The invention is related to removing salt from ocean water using only solar energy for a positive energy output and production of potable water.
Solar desalination has been used since ancient times with variations on a simple arrangement that includes an evaporation column with a condenser above the column that diverts the condensed water into a separate reservoir. This can be done with a simple sloping surface on the cap that collects and drains the water droplets. However, in normal high temperature situations, especially when under solar radiation, the cap or the entire device becomes too hot for condensation to naturally occur. As a result, condensation only happens once a day when the air temperature cools.
A simple desalination system disclosed in DE 3612188 to Graef provides saltwater sprayed on several evaporation columns above a mirror. The condensed water or steam is collected above by a slanted tube and guided down to a reservoir. In this configuration, the incoming seawater provides the cooling used condense the evaporated water. However, the system requires nighttime cooling or seawater cooling to work, in addition to power to pump water through sprayers and chill the cooling element. In reality, the system simply attempts to replicate the natural water cycle to provide water to plants under the evaporation canopy.
More modern systems artificially cool the condenser with refrigeration or vacuum pump the water vapor out of the top of the condenser column for remote condensing. One such system described in Chinese patent CN 101993125 to Yang, includes a separate heating panel that feeds into an evaporation column. The water vapor is pumped into another box with a condensing element at the top that is perforated to collect water and divert it to a spigot. However, again the evaporation column is separate from the portion of the system heating the water and requires an artificially cooled condensing element.
Finally, a more streamlined and serial system disclosed in Chinese patent CN 2452996 to Ming et al. provides a number of sloped tubes through which saltwater flows downhill after being pumped uphill. The water which evaporates on the journey down the tube is pumped out with a fan to a steam condenser and a water storage tank. However, the tube is open at both ends and the water flows as quickly as gravity takes it down back to the ocean. As a result, the tube remains rather cool and evaporation is insignificant unless the volume of water is low.
These systems require energy for cooling, compression, and fans to pump the water vapor through the system. Additionally, the devices of Yang and Graef are also very susceptible to clogging with the salt precipitating from the saltwater. These require additional cleaning systems or manual declogging in the joints or tubes. In addition the separated heating panel of Yang is completely enclosed and vulnerable to clogging and corrosion. Indeed corrosion is one of the largest challenges to any ongoing desalination process.
Other desalination processes such as electrolysis or reverse-osmosis require significant energy use so that the most efficient systems can only produce usable water at about three dollars per gallon. In order to support the larger requirements of agriculture and household use, efficiency must get to where water is cheaper than 50 cents. The system described in this application can generate electricity along with usable water so that the only costs are the fixed costs of building the system and regular replacement of certain elements.
The invention is directed to a solar desalination array for heating sea water into steam for the production of usable water and power generation. The heating columns normally operate in parallel and are heated by cylindrical mirrors which concentrate sunlight on each heating column. The heated sea water is either turned to steam and ejected out of the heating column or passed on to another heating column for further heating.
The cylindrical mirrors and heating columns are aligned and each provides steam at one end to a common exit pipe resulting in a high pressure flow of high temperature steam. At the exit end of each heating column, a pressure-actuated valve allows the pressure to build to a preset amount before release. The pressure-actuated valve can drive an external motor for low voltage power generation. The generated steam in the common pipe is then used to turn a turbine for generation of electrical power. By using the heat and pressure of the steam to do work in the turbine, the steam naturally condenses leaving the turbine. As a result the condensation of the water vapor produces energy rather than uses it.
Ultimately, the steam from the heating columns is condensed in a condensing column and converted to usable, potable water for irrigation and drinking. The controlling inlet and outlet valves can be switched to control the functioning of the heating tube from evaporation to high pressure steam production based on user needs and environmental conditions. The variability of the pressure flow out of the heating columns can be adjusted and managed by the outlet valves as well.
Further scope of applicability of the present invention will become apparent from the detailed description given hereinafter. However, it should be understood that the detailed description and specific examples, while indicating preferred embodiments of the invention, are given by way of illustration only, since various changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art from this detailed description.
The present invention will become more fully understood from the detailed description given hereinbelow and the accompanying drawings which are given by way of illustration only, and thus, are not limitative of the present invention, and wherein:
The heating columns have different configurations but substantially the same function. In each column, water is heated by concentrated sunlight such that salt water contained therein evaporates and reaches high and/or temperatures. The first configuration in
The configuration of
During steam generation mode, the column heats up and the one way stop valve 11 remains closed allowing pressure to build up. This pressure is then allowed to intermittently exit the column into an exit pipe. Preferably the exit valve 16 is controlled based on the built up pressure so that with each opening a usable pressure is released.
The configuration of
In addition, the incoming water can be pre-heated by the outgoing salt water or the steam exiting the turbine in a reverse heat exchanger. The incoming cold ocean water can help condense the remaining water vapor.
Alternatively, the exit valve 19 can be restricted such that at a given operating temperature a constant pressure is allowed to exit. This maintains a constant pressure flow to downstream systems that utilize the pressurized steam further. With variable temperatures, the restriction of the exit valve can be controlled to maintain pressure. In addition, all of the configurations in
The configuration in
In the embodiment where the concentric glass pipes are used, the internal reflection angle of the outer glass tube should trap infrared light into the space between the outer tube and the inner tube. Likewise, the inner pipe should trap infrared light within the water, so the internal reflection at the water/glass interface should be below the critical angle. A lateral cross section of this tube system in
Alternatively, the plastic tube 13 can be completely filled with sea water and pre-heated before being passed to another one of the configurations for power generation. The desalination columns are designed to be laid out in arrays which would allow preheating with several columns 14 a straight forward design. The benefit of configuration B is that the main pipe can be used for longer without corrosion from sea water. Additionally, different liquids can be used which have higher heat conduction than water.
