The present disclosure relates to a glazing for use as window glass or vehicle glass and a method of producing a glazing.
Glazings with a high visible transmittance and high infrared (IR) reflectance are desirable in many applications, allowing light in the visible portion of the electromagnetic spectrum to pass through the glazing while reflecting IR radiation to reduce heat transfer through the glazing.
Common types of glazings that are used in architectural applications include clear and tinted float glass, tempered glass, laminated glass as well as a variety of coated glasses, all of which can be glazed singly or as double, or even triple, glazing units.
It is known to provide solar control coatings on window glass in order to reduce the amount of solar radiation from the near-IR part of the electromagnetic spectrum that is transferred through the glass from outside the building, while still allowing visible light to pass through. The most efficient type of coating comprises at least two functional metal layers, which typically consist of silver (Ag) owing to its high IR reflectivity characteristics.
The functional metal layers are deposited in between anti-reflective layers which each typically include at least one dielectric layer for tuning the optical properties of the glazing. These anti-reflective layers also ensure protection of the functional metal layers from chemical attack and/or mechanical stress.
The optical and electrical properties of the glazing are directly related to the material used as a functional metal layer and the quality of the functional metal layer in terms of, e.g., crystallinity, grain size and interfacial roughness.
WO 2009/067263 is related to a solar control coating with low solar heat gain coefficient for use as, e.g., a window coating, comprising a transparent substrate coated with a stack of layers comprising two functional metal layers of Ag.
A particular challenge is to increase reflectance and decrease transmittance in the solar spectrum, such as 300-2500 nm, while maintaining high transmittance of light in the visible spectrum, such as 380-780 nm.
It is an object of the present disclosure to provide a glazing in the form of a window glass or vehicle glass.
Further objects are to provide a method of producing a glazing and a use of a sputtering target for applying a surface coating.
The invention is defined by the appended independent claims. Embodiments are set forth in the dependent claims, in the following description and in the drawings.
According to a first aspect there is provided a glazing in the form of a window glass or vehicle glass. The glazing comprises a transparent substrate and a coating. The coating comprises in order outward from the transparent substrate: optionally, a diffusion barrier layer, a first anti-reflective layer, optionally, a first seed layer, a first functional metal layer, optionally, at least one first blocker layer, a second anti-reflective layer, optionally, a second seed layer, a second functional metal layer, optionally, at least one second blocker layer, a third anti-reflective layer, optionally, a top layer. Each anti-reflective layer has at least one dielectric layer. At least one of the first functional metal layer and the second functional metal layer comprises a Ag alloy consisting essentially of Ag with an alloying agent selected from a group consisting of Li, C, Na, Mg, Si, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Ge, Sr, Y, Zr, Nb, Mo, Rh, Pd, In, Sn, Sb, Hf, Ta, W, Pt or Au.
By “glazing” is herein meant a transparent substrate coated with a stack of thin film materials or layers.
The glazing can be used as a glass component of a building's facade or internal surfaces (such as the glass panes in an insulated glass unit), and is also used to refer to the glass used in transport and utility vehicles (such as windshields and panoramic roofs).
The glazing may be transparent. By transparent is herein meant a glazing having visible light transmittance typically of the order of 30-90%. The glazing may be a sheet. Such a sheet may be planar, single curved or double curved.
By window glass is herein meant a window glass for a building. It may also be a roof glass, glass façade or a door glass.
By vehicle glass is meant a glass for a vehicle, for example a rear glass, side glass, sun roof, windshield or a windscreen (front window) in a car.
By transparent substrate is here meant a substrate having visible light transmittance typically of the order of 30-95%.
The transparent substrate may be substantially planar.
By “consists essentially of” is herein meant that the layer consists essentially of, or consists of, Ag or Ag and an alloying agent. The Ag alloy coating layer contains substantially only elemental Ag or Ag and the alloying agent, but may contain insubstantial or incidental amounts of impurities ordinarily associated with Ag and the alloying agent, and may also contain incidental insubstantial or substantial amounts of materials that do not materially affect the basic and novel characteristics of the Ag or Ag alloy layer.
As a non-limiting example, the Ag alloy coating layer may contain less than 0.1 wt. %, preferably less than 0.05 wt. %, most preferably less than 0.01 wt. % of other components, such as incidental impurites.
The alloying agent content is herein calculated as a ratio of the alloying agent to the sum of the amounts of the Ag and the alloying agent. This means that possible incidental impurities are not included in the alloying agent content.
