1. Field of the Invention
The present invention relates to a solar energy greenhouse, and more particularly to a solar energy greenhouse which has thin-film solar cell assemblies with unequal gap.
2. Description of Related Art
Greenhouses are one kind of building specially for planting plants (“such as flowers, grass, vegetables, fruit and so on), which can protect plants from being affected by climates, temperature or mosquitoes, so that plants can grow successfully and quickly. In particular, in some tropical regions or frigid regions, proper temperature and humidity environments provided by greenhouses can promote growth of plants significantly.
Generally, greenhouses have transparent roofs so that sunlight can radiate on plants through the roofs and the plants can photosynthesize. Greenhouses often also have some air-conditioning equipments for controlling temperature and humidity and so on, which ensure that the temperature and humidity in the greenhouse is beneficial to growth of plants. Greenhouses further have auto-watering equipments for watering plants regularly.
Because of these equipments, greenhouses consume a large mount of electrical energy, which causes electric costs to become a significant burden of users (such as farmers) who are using the greenhouses. Accordingly, it has been proposed that transparent thin-film solar cells may be mounted in positions of the greenhouses where light radiation is the strongest and the most sufficient generally this will be on roofs) to provide electrical energy without affecting distribution of light radiation on plants.
However, though the thin-film solar cells maybe generally transparent in their characteristics, they still block or absorb sunlight to a potentially significant, which may affect growth of plants in some areas without sufficient sunlight radiation.
Hence, the inventors of the present invention believe that the shortcomings described above are able to be improved and propose the present invention which is of a reasonable design and is an effective improvement based on deep research and thought.
A main object of the present invention is to provide a solar energy greenhouse which ensures that enough light enters the greenhouse according to proper distribution of thin-film solar cell assemblies so that the greenhouse can provide better rates of growth of plants within the greenhouse.
To achieve the above-mentioned object, a solar energy greenhouse in accordance with the present invention is provided. The solar energy greenhouse includes a main structure, a roof structure, disposed on the main structure; and a plurality of thin-film solar cell assemblies, disposed on the roof structure in an unequal gap defined there between.
The efficacy of the present invention is as follows: the thin-film solar cell assemblies can absorb sunlight and generate electrical energy for the electronic equipments of the solar energy greenhouse. Further, the distribution of the thin-film solar cell assemblies is determined from the radiation angle of the sunlight and the position of the plants in the solar energy greenhouse, that is, based on the unequal gaps between the thin-film solar cell assemblies, the sunlight is transmitted into the solar energy greenhouse directly through the unequal gaps so as to provide sufficient light quantity, thereby improving the rates of growth of the plants.
To further understand features and technical contents of the present invention, please refer to the following detailed description and drawings related to the present invention. It is understood, however, that the drawings are only provided for convenience and understanding as references and for explanation without limiting the present invention.
The present invention provides a solar energy greenhouse which has many kinds of preferred embodiments. Please refer to
In short, in the solar energy greenhouse 1 of the present invention, in order to provide enough light for plants 2 shown in
In detail, the main structure 10 has a plurality of bases 11, a plurality of holders 12 and a plurality of supporting boards 13. The bases 11 are fixed on the ground, the holders 12 are fixed on the bases 11 and the supporting boards 13 are fixed on the holders 12. The supporting boards 13 are made of a transparent or opaque material. The transparent material may be glass or plastic etc.
Based on the supporting effect of the main structure 10, the roof structure 20 may be disposed on the main structure 10. The roof structure 20 has a plurality of holders 21 and a plurality of transparent boards 22. The holders 21 of the roof structure 20 are fixed on the holders 12 of the main structure 10, and the transparent boards 22 are fixed on the holder 21. The material of the transparent boards 22 may be glass or plastic etc.
Considering water drain or snow removal, the roof structure 20 is designed to be sloping, wherein the lowest edge of the roof structure 20 is defined as an eave 23 and the top of the roof structure 20 is defined as a ridge 24.
The main structure 10 and the roof structure 20 define an enclosed space together. Proper conditions are created for plants in the enclosed space according to temperature and humidity control methods, so that users (such as farmers) can plant the plants 2 in the main structure 10 and the solar energy greenhouse 1. The appearances of the main structure 10 and the roof structure 20 aren't limited in the drawings, and the main structure 10 and the roof structure 20 may be in other shapes, for example, the roof structure 20 may be vaulted etc.
