This invention relates to a system for coordinating the use of solar energy and other forms of renewable energy with regenerated energy from oil pump jacks.
A pump jack is a surface drive mechanism for a reciprocating piston pump in an oil well, and is used to mechanically lift oil or other liquids out of the well when there is insufficient subsurface pressure. Pump jacks are typically used onshore in relatively oil-rich areas. Modern pump jacks typically are powered by a electric motor, and the pump jack converts the motive force of the motor to a vertical reciprocating motion to drive the pump shaft (thereby causing a characteristic nodding motion). Electrical power usually is obtained from the electrical grid of the local electric utility or power supplier.
In various exemplary embodiments, the present invention comprises a system for supplementing the electric power needed by a pump jack electric motor, thereby reducing the electric power purchased from the local utility or power supplier. In one embodiment, the system comprises a solar photovoltaic system and regenerated power from the electric motor or drive. The system can be both “on-grid” and “off-grid.”
In an “on-grid” embodiment, the system allows for a balanced connection between the utility power grid and a solar photovoltaic system through the DC buss of a regenerative variable frequency drive (VFD) or variable speed drive. In general, the power required to operate the pump jack motor or drive is provided by the solar photovoltaic system and by the energy from the regenerative action from the operation of the pump jack on the electric motor. Any additional power required to operate the pump jack motor may come from the utility power grid. Any excess power may be sold back to the local utility via a “net meter” agreement or similar arrangement.
The solar photovoltaic system may be connected directly to the common DC buss on the regenerative variable speed drive, which allows the regenerative drive to convert energy produced by the solar photovoltaic system (which is DC energy) to synchronized 3-phase waveforms. This is the utility-required format for energy passed from the system to the utility grid.
In several embodiments, the regenerative capabilities of the drive must meet or exceed all utility requirements for power filtering and harmonic issues that are required for direct connection of the drive to the utility with respect to the driver supplying power back to the utility. The regenerative drive must meet or exceed all utility requirements concerning direct interconnection guidelines for small generator interconnect agreements.
In an “off-grid” embodiment, the system captures and/or reuses the power generated from a solar photovoltaic array, an optional wind turbine or wind turbine array, as well as the regenerated power from the pump jack drive. Regenerative power from the pump jack drive may be stored in a 480 DC capacitor bank, and fed back into the DC buss of the variable frequency drive. The solar and wind energy may be stored in a 480 DC battery bank. Energy needed to run the pump jack motor is pulled from the capacitor bank, with additional energy as needed pulled from the battery bank. In another embodiment where the system is connected to the power grid as well, the power grid also may be a source of energy to make up any difference. The battery bank and capacitor bank are sized by the load needed to operate the respective pump jack drive or motor.
In various exemplary embodiments, the present invention comprises a system for supplementing the electric power needed by a pump jack electric motor, thereby reducing the electric power purchased from the local utility or power supplier. In one embodiment, the system comprises a solar photovoltaic system and regenerated power from the electric motor or drive. The system can be both “on-grid” and “off-grid.”
In an “on-grid” embodiment, as seen in
As seen in
As seen in
In several embodiments, the regenerative capabilities of the drive must meet or exceed all utility requirements for power filtering and harmonic issues that are required for direct connection of the drive to the utility with respect to the driver supplying power back to the utility. The regenerative drive must meet or exceed all utility requirements concerning direct interconnection guidelines for small generator interconnect agreements. For both of the above examples, the parameters for the VFD may be adjusted to increase the amount of regenerated energy and optimize the power usage of the pump jack.
While the above discussion was in the context of solar power, other forms of renewable energy sources may be used, including, but not limited to, wind and hydro-electric. These may be used separately, or in combination.
In an “off-grid” embodiment with combined renewable energy sources, as seen in
The capacitor bank is the storage bank for regenerated power from the motor, and allows the regenerated power to be stored and reused. In one embodiment, the bank comprises nickel oxide hydroxide high amperage capacitors.
Energy needed to run the pump jack motor is pulled from the capacitor bank 40, with additional energy as needed pulled from the battery bank 30, through a DC interconnection box 44. The interconnection box allows for level flow of DC power back to the capacitor bank, but stopping any reverse flow to the battery bank. The interconnection box is connected to inverter 202, which inverts 480V AC single phase to 650V DC (as described above for the direct connection embodiment).
In another embodiment where the system is connected to the power grid as well, the power grid also may be a source of energy to make up any difference. The battery bank and capacitor bank are sized by the load needed to operate the respective pump jack drive or motor. The VFD 200 controls the speed of the motor, and acts as inverter for on-grid and off-grid configurations.
Thus, it should be understood that the embodiments and examples described herein have been chosen and described in order to best illustrate the principles of the invention and its practical applications to thereby enable one of ordinary skill in the art to best utilize the invention in various embodiments and with various modifications as are suited for particular uses contemplated. Even though specific embodiments of this invention have been described, they are not to be taken as exhaustive. There are several variations that will be apparent to those skilled in the art.
The present application is a continuation application of U.S. application Ser. No. 14/208,299 filed Mar. 13, 2014 that, in turn, claims benefit of and priority to U.S. Provisional Application No. 61/852,540, filed Mar. 18, 2013, by Kavan Graybill, and is entitled to that filing date for priority. The specification, figures and complete disclosure of U.S. Provisional Application No. 61/852,540 and U.S. application Ser. No. 14/208,299 are incorporated herein by specific reference for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
5409356 | Massie | Apr 1995 | A |
20050281680 | Schulz | Dec 2005 | A1 |
20080262857 | Perera | Oct 2008 | A1 |
20100054959 | Rogers et al. | Mar 2010 | A1 |
20100143158 | Alston | Jun 2010 | A1 |
20120223584 | Ledenev | Sep 2012 | A1 |
20130263613 | Bittner | Oct 2013 | A1 |
Entry |
---|
Rising oil prices have fueled advances in underground drilling but ground-level technologies have been stagnant for decades . . . Until Now. By Lozanova May/Jun. 2011. |
Number | Date | Country | |
---|---|---|---|
20170335838 A1 | Nov 2017 | US |
Number | Date | Country | |
---|---|---|---|
61852540 | Mar 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14208299 | Mar 2014 | US |
Child | 15456796 | US |