This application claims priority to Korean Patent Application No. 10-2010-0124955, filed on Dec. 8, 2010, and all the benefits accruing therefrom under 35 U.S.C. §119, the content of which in its entirety is herein incorporated by reference.
1) Field
Provided is a solar light concentration plate with high concentration efficiency and wavelength separation.
2) Description of the Related Art
A main energy source that is currently used is a fossil fuel such as coal and petroleum. However, continued use of the fossil fuel causes problems such as global warming and environmental pollution as well as resource exhaustion. Accordingly, use of renewable energy sources that do not cause environmental pollution such as solar light, tidal power, wind power, and geothermal heat has been suggested as an alternative energy source for replacing the fossil fuel.
Among the renewable energy sources, technology of converting the solar light into electricity is most widely used. Various materials and devices are being developed for the efficient conversion of the solar light into electricity, and for example, recently suggested technology based on the multi-layered p-n junction structure and III-V Group materials accomplishes light conversion efficiency of about 40%.
Furthermore, the solar light can be directly used instead of being converted into electricity. For example, direct use of the solar light as an indoor illumination by collecting the solar light by a light-collecting device installed on a rooftop of a building and transmitting the solar light inside the building using light guide has been suggested. The direct use of the solar light transmitted from the rooftop as an indoor illumination may greatly reduce electricity consumption. However, in general, natural lighting is insufficient to be used inside the building and thus artificial illuminations are used even in the daytime.
Therefore, efficient light concentration is the core technology that can be applied to various fields that utilize the solar light. A currently-available light concentration plate usually includes large number of silicon photoelectric conversion devices, thereby having a large area which may not be suitable for a mass production due to high cost.
Therefore, it has been suggested that an optical device such as lens is used for focusing the solar light on a photoelectric conversion device to increase an amount of light in a given area and to reduce a size of a photoelectric conversion device, and a prism or a diffraction lattice is used for separating wavelengths so as to utilize a photoelectric conversion device suitable for each wavelength.
However, the above-described technology may increase a space of the light concentration plate in a direction toward the solar light. For a concentration system using a lens or a hyperbolic mirror, a photoelectric conversion device is spaced apart from the lens or the mirror by a focal distance, and thus an additional space for the focal distance may be required by the system. In the case of a prism, a distance for spatially separating light according to wavelengths may be required. The above mentioned spatial limitations may make it hard to implement a photovoltaic power generation system.
One embodiment of the present invention provides a solar light concentration plate that occupies a small space, is inexpensive, has high concentration efficiency, and may separate wavelengths.
In an embodiment of the present invention, a solar light concentration plate is provided that includes a plurality of holograms diffracting incident light and having different thicknesses, at least one intermediate light guide plate disposed between the holograms, and a pair of external light guide plates disposed on outer surface of outermost holograms among the plurality of holograms, wherein at least one of the external light guide plates has an inner surface and an outer surface inclined to the inner surface.
In an embodiment of the present invention, among the holograms, an uppermost hologram may have larger angular selectivity than other holograms.
In an embodiment of the present invention, the hologram may diffract light having a wavelength of a range.
In an embodiment of the present invention, the wavelength of a range may be about 10 nanometers (nm) to about 300 nm.
In an embodiment of the present invention, each of the outer surfaces of both external light guide plates may have an outer surface inclined to an inner surface.
In an embodiment of the present invention, the angle made with the outer surfaces of the external light guide plates may be about 1 degree to about 10 degrees.
In an embodiment of the present invention, the holograms may include phase difference holograms.
In an embodiment of the present invention, the hologram may have a thickness of about 1 micron or more.
The above and other aspects, advantages and features of this disclosure will become more apparent by describing in further detail embodiments thereof with reference to the accompanying drawings, in which:
Embodiments of the present invention will be described more fully hereinafter with reference to the accompanying drawings, in which exemplary embodiments of the invention are shown. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope. In the drawing, parts having no relationship with the explanation are omitted for clarity, and the same or similar reference numerals designate the same or similar elements throughout the specification.