The layers of the coating may, but need not, form a continuous layer onto the layer it is deposited upon or transparent substrate.
The optical properties and the electrical properties of the glazing are directly related to the material used as functional metal layer and the quality of the functional metal layer in terms of, e.g., crystallinity, grain size and interfacial roughness.
Experimental data discussed in the following description show that the coating of the glazing has improved characteristics in terms of lower solar direct transmittance and higher solar direct reflectance, as determined according to the European standard EN 410, for the same light transmittance, as determined according to the European standard EN 410, as compared to a coating comprising unalloyed Ag functional metal layers.
The alloying agent content of the Ag alloy may be 0.02-0.50 at. %, preferably 0.06-0.30 at. %, the rest being Ag.
The alloying agent content of the Ag alloy may be 0.02-0.04 at. %, 0.04-0.06 at. %, 0.06-0.08 at. %, 0.08-0.10 at. %, 0.10-0.12 at. %, 0.12-0.14 at. %, 0.14-0.16 at. %, 0.16-0.18 at. %, 0.18-0.20 at. %, 0.20-0.22 at. %, 0.22-0.24 at. %, 0.24-0.26 at. %, 0.26-0.28 at. %, 0.28-0.30 at. %, 0.30-0.32 at. %, 0.32-0.34 at. %, 0.34-0.36 at. %, 0.36-0.38 at. %, 0.38-0.40 at. %, 0.40-0.42 at. %, 0.42-0.44 at. %, 0.44-0.46 at. %, 0.46-0.48 at. % or 0.48-0.50 at. %, the rest being Ag.
The first functional metal layer may comprise the Ag alloy, and the second functional metal layer may consist essentially of Ag.
The first functional metal layer may consist essentially of Ag, and the second functional metal layer may comprise the Ag alloy.
The first functional metal layer may comprise the Ag alloy, and the second functional metal layer may comprise a second Ag alloy consisting essentially of Ag with an alloying agent selected from a group consisting of Li, C, Na, Mg, Si, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Ge, Sr, Y, Zr, Nb, Mo, Rh, Pd, In, Sn, Sb, Hf, Ta, W, Pt or Au.
The alloying agent content of the second Ag alloy may be 0.02-0.50 at. %, preferably 0.06-0.30 at. %, the rest being Ag.
The alloying agent content of the second Ag alloy may be 0.02-0.04 at. %, 0.04-0.06 at. %, 0.06-0.08 at. %, 0.08-0.10 at. %, 0.10-0.12 at. %, 0.12-0.14 at. %, 0.14-0.16 at. %, 0.16-0.18 at. %, 0.18-0.20 at. %, 0.20-0.22 at. %, 0.22-0.24 at. %, 0.24-0.26 at. %, 0.26-0.28 at. %, 0.28-0.30 at. %, 0.30-0.32 at. %, 0.32-0.34 at. %, 0.34-0.36 at. %, 0.36-0.38 at. %, 0.38-0.40 at. %, 0.40-0.42 at. %, 0.42-0.44 at. %, 0.44-0.46 at. %, 0.46-0.48 at. % or 0.48-0.50 at. %, the rest being Ag.
The alloying agent content of the second functional metal layer may be the same as the alloying agent content of the first functional metal layer.
The alloying agent content of the second functional metal layer may be greater than an alloying agent content of the first functional metal layer.
The alloying agent content of the second functional metal layer may be lower than an alloying agent content of the first functional metal layer.
The coating may further comprise, in order outward from the transparent substrate, continuing from the third anti-reflective layer, and inwardly of the top layer, if any: optionally, a third seed layer, a third functional metal layer, optionally, at least one third blocker layer, and a fourth anti-reflective layer, wherein the fourth anti-reflective layer may have at least one dielectric layer.
The third functional metal layer may comprise a third Ag alloy consisting essentially of Ag with an alloying agent selected from a group consisting of Li, C, Na, Mg, Si, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Ge, Sr, Y, Zr, Nb, Mo, Rh, Pd, In, Sn, Sb, Hf, Ta, W, Pt or Au.
An alloying agent content of the third Ag alloy may be 0.02-0.50 at. %, preferably 0.06-0.30 at. %, the rest being Ag.
