1. Field of the Invention
This invention relates generally to solar heat collectors and to solar energy systems utilizing solar heat collectors which use solar radiation to heat a flowing fluid.
2. Description of the Related Art
Flat plate solar heat collector systems (e.g., Thomason's Solaris System) typically utilize a configuration in which water flows down the surface of a corrugated metal surface (e.g., aluminum or galvanized steel). In such systems, a thermal insulation substrate (e.g., polyurethane foam insulation) comprises coolant channels through which water flows and is covered by a glass plate (see, e.g., U.S. Pat. Nos. 3,254,702 and 3,270,739, each of which is incorporated in its entirety by reference herein). Such solar collectors can have widths of about two to four feet and lengths of about ten feet. Such systems have been mounted previously on the roofs of homes or other structures for providing the structure with solar-heated hot water.
Concentrating solar heat collection systems utilize a plurality of reflectors and target receivers having surfaces configured to absorb solar radiation received from the reflectors. For example, the system disclosed by U.S. Pat. No. 6,131,565, which is incorporated in its entirety by reference herein, includes target receivers which are supported by vertical masts above the ground and are oriented to form a linearly extending target. The reflectors are positioned below the target receivers but slightly above ground level and are arrayed to reflect the solar radiation impinging the reflectors towards the target receivers. The reflectors are pivotally mounted and are adjusted to provide synchronized single-axis tracking.
In certain embodiments, a solar heat collector is provided. The solar heat collector comprises a trough extending along the ground. The solar heat collector further comprises a first region within the trough. The first region extends along a length of the trough. The first region is configured to absorb solar radiation and to heat a fluid flowing within the first region with thermal energy resulting from the absorbed solar radiation. The solar heat collector further comprises a second region between the first region and the ground. The second region is substantially thermally insulating the first region from the ground.
In certain embodiments, a solar heat collection system is provided. The system comprises a fluid distribution conduit. The system further comprises a plurality of solar heat collectors in fluidic communication with the fluid distribution conduit. At least some of the solar heat collectors are generally parallel to one another and spaced from one another to provide an access path for maintenance personnel and equipment to access portions of the solar heat collectors away from a periphery of the solar heat collection system.
In certain embodiments, a solar energy system is provided. The system comprises a fluid distribution conduit. The system further comprises a plurality of solar heat collectors in fluidic communication with the fluid distribution conduit. At least one of the solar heat collectors comprises a trough extending along the ground and is configured to absorb solar radiation and to heat a fluid flowing within the trough. The system further comprises a fluid collection conduit in fluidic communication with the plurality of solar heat collectors. The system further comprises an energy extraction system configured to extract thermal energy from fluid received from the fluid collection conduit. The system further comprises a pumping system configured to receive fluid from the energy extraction system and to pump the fluid to the fluid distribution conduit.
In certain embodiments, a method of heating a fluid is provided. The method comprises providing a trough extending along the ground. The trough comprises a region configured to absorb solar radiation and to have a fluid flowing therethrough such that the fluid is substantially thermally insulated from the ground. The method further comprises flowing the fluid through the region, wherein the fluid is heated with thermal energy resulting from the absorbed solar radiation.
In certain embodiments, a method of generating power is provided. The method comprises providing a plurality of troughs extending along the ground. At least one trough comprises a region configured to absorb solar radiation and to have a fluid flowing therethrough such that the fluid is substantially thermally insulated from the ground. The method further comprises flowing the fluid through the region, wherein the fluid is heated with thermal energy resulting from the absorbed solar radiation. The method further comprises extracting thermal energy from the fluid.
Certain embodiments described herein provide a solar heat collector system that generates an output comparable to those of prior art systems and which is advantageously fabricated using low construction costs and operating costs. In certain embodiments, the solar heat collector system utilizes construction materials and ongoing maintenance materials which are relatively inexpensive. In addition, costs are reduced for certain embodiments because relatively unskilled, inexpensive labor can be employed for both the initial construction and the maintenance of the system. As a result, certain embodiments described herein produce electricity at a relatively low cost, with more reliability and less maintenance costs than might be experienced by alternative solar thermal energy systems. In certain embodiments, the solar heat collector system is installed across large areas of land (e.g., desert regions) which are otherwise not utilized. In certain other embodiments, the solar heat collector system is installed on the roofs of large buildings (e.g., warehouses).