It will be understood that when an element is referred to as being “on” another element, it can be directly on the other element or intervening elements may be present therebetween. In contrast, when an element is referred to as being “directly on” another element, there are no intervening elements present. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
It will be understood that, although the terms first, second, third etc. may be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections should not be limited by these terms. These terms are only used to distinguish one element, component, region, layer or section from another element, component, region, layer or section. Thus, a first element, component, region, layer or section discussed below could be termed a second element, component, region, layer or section without departing from the teachings of the present invention.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting. As used herein, the singular forms “a,” “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” or “includes” and/or “including” when used in this specification, specify the presence of stated features, regions, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, regions, integers, steps, operations, elements, components, and/or groups thereof.
Furthermore, relative terms, such as “lower” or “bottom” and “upper” or “top,” may be used herein to describe one element's relationship to another element as illustrated in the Figures. It will be understood that relative terms are intended to encompass different orientations of the device in addition to the orientation depicted in the Figures. For example, if the device in one of the figures is turned over, elements described as being on the “lower” side of other elements would then be oriented on “upper” sides of the other elements. The exemplary term “lower,” can therefore, encompasses both an orientation of “lower” and “upper,” depending on the particular orientation of the figure. Similarly, if the device in one of the figures is turned over, elements described as “below” or “beneath” other elements would then be oriented “above” the other elements. The exemplary terms “below” or “beneath” can, therefore, encompass both an orientation of above and below.
Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. It will be further understood that terms, such as those defined in commonly used dictionaries, should be interpreted as having a meaning that is consistent with their meaning in the context of the relevant art and the present disclosure, and will not be interpreted in an idealized or overly formal sense unless expressly so defined herein.
Embodiments are described herein with reference to cross section illustrations that are schematic illustrations of idealized embodiments. As such, variations from the shapes of the illustrations as a result, for example, of manufacturing techniques and/or tolerances, are to be expected. Thus, embodiments described herein should not be construed as limited to the particular shapes of regions as illustrated herein but are to include deviations in shapes that result, for example, from manufacturing. For example, a region illustrated or described as flat may, typically, have rough and/or nonlinear features. Moreover, sharp angles that are illustrated may be rounded. Thus, the regions illustrated in the figures are schematic in nature and their shapes are not intended to illustrate the precise shape of a region and are not intended to limit the scope of the present claims.
Hereinafter, embodiments of the present invention will be described in further detail with reference to the accompanying drawings.
An exemplary embodiment of a solar light concentration plate is described in detail with reference to
First, a solar light concentration plate 100 shown in
Each of upper, middle, and lower light guide plates 130, 140, and 150 may include a transparent plastic film, for example. In one exemplary embodiment, the plastic film may have a refractive index of about 1.5, and in the present exemplary embodiment, a total reflection angle for light toward air from the light guide plates 130, 140, and 150 is about 42 degrees. In general, a refractive index of a plastic light guide plate is within a range of about 1.3 to about 1.7, and a total reflection angle is determined in the range of about 50 degrees to about 36 degrees according to Snell's law. However, a material included in the light guide plates 130, 140, and 150 is not limited there to as long as the material may guide light.
Although both sides of the middle light guide plate 140, i.e., one side of the middle light guide plate 140 which contacts 110 and the other side of the middle light guide plate 140 which contacts 120 are substantially parallel to each other, the upper and the lower light guide plates 130 and 150, respectively, are substantially sloped such that outer surfaces of the upper and the lower light guide plates 130 and 150 are inclined relative to inner surfaces of the upper and the lower light guide plates 130 and 150. Specifically, the outer surface (or upper surface) and the inner surface (or lower surface) of the upper light guide plate 130 are inclined to each other, and the outer surface (or lower surface) and the inner surface (or upper surface) of the lower light guide plate 150 are also inclined to each other. In one exemplary embodiment, only one of the upper and the lower light guide plates 130 and 150 is substantially sloped such that one of the outer surfaces of the upper and the lower light guide plates 130 and 150 is inclined relative to inner surfaces of the upper and the lower light guide plates 130 and 150. An angle between the outer surface of the upper light guide plate 130 and the outer surface of the lower light guide plate 150 may be greater than about 0 degree and equal to or less than about 10 degrees, and in one preferred exemplary embodiment, the angle between the outer surface of the upper light guide plate 130 and the outer surface of the lower light guide plate 150 may be about 1 degree to about 5 degrees.