The alloying agent content of the third Ag alloy may be 0.02-0.04 at. %, 0.04-0.06 at. %, 0.06-0.08 at. %, 0.08-0.10 at. %, 0.10-0.12 at. %, 0.12-0.14 at. %, 0.14-0.16 at. %, 0.16-0.18 at. %, 0.18-0.20 at. %, 0.20-0.22 at. %, 0.22-0.24 at. %, 0.24-0.26 at. %, 0.26-0.28 at. %, 0.28-0.30 at. %, 0.30-0.32 at. %, 0.32-0.34 at. %, 0.34-0.36 at. %, 0.36-0.38 at. %, 0.38-0.40 at. %, 0.40-0.42 at. %, 0.42-0.44 at. %, 0.44-0.46 at. %, 0.46-0.48 at. % or 0.48-0.50 at. %, the rest being Ag.
The third functional metal layer may consist essentially of Ag.
The coating may further comprise, in order outward from the transparent substrate, continuing from the fourth anti-reflective layer, and inwardly of the top layer, if any: optionally, a fourth seed layer, a fourth functional metal layer, optionally, at least one fourth blocker layer, and a fifth anti-reflective layer, wherein the fifth anti-reflective layer may have at least one dielectric layer.
The fourth functional metal layer may comprise a fourth Ag alloy consisting essentially of Ag with an alloying agent selected from a group consisting of Li, C, Na, Mg, Si, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Ge, Sr, Y, Zr, Nb, Mo, Rh, Pd, In, Sn, Sb, Hf, Ta, W, Pt or Au.
An alloying agent content of the fourth Ag alloy may be 0.02-0.50 at. %, preferably 0.06-0.30 at. %, the rest being Ag.
The alloying agent content of the fourth Ag alloy may be 0.02-0.04 at. %, 0.04-0.06 at. %, 0.06-0.08 at. %, 0.08-0.10 at. %, 0.10-0.12 at. %, 0.12-0.14 at. %, 0.14-0.16 at. %, 0.16-0.18 at. %, 0.18-0.20 at. %, 0.20-0.22 at. %, 0.22-0.24 at. %, 0.24-0.26 at. %, 0.26-0.28 at. %, 0.28-0.30 at. %, 0.30-0.32 at. %, 0.32-0.34 at. %, 0.34-0.36 at. %, 0.36-0.38 at. %, 0.38-0.40 at. %, 0.40-0.42 at. %, 0.42-0.44 at. %, 0.44-0.46 at. %, 0.46-0.48 at. % or 0.48-0.50 at. %, the rest being Ag.
The fourth functional metal layer may consist essentially of Ag.
The thickness of at least one of the first functional metal layer, the second functional metal layer, the third functional metal layer and the fourth functional metal layer may be 5-20 nm, preferably 6-12 nm, more preferably 8-10 nm.
The glazing may have a light transmittance of at least 20%, preferably at least 30% or at least 40% as determined according to the European standard EN 410.
According to a second aspect, there is provided a method of producing a glazing in the form of a window glass or vehicle glass. The method comprises providing a transparent substrate, applying, by Physical Vapor Deposition, in order outward from the transparent substrate: optionally, a diffusion barrier layer, a first anti-reflective layer, optionally, a first seed layer, a first functional metal layer, optionally, at least one first blocker layer, a second anti-reflective layer, optionally, a second seed layer, a second functional metal layer, optionally, at least one second blocker layer, a third anti-reflective layer, optionally, a top layer, to the transparent substrate, such that each anti-reflective layer has at least one dielectric layer, and such that at least one of the first functional metal layer and the second functional metal layer comprises a Ag alloy consisting essentially of Ag with an alloying agent selected from a group consisting of Li, C, Na, Mg, Si, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Ge, Sr, Y, Zr, Nb, Mo, Rh, Pd, In, Sn, Sb, Hf, Ta, W, Pt or Au.
An alloying agent content of the Ag alloy may be 0.02-0.50 at. %, preferably 0.06-0.30 at. %, of the of the Ag alloy, the rest being Ag.
The alloying agent content of the Ag alloy may be 0.02-0.04 at. %, 0.04-0.06 at. %, 0.06-0.08 at. %, 0.08-0.10 at. %, 0.10-0.12 at. %, 0.12-0.14 at. %, 0.14-0.16 at. %, 0.16-0.18 at. %, 0.18-0.20 at. %, 0.20-0.22 at. %, 0.22-0.24 at. %, 0.24-0.26 at. %, 0.26-0.28 at. %, 0.28-0.30 at. %, 0.30-0.32 at. %, 0.32-0.34 at. %, 0.34-0.36 at. %, 0.36-0.38 at. %, 0.38-0.40 at. %, 0.40-0.42 at. %, 0.42-0.44 at. %, 0.44-0.46 at. %, 0.46-0.48 at. % or 0.48-0.50 at. %, the rest being Ag.