Further, the supporting boards 13 of the main structure 10 and the transparent boards 22 of the roof structure 20 may be replaced by some transparent cloth with flexibility (not shown).
The thin-film solar cell assemblies 30 are disposed on the roof structure 20, in particular, on the top surface of the roof structure 20. Each thin-film solar cell assembly 30 has a plurality of thin-film solar cells 31 which are arranged in a collinear row along the extending direction of the eave 23 or the ridge 24 of the roof structure 20. The thin-film solar cells 31 may be amorphous silicon thin-film solar cells, microcrystalline thin-film solar cells or nano-crystalline thin-film solar cells. Additionally, each thin-film solar cell assembly 30 may be formed by long-strip-shaped and large-area thin film solar cells 31.
As shown in
Under these circumstances, if the roof structure 20 is covered by the thin-film solar cell assemblies 30 completely (not shown), the sunlight 3 entering the solar energy greenhouse 1 is less even if more electrical energy is generated. When the plants 2 aren't radiated by enough sunlight, the rates of growth of the plants 2 are influenced.
To solve this problem, the roof structure 20 cannot be completely covered by the thin-film solar cell assemblies 30, and the unequal gaps are kept between the thin-film solar cell assemblies 30, so that the sunlight 3 directly enters the solar energy greenhouse 1 through the unequal gaps and isn't absorbed or blocked by the thin-film solar cells 31, thereby increasing the amount that the sunlight 3 radiates on the plants 2. Further considering the radiation angle of the sunlight 3 and the position of the plants 2, the unequal gaps between the thin-film solar cell assemblies 30 are unequal so that more sunlight radiates on the plants 2.
It is particularly worth noting that the transparent boards 22 may be observed from the unequal gaps between the thin-film solar cell assemblies 30. In other words, the observed transparent boards 22 may be located below the thin-film solar cell assemblies 30 (especially, the portions of the transparent boards 22 which aren't obstructed or covered by the thin-film solar cell assemblies 30), or may also be located between the thin-film solar cell assemblies 30. That is, the thin-film solar cell assemblies 30 and the transparent boards 22 are arranged alternately from the eave 23 to the ridge 24, and two opposite side faces of the transparent boards 22 respectively contact one side face of one group of thin-film solar cell assemblies 30.
Please refer to
Accordingly, the sunlight 3 near the eave 23 has more chance of directly entering the solar energy greenhouse 1 through the unequal gaps and radiating on the plants 2. Please refer to
Please refer to
For adjusting the unequal gaps between the thin-film solar cell assemblies 30 easily, a displacement mechanism is executed on the thin-film solar cell assemblies 30 to adjust the distribution of the unequal gaps between the thin-film solar cell assemblies 30 randomly.
Please refer to
The moving device 40 includes at least one sliding mechanism 41 and at least one driver 42. The sliding mechanism 41 is disposed on the top surface of the roof structure 20, the driver 42 is connected with the sliding mechanism 41 and the thin-film solar cell assemblies 30 are disposed on the sliding mechanism 41. The sliding mechanism 41 is one kind of mechanism having one portion can move linearly, for example, a linear sliding rail, etc. The driver 42 provides power to drive the sliding mechanism 41 to move linearly and controls the amount of the linear movement of the sliding mechanism 41. The driver 42 may be a stepper motor or a servo motor etc.
Basing on the moving device 40, the thin-film solar cell assemblies 30 can move on the roof structure 20, and the unequal gaps between the thin-film solar cell assemblies 30 can be changed. When the radiation angle of the sunlight 3 changes with time or regions, or when the position of the plants 2 is changed, the unequal gaps between the thin-film solar cell assemblies 30 may be adjusted accordingly. Thereby, the sunlight 3 can radiate on the plants 2 as possible, and the portion of the sunlight 3 which cannot radiate on the plants 2 can radiate on the thin-film solar cell assemblies 30 as possible.
Please refer to
Like the moving device 40, the rotating device 50 includes at least one rotating mechanism 51 and at least one driver 52. The rotating mechanism 51 is disposed on the roof structure 20, the driver 52 is connected with the rotating mechanism 51 and the thin-film solar cell assemblies 30 are disposed on the rotating mechanism 51. The rotating mechanism 51 is one kind of mechanism having one portion can move rotatingly, for example, a gear set, etc. The driver 52 may provide power to drive the rotating mechanism 51 to move rotatingly and control the amount of the rotating movement of the rotating mechanism 51. The driver 52 may be a stepper motor or a servo motor.