Preferably, configurations in
The configurations shown in
The configuration in
The array segment of
The cross bars 31 establish the curvature or focal point of the mirrors 30 when used with a semi-flexible backing for the mirror. The mirror surface is preferably a simple reflective coating or foil sprayed or stretched over a frame, respectively. The mirror frame can be a skeleton frame made of steel, aluminum or other material and covered with a light weight plastic or stiff canvas on which the mirror surface can be placed. Light weight mirrors are preferable for easy rotation and positioning throughout the day.
The actuation of the mirrors for tracking of the sun can be performed by a stepper motor which drives a spur gear on a planetary/cylindrical gear provided on the inside of the mounts 32. A control unit can map the progression of the gears to the angle of the mirror and track the sun based on a location based calendar. Other types of tracking systems, such as belt and gear based systems, could be used to maintain maximum exposure to the sun. All angles between 0 degrees and 90 degrees with respect to the ground can be used depending on the terrain, with an exemplary system shown in
The side view of the system in
The optimization of the system for evaporation or power generation results in other variations. For instance, evaporation preferably has long arrays and thinner pipes to quickly heat water, evaporate a portion and discharge the concentrated salt water all in one pipe. In contrast for power generation at each pipe, shorter thicker pipes that can contain the pressure and temperature necessary to generate dry steam. The cap/valve can act as a piston such that an array of pipes functions much like an engine made up of singly firing tubes which generate power.
The exhaust after the actuating the piston contains water vapor under pressure that is usable by a turbine. In contrast, the evaporated water from the desalinators requires condensation in order to bring the water to liquid form. However, the drop in pressure present in the power generation system at the turbine naturally condenses the water vapor. The evaporation system is cheaper to build with thinner pipes and low pressure valves and pumps which are significantly cheaper.
The system diagram of
From the turbine the condensed air is then passed via exit 55 to a condensation column 52. Here a vacuum pump 53 sucks the water vapor out into a holding container 54 for extra pure water. Alternatively, the condensation column 52 allows the water to condense and fill the column before being pumped out for use. The condensation column can alternatively be a reverse heat exchanger such that incoming ocean water is heated around the outside of the column whilst the air inside the column is cooled by the colder water.
Finally, if only hot sea water can be generated by the desalination columns 50, then the hot sea water can be sprayed into a condensation column 52 and the resulting water vapor is pumped out by the vacuum pump 53. In this case, the exit at the bottom of the condensation column pumps the saltier, unevaporated water out and back to the ocean.
When power is not being generated via the turbine, a switch allows the turbine to be bypassed and the water vapor to pass directly via exit 56 to the storage tank 54 or to the condensation column 52 for additional cooling. The desalination column in the array may simply preheat the water before passing it on to each of the high pressure systems in the desalination array 50. When exit pipe is at low pressure, the turbine is bypassed but when the desalination columns are generating pressure the steam is directed through the turbine.
The concentrated salt water may be passed out of the system back to the ocean by the pipe at the base of the array. Thus, when the pumps are not actively injecting salt water into the pipes 12 of the array, the pipe at the base of the array can allow the pressure in the pipes 12 to force some of their contents out for return to the ocean.
The embodiment including concentric glass tubes is illustrated in
The sea water preferably is pretreated to remove particulates and micro-organisms via a slow sand filter or other passive filter. Even after running all the pumps, sun tracking system and filters, the co-generation plant produces net energy and also desalinates sea water. Naturally, this system requires bright sunshine most of the year and proximity to the ocean. However, current desalination plants are also required to be close to the ocean or an inland sea and can only produce usable water at a significant cost. For instance, the cheapest desalination plants in Israel and Morocco operate via reverse-osmosis and generate water at a cost of about three dollars a gallon.
In this system, usable water is a byproduct of power generation, and therefore, water could be given away by governments while the electricity is sold to support operation of the plant. A simpler system which would only desalinate water and require little maintenance is a variation of the configuration in
Even this method would produce desalinated water at far cheaper rates than conventional systems. All of these systems are designed to be scalable such that the size of the desalination array can dictate the size of the turbine and water storage capacity. Alternatively, even without the turbine the desalination array can generate power via the exit valves 16 in each column such that even single columns for personal or household use could recoup energy to power pumps at least and generate usable water for individual households.
Alternatively, only one large pipe 12 can be used with multiple mirrors directed a the pipe 12 in a configuration much like solar steam electric generation plants. However, in this case the steam is used as condensed after generating energy and converted to potable water. Ideally, the incoming sea water is pre-heated in the condenser as it is used for cooling the condenser.
The invention being thus described, it will be obvious that the same may be varied in many ways including using any of the condensers/coolers utilized in the prior art of the background section as the cooling column. Such variations are not to be regarded as a departure from the spirit and scope of the invention, and all such modifications as would be obvious to one skilled in the art are to be included within the scope of the following claims.