The first functional metal layer may comprise the Ag alloy, and the second functional metal layer may consist essentially of Ag.
The first functional metal layer may consist essentially of Ag, and the second functional metal layer may comprise the Ag alloy.
The first functional metal layer may comprise the Ag alloy, and the second functional metal layer may comprise a second Ag alloy consisting essentially of Ag with an alloying agent selected from a group consisting of Li, C, Na, Mg, Si, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Ge, Sr, Y, Zr, Nb, Mo, Rh, Pd, In, Sn, Sb, Hf, Ta, W, Pt or Au.
An alloying agent content of the second Ag alloy is 0.02-0.50 at. %, preferably 0.06-0.30 at. %, the rest being Ag.
The alloying agent content of the second Ag alloy may be 0.02-0.04 at. %, 0.04-0.06 at. %, 0.06-0.08 at. %, 0.08-0.10 at. %, 0.10-0.12 at. %, 0.12-0.14 at. %, 0.14-0.16 at. %, 0.16-0.18 at. %, 0.18-0.20 at. %, 0.20-0.22 at. %, 0.22-0.24 at. %, 0.24-0.26 at. %, 0.26-0.28 at. %, 0.28-0.30 at. %, 0.30-0.32 at. %, 0.32-0.34 at. %, 0.34-0.36 at. %, 0.36-0.38 at. %, 0.38-0.40 at. %, 0.40-0.42 at. %, 0.42-0.44 at. %, 0.44-0.46 at. %, 0.46-0.48 at. % or 0.48-0.50 at. %, the rest being Ag.
The alloying agent content of the second functional metal layer may be the same as the alloying agent content of the first functional metal layer.
The alloying agent content of the second functional metal layer may be greater than an alloying agent content of the first functional metal layer.
The alloying agent content of the second functional metal layer may be lower than an alloying agent content of the first functional metal layer.
The method may further comprise applying, by Physical Vapor Deposition, in order outward from the transparent substrate, continuing from the third anti-reflective layer, and inwardly of the top layer, if any: optionally, a third seed layer, a third functional metal layer, optionally, at least one third blocker layer, and a fourth anti-reflective layer, wherein the fourth anti-reflective layer may have at least one dielectric layer.
The third functional metal layer may comprise a third Ag alloy consisting essentially of Ag with an alloying agent selected from a group consisting of Li, C, Na, Mg, Si, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Ge, Sr, Y, Zr, Nb, Mo, Rh, Pd, In, Sn, Sb, Hf, Ta, W, Pt or Au.
An alloying agent content of the third Ag alloy may be 0.02-0.50 at. %, preferably 0.06-0.30 at. %, the rest being Ag.
The alloying agent content of the third Ag alloy may be 0.02-0.04 at. %, 0.04-0.06 at. %, 0.06-0.08 at. %, 0.08-0.10 at. %, 0.10-0.12 at. %, 0.12-0.14 at. %, 0.14-0.16 at. %, 0.16-0.18 at. %, 0.18-0.20 at. %, 0.20-0.22 at. %, 0.22-0.24 at. %, 0.24-0.26 at. %, 0.26-0.28 at. %, 0.28-0.30 at. %, 0.30-0.32 at. %, 0.32-0.34 at. %, 0.34-0.36 at. %, 0.36-0.38 at. %, 0.38-0.40 at. %, 0.40-0.42 at. %, 0.42-0.44 at. %, 0.44-0.46 at. %, 0.46-0.48 at. % or 0.48-0.50 at. %, the rest being Ag.
The third functional metal layer may consist essentially of Ag.
The method may further comprise applying, by Physical Vapor Deposition, in order outward from the transparent substrate, continuing from the fourth anti-reflective layer, and inwardly of the top layer, if any: optionally, a fourth seed layer, a fourth functional metal layer, optionally, at least one fourth blocker layer, and a fifth anti-reflective layer, wherein the fifth anti-reflective layer may have at least one dielectric layer.
The fourth functional metal layer may comprise a fourth Ag alloy consisting essentially of Ag with an alloying agent selected from a group consisting of Li, C, Na, Mg, Si, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Ge, Sr, Y, Zr, Nb, Mo, Rh, Pd, In, Sn, Sb, Hf, Ta, W, Pt or Au.
An alloying agent content of the fourth Ag alloy may be 0.02-0.50 at. %, preferably 0.06-0.30 at. %, the rest being Ag.
