The present invention relates to a solar energy system and, in particular, to a solar energy system for use in buildings which enables hot air to be generated for space heating, with the optional addition of either heat to be generated for hot water heating, and/or electricity to be generated from photovoltaic cells, or both.
It has long been known to provide solar collectors on the roofs of buildings for the purpose of heating hot water and such collectors are well known, and generally unsightly, additions to the roofs of many buildings. This is particularly the case in Australia where solar radiation levels are relatively high. Similarly, it is also well known to provide photovoltaic cells for the generation of electricity from solar radiation and such cells are in widespread use, particularly in rural and outback Australia in locations remote from power generation stations. In particular, in recent years such installations have been favoured over the costs of maintaining lengthy power transmission lines.
Similarly, it is also known, although much less widely implemented, to use solar radiation for the purpose of generating space heating, that is heating the interior of buildings. Although such space heating systems are known, for various reasons they have not found widespread commercial acceptance and are therefore comparatively rare.
Hitherto, if the owner or designer of a building wished to utilize any two, or all three, of the above described systems, then individual stand alone systems would be installed which would not in any way co-operate with each other. Thus, for example, the collectors for heating hot water would be entirely separate installations from the photovoltaic cells used to generate electricity.
The object of the present invention is to overcome the abovementioned disadvantage and provide a solar energy system which provides space heating and, if desired, either or both of heating and electricity generation can be integrated within the one overall system, and thereby utilize common component parts.
In accordance with a first aspect of the present invention there is disclosed an air duct having a thermal solar absorber formed on one (upper) surface of said duct and in thermal communication with the interior of the duct, said absorber having a transparent pane through which said duct upper surface can be illuminated by solar radiation with a stagnant atmosphere between said pane and said duct upper surface, wherein said pane and said duct upper surface are substantially co-extensive, said duct has at least one inlet and at least one outlet, the periphery of said pane substantially overlies said inlet(s) and outlet(s), and the intended flow of air through said duct below said pane is substantially unidirectional.
In accordance with a second aspect of the present invention there is disclosed a modular set of a plurality of the above described air ducts each having a connection to permit same to be connected in series, or in parallel, or both.
In accordance with a third aspect of the present invention there is disclosed a solar energy system for a building having an exterior surface exposed to solar radiation, said system comprising a plurality of the abovementioned air ducts mounted on said surface to receive said solar radiation, and an air/liquid heat exchanger in thermal communication with at least one duct interior and connected with at least one heat absorbing load.
In accordance with a fourth aspect of the present invention there is disclosed a building having installed therein the abovementioned solar energy system.
In accordance with a fifth aspect of the present invention there is disclosed a method of sealing adjacent air ducts in an array of air ducts forming a thermal solar collector, said method comprising carrying out, not necessarily in sequence, the steps of:
(i) inclining to a substantially like extent at least one pair of adjacent side walls of at least one pair of said ducts,
(ii) locating an opening in each said adjacent side wall,
(iii) aligning said openings,
(iv) interposing between said adjacent side walls a strip of resilient material which extends in a loop around the periphery of each said opening, and
(v) moving one of said pair of ducts vertically with respect to the other of said pair of ducts to thereby generate a compressive horizontal component force which compresses said strip to thereby seal said openings.
In accordance with a sixth aspect of the present invention there is disclosed a method of joining cells in an array of solar thermal absorber cells in a water shedding arrangement on an inclined roof, said method comprising the steps of:
(i) forming each said cell with a transparent upper surface which is substantially co-extensive with said cell,
(ii) forming an overlap portion at one longitudinal edge of each said cell,
(iii) arranging said cells in columns and rows to form said array on said inclined roof with said one longitudinal edge lowermost, and
(iv) overlapping said one longitudinal edge of each cell with the opposite longitudinal edge of the longitudinally adjacent cell.
Embodiments of the present invention will now be described with reference to the drawings in which:
As illustrated in
Located between the glass top 201 and the upper sheet 205 is a stagnant air space which insulates the ducts 210, 219. The upper sheet 205 forms the heat absorbing surface.
This prior art arrangement suffers from various efficiency disadvantages including that the area of the actual ducts (210, 211, 212, . . . 219) is less than the area of the glass top 201. The prior art arrangement also suffers from a number of constructional disadvantages in that each manifold 220 must be sealed to the corresponding ends of the corresponding ducts. There should also be reasonable sealing between adjacent ducts such as 210 and 211. In addition, the entire box 200 needs to be mounted somewhere on a building, for example on the roof of the building, where it receives solar radiation but inevitably also forms a readily observable eyesore. Furthermore, where a number of such boxes 200 are to be connected together, for example in series or in parallel, then the inlets 225 and outlets 226 must be joined together by appropriated insulated manifolds (not illustrated) similar to manifolds 220.