In certain embodiments, the fluid flowing through the solar heat collector 10 comprises water, although other fluids can also be used. For example, other fluids compatible with certain embodiments described herein include but are not limited to mixtures of water with ethanol, glycol, salts, or other inorganic materials. In certain embodiments, the fluid comprises water mixed with a material selected to raise the boiling temperature of the mixture above that of water or to lower the freezing temperature of the mixture above that of water. In certain embodiments, the fluid comprises a dye which enhances the absorption of solar radiation by the fluid.
In certain embodiments, the ground 30 along which the trough 20 extends has a grade along at least a portion of the length of the trough 20 such that the portion of the trough 20 is at an incline and the fluid flowing through the portion of the trough 20 flows from a first elevation to a second elevation lower than the first elevation. Thus, in certain such embodiments, flow of the fluid through the trough 20 is facilitated by gravity. In certain other embodiments, the ground 30 along which the trough 20 extends is substantially flat along at least a portion of the length of the trough 20. In certain such embodiments, the fluid is pumped through the trough 20 by a pumping system.
In certain embodiments, the portions of the trough 20 at an incline can be drained by gravity without additional pumping. Certain such embodiments advantageously avoid problems with immobile fluid collecting in flat portions of the trough 20 upon a failure of other portions (e.g., the pumping system) of a solar energy system utilizing the solar heat collector 10. Such immobile fluid is advantageously avoided because it would continue to be heated by solar energy, reaching its boiling temperature and creating pressurized vapor which could damage the solar heat collector 10.
In certain embodiments (e.g., the example solar heat collector 10 of
In certain embodiments, the trough 20 has a width in a range between 6 feet and 50 feet. In certain embodiments, the trough 20 has a length in a range between about 500 feet to about 1 mile. While the trough 20 schematically illustrated by
In certain embodiments, the first region 40 comprises at least a first layer 42 configured to absorb solar radiation. As used herein, the term “layer” is to be given its broadest ordinary meaning. For example, a layer may comprise a single material having a generally uniform thickness or may comprise multiple adjacent sublayers each comprising a different material. Although many of the layers are depicted herein as having a relatively thin sheet-like expanse or region lying over or under another, a layer as used herein may comprise a shorter expanse or region or multiple expanses or regions.
The first layer 42 of certain embodiments comprises black plastic. As schematically illustrated by
In certain embodiments, the second region 50 comprises at least a second layer 52 configured to substantially thermally insulate the first region 40 from the ground 30. For example, the second layer 52 of certain embodiments may comprise wood, pressed wood, rubber, foam, polystyrene, polyethylene, and laminate materials. In certain embodiments, the second layer 52 is formed by spraying a material into the trough 20. As schematically illustrated by
In certain embodiments, the supports 44 comprise a plurality of protrusions or dots formed on at least one of the first layer 42 and the third layer 46. The supports 44 maintain the conduit 48 between the first layer 42 and the third layer 46 through which the fluid can flow. In certain embodiments, the supports 44 comprise corrugated material. Materials for the supports 44 in accordance with certain embodiments described herein include, but are not limited to, wood, pressed wood, rubber, foam, polystyrene, polyethylene, and laminate materials.
In certain embodiments, at least one of the first layer 42 and the third layer 46 is substantially absorptive to at least a portion of the solar radiation impinging the first region 40. For example, in certain embodiments, a topmost layer of the first region 40 (e.g., the third layer 46) is configured to be substantially transmissive to at least a portion of the solar radiation impinging on the first region 40, thereby allowing the solar radiation to impinge the flowing fluid and/or the first layer 42 which absorbs solar radiation to heat the fluid. In certain other embodiments, the third layer 46 is configured to absorb solar radiation, thereby heating the fluid with thermal energy resulting from the solar radiation absorbed by the third layer 46. In certain embodiments, a topmost layer of the first region 40 (e.g., the third layer 46) is configured to be substantially non-transmissive to infrared radiation, thereby inhibiting heat loss from the fluid. In addition, the third layer 46 is advantageously resistant to degradation from prolonged exposure to ultraviolet radiation.