The alloying agent content of the fourth Ag alloy may be 0.02-0.04 at. %, 0.04-0.06 at. %, 0.06-0.08 at. %, 0.08-0.10 at. %, 0.10-0.12 at. %, 0.12-0.14 at. %, 0.14-0.16 at. %, 0.16-0.18 at. %, 0.18-0.20 at. %, 0.20-0.22 at. %, 0.22-0.24 at. %, 0.24-0.26 at. %, 0.26-0.28 at. %, 0.28-0.30 at. %, 0.30-0.32 at. %, 0.32-0.34 at. %, 0.34-0.36 at. %, 0.36-0.38 at. %, 0.38-0.40 at. %, 0.40-0.42 at. %, 0.42-0.44 at. %, 0.44-0.46 at. %, 0.46-0.48 at. % or 0.48-0.50 at. %, the rest being Ag.
The fourth functional metal layer may consist essentially of Ag.
The thickness of at least one of the first functional metal layer, the second functional metal layer, the third functional metal layer and the fourth functional metal layer may be provided to 5-20 nm, preferably 6-12 nm, more preferably 8-10 nm.
At least one of the first functional metal layer, the second functional metal layer, the third functional metal layer and the fourth functional metal layer may be deposited from a Ag alloy sputtering target.
According to a third aspect, there is provided a use of a sputtering target, comprising a homogeneous body of Ag alloy target material, wherein the Ag alloy target material consists essentially of Ag with an alloying agent selected from a group consisting of Li, C, Na, Mg, Si, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Ge, Sr, Y, Zr, Nb, Mo, Rh, Pd, In, Sn, Sb, Hf, Ta, W, Pt or Au for applying a surface coating on a transparent substrate to form a window glass or vehicle glass.
Further, an alloying agent content of the Ag alloy target material may be 0.02-0.50 at. %, preferably 0.06-0.30 at. %, of the Ag alloy target material, the rest being Ag.
The alloying agent content of the Ag alloy target material may be 0.02-0.04 at. %, 0.04-0.06 at. %, 0.06-0.08 at. %, 0.08-0.10 at. %, 0.10-0.12 at. %, 0.12-0.14 at. %, 0.14-0.16 at. %, 0.16-0.18 at. %, 0.18-0.20 at. %, 0.20-0.22 at. %, 0.22-0.24 at. %, 0.24-0.26 at. %, 0.26-0.28 at. %, 0.28-0.30 at. %, 0.30-0.32 at. %, 0.32-0.34 at. %, 0.34-0.36 at. %, 0.36-0.38 at. %, 0.38-0.40 at. %, 0.40-0.42 at. %, 0.42-0.44 at. %, 0.44-0.46 at. %, 0.46-0.48 at. % or 0.48-0.50 at. %, the rest being Ag.
The concept disclosed herein will now be explained in more detail. Initially, the structure of a glazing is described, thereafter the method of producing such a glazing is described. Finally, characterization results of the glazing are discussed.
In
The transparent substrate 11 may be a glass substrate, such as a soda-lime glass substrate, or a substrate of organic polymers. The substrate may be homogeneous or laminated, comprising one or more glass layers and, e.g., one or more polymer films. Preferably, an outwardly exposed surface, on which the coating is deposited, is made of glass.
The dimension of the transparent substrate 11 may range from over-sized glass panes, which, e.g., may be 3300×6000 mm or 3210×15000 mm or larger, down to small structures, e.g., 200×200 mm. The described glazing is, however, not limited to any specific size of the substrate.
The thickness of the transparent substrate may be about 0.3 mm to 25 mm, or about 2 mm to 8 mm or 4 mm to 6 mm. The described coating is, however, not limited to any thickness of the transparent substrate 11.
An optional diffusion barrier layer 12 may be formed on the transparent substrate 11. The optional diffusion barrier 12 layer may be situated in between the transparent substrate 11 and the first anti-reflective layer 13. The diffusion barrier layer may be a layer consisting essentially of aluminum oxide, silicon nitride or zinc stannate.
The diffusion barrier layer 12 may act as a barrier layer and the purpose of the diffusion barrier layer is to prevent sodium ions from diffusing from the glass into the other layers, such as the functional metal layers, of the coating 10. Diffusion into the first functional metal layer 15 and/or the second functional metal layer 19 may have detrimental effects on said layers.
The first anti-reflective layer 13 may be formed either directly on the transparent substrate 11 or on the optional diffusion barrier layer 12.