It follows from the foregoing that if an unobtrusive collector is to be formed without the inherent deficiencies of the collector of
Turning now to
The floor 5 is located above a foundation 9 within which is located a corrugated metal water tank 10, or most preferably an in ground tank fabricated from concrete (not illustrated) the primary function of which is to store potable water. However, the tank 10 having been purchased can also be used to constitute a reservoir of cold water. The building 1 is also provided with a hot water service 11, which is essentially an insulated water tank, and a heat source 12 which in the preferred embodiment is a reverse cycle air conditioning system, but which could merely be a fuel burning heater such as a wood stove, gas or oil fired heater, an electric heater, or similar. A heat bank 50 is also provided. The hot water service 11, heat source 12, and heat bank 50 can be located either outside the building 1 (as illustrated), or inside the building, or under its floor 5 as desired.
The solar collector array 3 of
It will be apparent from
The sheet metal from which each air duct 16 is fabricated, is preferably pressed so as to provide two potential transverse openings 18 (
The upper surface of each collector cell 15 can be formed either as a photovoltaic array 21 (
As best seen in
As seen in
Similarly, as regards the longitudinal engagement of the ducts 16, the upper sheet 23 is slightly angled relative to the axis of the duct 16 so as to permit the upper sheets 23 to be overlapped in the manner of conventional roofing tiles as illustrated in
The air flow passages which extend between the individual collector cells 15 are preferably sealed by means of single sided adhesive, resilient foam tape 20 (illustrated in phantom in
Finally, as illustrated in
As best seen in
As also seen in
Turning now to
In addition, the hot air/liquid heat exchanger 35 is connected via a pump 42 and valve 107, with a heat exchanger in the hot water service 11. Thus the liquid in the heat exchanger 35, and the potable water in the hot water service 11 do not mix. This enables anti-freeze, or similar, to be used in the heat exchanger 35, if desired. In addition, at night the pump 42 can be turned off to save power thereby allowing the liquid to drain from the heat exchanger 35. Furthermore, the heat exchanger 35 is not subjected to the relatively high liquid pressures of the building potable water supply. During daylight hours, when the collector array 3 is generating heat, hot liquid passes from the heat exchanger 35 to heat the hot water service 11. During the winter months, hot water is also passed via valve 108 to the piping array 6 which heats the floor 5 of the building 1. However, in the summer months, the valve 108 is closed and another valve 109 is opened thereby allowing a pump 43 to circulate cold water from the under floor water tank 10 through the piping array 6 to thereby cool the floor 5.
Turning now to the hot air flow, a heat bank 50 is provided which preferably takes the form of individual wax “candles” 55 each located within its own tubular plastic housing, the wax undergoing a phase change at typically approximately 40° C. The wax stores heat when passing from a solid to a molten condition and gives out heat when passing from a molten to a solid condition. Other phase change materials including mineral salts can also be used. The heat bank 50 is connected via a blower or fan 44 and dampers or valves 101-106 with the array 3, hot air outlets 51 which lead into the interior 7 of the building 1, an air inlet 52 from the interior 7, and the heat source 12.
When the solar collector 3 is producing heat, hot air passes from the output duct 33 via valve 101 to the heat bank 50 and then passes via the blower or fan 44 through valve 104 to the input duct 32. This flow of air fundamentally stores heat within the heat bank 50 for use at a later time. In addition, during the winter months, if desired, valve 105 can be manipulated so as to allow some of the hot air from the output duct 33 to pass into the interior 7 of the building via the hot air outlets 51. This provides day time heating. During the night time, and at other periods when the solar collector array 33 is not being heated, the valve 104 is closed and the valves 102 and 105 are opened thereby allowing air heated by the heat bank 50 to circulate through the air inlets 52, the valve 102, the heat bank 50, the vale 105 and the hot air outlets 51.
For those occasions, such as periods of extended rainfall during winter, where an external heat supply is required, the valve 106 can be opened thereby enabling the heat source 12 to supply hot air directly to the heat bank 50.
Turning now to
In
It will be apparent to those skilled in the art that the above described solar energy system provides hot air for space heating and, if desired, enables the simultaneous provision of electrical energy, and/or heat for hot water. Because the system is integrated, the overall cost is reduced relative to three individual systems because of the utilization of common components. Furthermore, aesthetically the solar collector array 3 is quite unobtrusive and can combine solar thermal absorbers and photovoltaic cells in an aesthetically pleasing manner. Further, the modular nature of the array and the sealing of the individual cells of the array make for both inexpensive construction and quick and inexpensive installation.
In addition, because the photovoltaic arrays 21 have their lower surfaces cooled by the extraction of heat into the corresponding ducts 16, the electrical output of the photovoltaic arrays 21 is increased.
The foregoing describes only some embodiments of the present invention and modifications, obvious to those skilled in the art, can be made thereto without departing from the scope of the present invention. For example, the number of cells in the array 3 of
The term “comprising” as used herein is used in the inclusive sense of “including” or “having” and not in the exclusive sense of “consisting only of”.
Number | Date | Country | Kind |
---|---|---|---|
2003900506 | Feb 2003 | AU | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/AU04/00094 | 1/28/2004 | WO | 11/1/2005 |