 3, 2013 in Chinese Application No. 200980116968.8.
CN Third Office Action dated Dec. 23, 2013 in Chinese Application No. 200980116968.8.
First Examination Report dated Nov. 30, 2015 in India Application No. 4327/KOLNP/2010.
Exam Report in Chile Application No. 2015-01453.
International Search Report and Written Opinion dated May 3, 2016 from corresponding International Application PCT/US2016/20415.
International Preliminary Report on Patentability dated Sep. 14, 2017 from International Application PCT/US2014/06/020415.
International Preliminary Report on Patentability dated Dec. 21, 2017 from International Application PCT/US2016/035606.
International Search Report and Written Opinion dated Sep. 13, 2016 from corresponding International Application PCT/US2016/036506.
International Preliminary Report on Patentability dated Jul. 27, 2017 from International Application PCT/US2016/013670.
International Search Report and Written Opinion dated Jun. 9, 2016 from corresponding International Application PCT/US2016/013670.
Leland, J. E90: Self-Replicating Milling Machine. Blog with photos (online). Swarthmore College, 2012. (Retrieved on Jul. 31, 2013).
Dan Friedman, National Solar Technology Roadmap: Concentrator PV, Management Report NREL/MP-520-41735, Solar Energy Technologies Program, Jun. 2007, pp. 1-3.
Geoffrey S. Kinsey, et al., Multijunction Solar Cells for Dense-Array Concentrators, pp. 625-627, 2006, 1-4244-0016-3, IEEE.
David Faiman, Large-Area Concentrators, 2nd Workshop on “The path to ultra-high efficient photovoltaics,” Oct. 3-4, 2002, pp. 1-8, JRC Ispra, Italy.
Kumer et al. “Measuring Surface slope error on precision aspheres”, (2007), Proc. Of SPIE vol. 6671., pp. 1-9.
Minano et al., “Free-firm optics for Fresnel-lens-based photovoltaic concentrators.”, Optics Express, vol. 21, No. S3, Apr. 22, 2013, pp. A496.
International Search Report and Written Opinion dated Nov. 2, 2016 from corresponding International Application PCT/US2016/045355.
International Preliminary Report on Patentability dated Feb. 6, 2018 from corresponding International Application PCT/US2016/045355.
USPTO; Non-Final Office Action dated Jul. 27, 2018 in U.S. Appl. No. 15/543,625.
International Search Report and Written Opinion dated Sep. 18, 2018 in PCT Application No. PCT/US18/30491.
USPTO; Final Office Action dated Feb. 19, 2019 in U.S. Appl. No. 15/543,625.
USPTO; Notice of Allowance dated May 1, 2019 in U.S. Appl. No. 15/543,625.
USPTO; Non-Final Office Action dated Apr. 19, 2019 in U.S. Appl. No. 15/694,327.
Related Publications (1)
Number Date Country
20190017729 A1 Jan 2019 US
Provisional Applications (1)
Number Date Country
62200570 Aug 2015 US