The first anti-reflective layer 13 may comprise at least one dielectric layer of a metal oxide, such as tin oxide, zinc oxide, zinc tin oxide, titanium oxide, silicon oxide, niobium oxide or zirconium oxide, or a metal nitride, such as silicon nitride or titanium nitride.
The purpose of the first anti-reflective layer 13 is to tune the optical properties of the glazing 1 by tailoring the thickness of the at least one dielectric layer. The first anti-reflective layer 13 may also protect the first functional metal layer 15 and/or the second functional metal layer 19 from chemical attack and/or mechanical stress.
The thickness of the first anti-reflective layer 13 may be about 5 to 120 nm, or about 10 to 100 nm, or about 15 nm to 90 nm.
On the first anti-reflective layer 13, an optional first seed layer 14 may be formed. The optional first seed 14 layer may be situated in between the first anti-reflective layer 13 and the first functional metal layer 15. The optional first seed layer 14 may be a layer of zinc oxide or zinc oxide doped by an additional element, such as aluminum.
The purpose of the first seed layer 14 is to improve the quality of the first functional metal layer 15. For example, it may impose an epitaxial relationship for the first functional metal layer 15 so that the crystallites in the first functional metal layer 15 favour to grow with a (111) out-of-plane oriented texture and in that way increases electrical conductivity of the first functional metal layer 15. The first seed layer 14 may also confer mechanical support to the first functional metal layer 15.
The thickness of the first seed layer 14 may be about 2 to 25 nm, or about 3 to 15 nm.
The first functional metal layer 15 may be formed onto the first seed layer 14 or directly on the first anti-reflective layer 13.
The first functional metal layer 15 is Ag, or a Ag alloy. The first functional metal layer may have high IR reflectivity characteristics.
The thickness of the first functional metal layer 15 may be about 5 to 20 nm, or about 6 to 12 nm, or about 8 nm to 10 nm.
The glazing 1 may further comprise at least one first optional blocker layer 16 formed on top of the first functional metal layer 15. The at least one first optional blocker layer 16 may be situated in between the first functional metal layer 15 and the second anti-reflective layer 17.
The at least one first blocker layer 16 may be an oxidized metal layer, based on nickel chrome, nickel, chrome, niobium, titanium or zinc, or a metal nitride layer, based on nickel chrome or chrome.
The purpose of the at least one first optional blocker layer 16 is to improve the quality of the first functional metal layer 15 by protecting the first functional metal layer during deposition of a subsequent layer, such as the second anti-reflective layer 17. The at least one first optional blocker layer can also act as an absorbing layer to decrease light transmittance without increasing light reflectance.
The thickness of the at least one first optional blocker layer 16 may be about 0.5 to 6 nm, or about 1 to 4 nm.
The second anti-reflective layer 17 may then be formed on the at least one first optional blocker layer 16 or directly on the first functional metal layer 15.
The second anti-reflective layer 17 may comprise at least one dielectric layer of a metal oxide, such as tin oxide, zinc oxide, zinc tin oxide, titanium oxide, silicon oxide, niobium oxide or zirconium oxide, or a metal nitride, such as silicon nitride or titanium nitride.
The purpose of the second anti-reflective layer 17 is to tune the optical properties of the glazing 1 by tailoring the thickness of the at least one dielectric layer.
The second anti-reflective layer 17 may also protect the first functional metal layer 15 and/or the second functional metal layer 19 from chemical attack and/or mechanical stress.
The thickness of the second anti-reflective layer 17 may be about 5 to 120 nm, or about 10 to 100 nm, or about 15 nm to 90 nm.
On top of the second anti-reflective layer 17, a second optional seed layer 18 may be formed. The second optional seed layer 18 may be situated in between the second anti-reflective layer 17 and the second functional metal layer 19. The second optional seed layer 18 may be a layer of zinc oxide or zinc oxide doped by an additional element, such as aluminum.
The purpose of the second optional seed layer 18 is to improve the quality of the second functional metal layer 19. For example, it may impose an epitaxial relationship for the second functional metal layer 19 so that the crystallites in the second functional metal layer 19 favour to grow with a (111) out-of-plane oriented texture and in that way increases electrical conductivity of the second functional metal layer 19. The second seed layer 18 may also confer mechanical support to the second functional metal layer 19.
The thickness of the second optional seed layer 18 may be about 2 to 25 nm, or about 3 to 15 nm.
The second functional metal layer 19 may be formed onto the second seed layer 18 or directly on the second anti-reflective layer 17.
The second functional metal layer 19 is Ag, or a Ag alloy. The second functional metal layer may have high IR reflectivity characteristics.