In certain embodiments, the third layer 46 separates the first region 40 from a region 62 above the third layer 46, and the fourth layer 60 separates the region 62 from atmosphere above the fourth layer 60. In certain such embodiments, the region 62 advantageously substantially thermally insulates the first region 40 and the fluid from the atmosphere above the fourth layer 60, thereby reducing heat loss from the fluid. In certain embodiments, the lateral sides of the trough 20 advantageously substantially thermally insulate the first region 40 and the fluid from regions outside a first lateral side of the trough 20 and outside a second lateral side of the trough 20, thereby reducing heat loss from the fluid.
In certain embodiments, the flow of the fluid through the first region 40 (e.g., through the conduit 48 between the first layer 42 and the third layer 46) has a component in a direction substantially along the length of the trough 20. In certain other embodiments, the flow of the fluid also has a component in a direction substantially perpendicular to the length of the trough 20. For example, the flow in certain embodiments is in a serpentine pattern within the trough 20. As another example, the fluid in certain embodiments has motion imparted to it (e.g., by turbulence created in part by the supports 44 or by other means) such that the fluid flows through various portions of the conduit 48 in which it would otherwise not flow (e.g., the upward extending sides of the conduit 48). Certain such embodiments advantageously increase the thermal interaction between the flowing fluid and the layers of the solar heat collector 10 to further heat the fluid.
In certain embodiments, the solar heat collector 10 is designed for simplicity of fabrication and maintenance or repair. For example, in certain embodiments, plastic layers used for the solar heat collector 10 can be unrolled from large industrial-sized rolls, and any insulating materials can be prefabricated and delivered to the site where the solar heat collector 10 is to be installed. In certain embodiments, a mobile machine that is configured to fabricate and/or repair the solar heat collector 10 may be used. In certain embodiments, a mobile vacuum unit is used as part of an ongoing maintenance program to remove dust from the top surface of the solar heat collector 10 which would otherwise inhibit solar radiation from reaching the first region 40. An example vacuum unit can travel at about five miles per hour and collect dust from the top surface of the solar heat collector 10 at about 100 hours per square mile, for ten-foot-wide troughs 20.
In certain embodiments, the fluid distribution conduit 110 has a drop of about 40 feet per linear mile, and a length of about 1 mile to about 2 miles.
In certain embodiments, as schematically illustrated by
In certain embodiments, one end of one segment 122 overlaps another end of a subsequent segment 122. In certain embodiments, the solar heat collectors 120 are generally parallel to one another and are spaced by about 3 feet from one another, while in certain other embodiments, the spacing between generally parallel solar heat collectors 120 is in a range between about 2 feet to about 10 feet. These spacings between the generally parallel solar heat collectors 120 advantageously provide one or more access paths or service lanes which allow personnel and equipment to access portions of the solar heat collectors 120 away from a periphery of the solar heat collection system 100 for initial fabrication and for scheduled or unscheduled maintenance. Certain embodiments further comprise additional service lanes extending generally perpendicularly to the solar heat collectors 120 to provide additional ease of transporting personnel, equipment, and/or materials across the expanse of the solar heat collector system 100. In certain embodiments, the solar heat collectors 120 have a length in a range between about 0.5 mile to about 1 mile, and the solar heat collector system 100 has a width in a range between about 0.5 mile to about 1 mile (excluding the widths of the service lanes between the solar heat collectors 120).
In certain embodiments, each valve 130 is in fluidic communication with a corresponding port from the fluid distribution conduit 110, and the valve 130 is configured to controllably adjust the amount of fluid flowing from the fluid distribution conduit 110 into the corresponding solar heat collector 120. In certain embodiments, the valves 130 comprise all the moving parts of the solar heat collection system 100.