Based on the rotating device 50, the inclined angle of the thin-film solar cell assemblies 30 can be adjusted in order that the thin-film solar cells 31 can be radiated perpendicularly on by the sunlight 3 as possible. By many known documents, when the sunlight 3 radiates on the thin-film solar cells 31 perpendicularly, the thin-film solar cells 31 can generate more electrical energy. Accordingly, besides the advantages of the first preferred embodiment, the solar energy greenhouse 1 of the third preferred embodiment can ensure that the thin-film solar cells 31 can generate more electrical energy.
Please refer to
The heating device 60 is connected with the thin-film solar cells 31 of the thin-film solar cell assemblies 30 and the transparent boards 22 of the roof structure 20. The heating device 60 may generate heat energy for heating the thin-film solar cells 31 and the transparent boards 22. The heating device 60 may be electrothermal wires and their controller and so on. The temperature sensor 70 and the humidity sensor 80 are respectively connected with the heating device 60. The temperature sensor 70 measures temperature of an external environment and then transmits a temperature signal to the heating device 60. The humidity sensor 80 measures humidity of the external environment and then transmits a humidity signal to the heating device 60.
When the solar energy greenhouse 1 is used in cold regions where it usually snows, snow accumulated on the thin-film solar cells 31 and the transparent boards 22 will affect the radiation of the sunlight 3 on the thin-film solar cells 31 and the plants 2. The solar energy greenhouse 1 with the heating device 60, the temperature sensor 70 and the humidity sensor 80 can solve the problem that the banked snow brings.
When it snows, the external temperature is below zero and the humidity is higher, so the temperature sensor 70 and the humidity sensor 80 respectively measure the abnormal temperature and humidity, and then transmit the temperature signal and the humidity signal to the heating device 60. The heating device 60 starts to work and generates heat energy. After contacting the heating device 60, the snow dissolves into water and flows away. Accordingly, the snow cannot always be accumulated on the thin-film solar cells 31 and the transparent boards 22, which ensures that the sunlight 3 can fully radiate on the thin-film solar cells 31 and the plants 2.
The heating device 60 may only be connected with the thin-film solar cells 31 of the thin-film solar cell assemblies 30 or connected with the transparent boards 22 of the roof structure 20. Moreover, it is not an absolute requirement that each thin-film solar cell 31 or each transparent board 22 is connected with the heating device 60.
Please refer to
When the sunlight 3 enters the solar energy greenhouse 1, one portion of the sunlight 3 radiates on the reflective mirrors 90 and is reflected, so the forward direction of the sunlight 3 changes towards the plants and the sunlight 3 radiates on the plants 2. Accordingly, the sunlight 3 has more chances of radiating on the plants 2.
The above-mentioned moving device 40, rotating device 50, the heating device 60, the temperature sensor 70, the humidity sensor 80 and the reflective mirrors 90 may be used in the solar energy greenhouse 1, all or partially, and not limited to being used separately. Further, the solar energy greenhouses 1 of the preferred embodiments may all include lighting equipments, watering equipments or air-conditioning equipments etc. (not shown).
Consequently, the solar energy greenhouse 1 of the present invention can absorb the sunlight 3 and convert it into electrical energy for the components of the solar energy greenhouse 1, so as to reduce dependence of the solar energy greenhouse 1 on electrical energy from power plants, thereby reducing electric costs paid to power plants. Additionally, the unequal gaps between the thin-film solar cell assemblies 30 are determined from the radiation angle of the sunlight 3 and the position of the plants 2, so the amount that the sunlight 3 radiates on the thin-film solar cell assemblies 30 and the plants 2 can achieve a better distribution, which improves the amount of electrical energy generated by the thin-film solar cell assemblies 30 and the rates of growth of the plants 2.
What are disclosed above are only the specification and the drawings of the preferred embodiments of the present invention and it is therefore not intended that the present invention be limited to the particular embodiments disclosed. It will be understood by those skilled in the art that various equivalent changes may be made depending on the specification and the drawings of the present invention without departing from the scope of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
098123407 | Jul 2009 | TW | national |