The thickness of the second functional metal layer 19 may be about 5 to 20 nm, or about 6 to 12 nm, or about 8 nm to 10 nm.
The glazing 1 may further comprise at least one second optional blocker layer 20 formed on top of the second functional metal layer 19. The at least one second optional blocker layer 20 may be situated in between the second functional metal layer 19 and the third anti-reflective layer 21.
The at least one second optional blocker layer 20 may be an oxidized metal layer, based on nickel chrome, nickel, chrome, niobium, titanium or zinc, or a metal nitride layer, based on nickel chrome or chrome.
The purpose of the at least one second optional blocker layer 20 is to improve the quality of the second functional metal layer 19 by protecting the second functional metal layer during deposition of a subsequent layer, such as the third anti-reflective layer 21. The at least one second blocker layer can also act as an absorbing layer to decrease light transmittance without increasing light reflectance.
The thickness of the at least one second optional blocker layer 20 may be about 0.5 to 6 nm, or about 1 to 4 nm.
The third anti-reflective layer 21 may then be formed on the at least one second blocker layer 20 or directly on the second functional metal layer 19.
The third anti-reflective layer 21 may comprise at least one dielectric layer of a metal oxide, such as tin oxide, zinc oxide, zinc tin oxide, titanium oxide, silicon oxide, niobium oxide or zirconium oxide, or a metal nitride, such as silicon nitride or titanium nitride.
The purpose of the third anti-reflective layer 21 is to tune the optical properties of the glazing 1 by tailoring the thickness of the at least one dielectric layer.
The third anti-reflective layer 21 may also protect the first functional metal layer 15 and/or the second functional metal layer 19 from chemical attack and/or mechanical stress.
The thickness of the third anti-reflective layer 21 may be about 5 to 120 nm, or about 10 to 100 nm, or about 15 nm to 90 nm.
An optional top layer 22 may be formed on the third anti-reflective layer 21.
The top layer 22 may comprise a nitride, e.g., silicon nitride, or an oxide, e.g., aluminum oxide or titanium oxide. The top layer may be covering and in direct contact with the anti-reflective layer that is furthest away from the transparent substrate, wherein the top layer is further away from the transparent substrate as compared to the anti-reflective layer it is covering.
The purpose of the top layer 22 is to protect the underlying layers from mechanical damage, e.g., scratches, and chemical attacks.
The purpose of the first functional metal layer 15 and the second functional metal layer 19 is to reduce the amount of solar radiation from the near-IR part of the electromagnetic spectrum that is transferred through the glass from outside the building, while still being transparent in the visible spectrum.
At least one of the first functional metal layer 15 and the second functional metal layer 19 is a Ag alloy. The Ag alloy is Ag alloyed with an alloying agent selected from a group consisting of Li, C, Na, Mg, Si, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Ge, Sr, Y, Zr, Nb, Mo, Rh, Pd, In, Sn, Sb, Hf, Ta, W, Pt or Au. The alloying agent content of the Ag alloy may be homogeneously distributed, or the alloying agent content of the Ag alloy may be inhomogeneously distributed. A non-limiting example of the homogeneously and inhomogeneously distributed alloying agent contents is schematically illustrated in
The inhomogeneously distributed alloying agent content may be divided into three zones. In the direction outward from the transparent substrate, the three zones may be a first composition layer zone, a gradient composition layer zone, and a second composition layer zone that are covering and in direct contact with each other. The first composition layer zone and the second composition layer zone each consist of a majority of Ag or Ag alloy. The alloying agent content of the first composition layer zone may be higher than the alloying agent content of the second composition layer zone, or the alloying agent content of the first composition layer zone may be lower than the alloying agent content of the second composition layer zone. The gradient composition layer zone may have an alloying agent content that is substantially the same as the first composition layer zone where the first composition layer zone and the gradient composition layer zone are in direct contact with each other. The gradient composition layer zone may have an alloying agent content that is substantially the same as the second composition layer zone where the second composition layer zone and the gradient composition layer zone are in direct contact with each other. The alloying agent content within the gradient composition layer zone may be transient.
The first functional metal layer 15 may be the Ag alloy and the second function metal layer 19 may be Ag, or the first functional metal layer 15 may be Ag and the second function metal layer 19 may be the Ag alloy, or the first functional metal layer 15 may be the Ag alloy and the second function metal layer 19 may be a second Ag alloy.
The first Ag alloy may have an alloying agent content that is higher, the same, or lower than the alloying agent content of the second Ag alloy. Preferably the first Ag alloy and the second Ag alloy have the same Al content.