Certain embodiments further comprise a network of measurement devices placed at selected locations within the solar heat collection system 100 and a computer system (e.g., microprocessor) operatively coupled to the valves 130 and to the network of measurement devices. The computer system is configured to receive input signals from the network and to transmit output signals to the valves, and the valves are responsive to the output signals to controllably adjust fluid flow through the plurality of solar heat collectors. The computer system of certain embodiments is configured to receive input from personnel and from sensors positioned along the solar heat collection system 100. In certain embodiments, the network of measurement devices is for various purposes. For example, a plurality of temperature sensors can be used to monitor and control the local temperature of the flowing fluid. Other sensors can be used to provide an alert signal indicative of an unanticipated situation or condition within the solar heat collector system 100.
In certain embodiments, the solar heat collection system 100 is stationary with no moving parts (with the exception of the valves 130) which affect the absorption of solar radiation by the system 100. Optimization of the system 100 for a given geographical area will be dependent upon optimizing the collector materials and dimensions, determining the orientation of the system 100 (e.g., with respect to true north), the slope of the solar heat collectors 120 along the ground 30, the distribution and flow of fluid (e.g., water) within the system 100, and the timing of the heated fluid flowing through the system 100. For example, during early morning and late afternoon hours, the solar heat collection system 100 may sustain a certain amount of radiation blockage due to shadows caused by the sides of the solar heat collectors 120. The anticipated amount of such radiation blockage can be used in determining the directional orientation of the solar heat collection system 100. For example, in certain embodiments, the troughs 20 are laid out to extend east-to-west, thereby minimizing the shadows of the berms 70 or other structures extending across the irradiated surface of the solar heat collectors 120. In certain embodiments, the process of optimization advantageously (i) achieves the highest total efficiency of the system, and therefore the maximum electricity output per day or per year; (ii) minimizes the cost of construction of the total system while maximizing the lifetime of its components; or (iii) minimizes ongoing maintenance costs while not jeopardizing the integrity of the system.
In certain embodiments, the solar energy system 130 is entirely driven by solar energy, with the possible exception of the pumps, lights, etc. In certain other embodiments, the solar energy system 130 further comprises an additional power generating booster unit (e.g., a gas boiler) between the solar heat collector system 100 and the energy extraction system 140. In certain such embodiments, this booster unit can advantageously be used to increase the temperature of the fluid emerging from the solar heat collection system 100 (e.g., beyond the boiling point of the fluid) in order to increase the efficiency of the energy extraction system 140.
In certain embodiments, the energy extraction system 140 has certain operating parameters, such as suggested or required incoming fluid temperature and volume of incoming fluid flow per minute. At any one time, fluid emerging from the solar heat collector system 100 may be stored in a fluid storage system, may be run into the energy extraction system 140, or may be run back into the solar heat collector system 100 to gather more heat. For example, heated fluid from the solar heat collector system 100 can be collected and pumped into a first storage system prior to being pumped into the energy extraction system 140. Fluid from this first storage system in certain embodiments can be selectively diverted to the energy extraction system 140 or can be pumped back to the solar heat collector system 100 to be further heated. In certain embodiments, fluid emerging from the energy extraction system 140 is pumped into a second storage system. In certain such embodiments, fluid from either the first storage system or the second storage system is selectively pumped into the solar heat collectors 120 via the fluid distribution conduit 110. The computerized control system of certain embodiments can be programmed to optimize the system performance by determining which of these options will maximize electricity output on a continuous basis.
In certain embodiments, the solar energy system 130 can also be optimized in terms of the relative electric power output of the solar heat collector system 100 versus the input power requirements of the energy extraction system 140. Thus, for a specific maximum power output of the energy extraction system 140, the size of the solar heat collector system 100 can be increased such that more energy is stored in the heated fluid, and therefore the solar energy system 130 may continue to provide electricity for a longer period of time during a given one-day or several-day period.
Various embodiments have been described above. Although the invention has been described with reference to these specific embodiments, the descriptions are intended to be illustrative of the invention and are not intended to be limiting. Various modifications and applications may occur to those skilled in the art without departing from the true spirit and scope of the invention as defined in the appended claims.
This application claims the benefit of priority to U.S. Provisional Patent Application No. 60/859,874, filed Nov. 17, 2007, which is incorporated in its entirety by reference herein.
Number | Date | Country | |
---|---|---|---|
60859874 | Nov 2006 | US |