The coating 10 may be used as a so-called solar control coating. The emissivity of such a coating is typically 0.10, preferably 0.07.
The main purpose of a solar control coating is to reduce the amount of solar radiation (such as 300-2500 nm) that is transferred through the glazing such that the interior of, e.g., a building or a vehicle is less heated by the sun, while still allowing visible light (such as 380-780 nm) to pass through the glazing.
The glazing 1 may present a solar direct transmittance, as determined according to the European standard EN 410, which is lower than a solar direct transmittance of a glazing having a coating with the same layer structure and layer thicknesses as the coating comprising at least one Ag alloy functional metal layer, but wherein each Ag alloy functional metal layer is replaced by an unalloyed Ag functional metal layer.
In particular, the glazing 1 may present a solar direct transmittance, as determined according to the European standard EN 410, which is at least 1%, preferably at least 2% lower than a solar direct transmittance of a glazing having a coating with the same layer structure and layer thicknesses as the coating comprising at least one Ag alloy functional metal layer, but wherein each Ag alloy functional metal layer is replaced by an unalloyed Ag functional metal layer.
The glazing 1 may present a solar direct reflectance, as determined according to the European standard EN 410, which is higher than a solar direct reflectance of a glazing having a coating with the same layer structure and layer thicknesses as the coating comprising at least one Ag alloy functional metal layer, but wherein each Ag alloy functional metal layer is replaced by an unalloyed Ag functional metal layer.
In particular, the glazing 1 may present a solar direct reflectance, as determined according to the European standard EN 410, which is at least 1%, preferably at least 2% higher than a solar direct reflectance of a glazing having a coating with the same layer structure and layer thicknesses as the coating comprising at least one Ag alloy functional metal layer, but wherein each Ag alloy functional metal layer is replaced by an unalloyed Ag functional metal layer.
For a solar control coating, two, three or four of the functional metal layers may be combined in a coating to form a glazing. Excluding the optional layers, the layer structure of a glazing comprising three functional metal layers may be glass/first anti-reflective layer/first functional metal layer/second anti-reflective layer/second functional metal layer/third anti-reflective layer/third functional metal layer/fourth anti-reflective layer. A non-limiting example of such a structure including the optional layers can be seen in
The structure illustrated in
Excluding the optional layers, the layer structure of a glazing comprising four functional metal layers may be glass/first anti-reflective layer/first functional metal layer/second anti-reflective layer/second functional metal layer/third anti-reflective layer/third functional metal layer/fourth anti-reflective layer/fourth functional metal layer/fifth anti-reflective layer. A non-limiting example of such a structure including the optional layers can be seen in
The structure illustrated in
Alternatively, thicknesses and/or compositions of the additional layers in
Each of the layers of the coating 10 in
The layers of the coating 10 may be deposited one layer at a time.
The different layers may be deposited in the same or in different sputter zones. The sputter zones may be spatially separated.
Alternatively, the sputter zones may be completely or partially overlapping sputtering zones.
The sputter zones may be stationary and the transparent substrate may be moveable. The transparent substrate may be passed through a sputter zone or between successive sputter zones by means of translation, and/or rotation of the substrate in relation to the sputter zones.
Alternatively, the substrate may be stationary and the sputter zones may surround and face, or at least partially face, the stationary substrate.
The dimensions of the sputtering zones may depend on the application and on the size of the substrate to be coated.
The deposition sources may be so-called sputtering targets.
There may be different deposition sources used for each deposited layer. Alternatively, the same deposition source may be used for deposition of a number of different layers.
The functional metal layer may be deposited from one single deposition source, such as an alloy sputtering target. Alternatively, the functional metal layer is deposited from two separate deposition sources. For example, for the Ag alloy, there may be one deposition source providing the Ag and one deposition source providing the alloying agent. If the functional metal layer is deposited from separate deposition sources, the deposition of Ag and the alloying agent may take place simultaneously.
Each of the deposited layers may, but need not, form a continuous layer onto the previous layer or onto the substrate.
As an example, for deposition of the functional metal layer, the PVD system in which the deposition of layers take place may have a base pressure of about 10−2 Pa or below. A typical pressure in the PVD system when using a sputtering gas, such as Ar, is typically in the range of 0.1 to 2 Pa.
Typically, the substrate is not intentionally heated during deposition of the layers of the coating.
Number | Date | Country | Kind |
---|---|---|---|
2050459-3 | Apr 2020 | SE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2021/060327 | 4/21/2021 | WO |