The volume phase holograms 110 and 120 include an upper hologram 110 disposed between the light guide plates 130 and 140, and a lower hologram 120 disposed between the light guide plates 140 and 150. Each of the volume phase hologram 110 and 120 diffracts incident light having a wavelength of a determined range which enters at an incidence angle of a determined range, at an angle of a determined range. The two holograms 110 and 120 may have wavelength selectivity of about 10 nanometers (nm) to about 300 nm as a whole range, and may diffract incident light with an incidence angle of about 0 degree to about 10 degrees at any diffraction angle. In one exemplary embodiment, the volume phase holograms 110 and 120 may include a diffraction lattice, and may be recorded using interference of light such as laser, for example. According to the present exemplary embodiment, the volume phase holograms 110 and 120 may be recorded with laser, and the incident light is solar light when using the light guide plate.
In one exemplary embodiment, the holograms 110 and 120, and the light guide plates 130, 140, and 150 may be attached with an index matching adhesive to prevent scattering at the interface therebetween.
The concentration plate 100 may be connected to an optical fiber 200, which may be connected to a photoelectric conversion device 310 and/or a lighting instrument 320. The concentration plate 100 collects incident solar light and sends it to the photoelectric conversion device 310 or the lighting instrument 320 through the optical fiber 200, and the light may be converted into electricity by the photoelectric conversion device 310 or directly used as a direct lighting by the lighting instrument 320.
In one exemplary embodiment, the concentration plate 100 may be directly connected to the photoelectric conversion device 310.
Referring to
However, differently from the exemplary embodiment of
Hereinafter, operating principles of exemplary embodiments of the solar light concentration plates are described in detail.
First, the operating principle of an exemplary embodiment of a volume phase hologram is described in detail with reference to
Referring to
Referring to
To distinguish a type of diffraction performed by a diffraction lattice, a parameter Q is introduced. The parameter Q is defined by the following equation 1;
wherein λ is a wavelength, d is the thickness of a diffraction lattice, Λ is a pitch distance of a refractive index (or absorption) modulation, and n0 is average refractive index. Generally, a diffraction lattice with Q value equal to or greater than 10 shows Bragg diffraction, and a diffraction lattice with Q value of significantly less than 1 shows Raman-Nath diffraction.
To easily control diffracted light, in the present exemplary embodiment, a Bragg diffraction lattice which has angular selectivity and wavelength selectivity may be used. The characteristics will be described in detail with reference to
Referring to
wherein λ is a wavelength, d is the thickness of a diffraction lattice 800, and θB is Bragg angle. Angular selectivity (Δθ) can be varied from about 0.001 degrees to about 10 degrees. However, it is noted that substantially too large an angular selectivity (Δθ) may make the thickness of a diffraction lattice 800 small, thereby making Q value substantially too small to enter into a Raman-Nath diffraction region.
Referring to
wherein λ is a wavelength, d is the thickness of a diffraction lattice 600, and θB is a Bragg angle.
As shown in the above-described equations 2 and 3, the angular selectivity and wavelength selectivity depend on the wavelength (λ), the thickness (d) of a diffraction lattice 800, and a Bragg angle (θB). Particularly, as the diffraction lattice 800 becomes thicker, the angular selectivity and wavelength selectivity becomes larger, resulting in smaller Δθ and Δλ.
In one exemplary embodiment, when Δλ is 150 nm, for example, a thickness of a diffraction lattice for satisfying it is about 5.5 microns (μm). In the present exemplary embodiment, Δθ is about 11 degrees, and Q is about 25. If Δλ is 100 nm, the thickness of a diffraction lattice is about 8 microns, Δθ is about 7 degrees, and Q is about 20.
An exemplary embodiment of a light-concentration plate includes the above described diffraction lattice or volume phase hologram.
An exemplary embodiment of an exemplary embodiment a solar light concentration is described in detail with reference to
Referring to
Supposing that solar light 21 including blue light 11, green light 12, and red light 13 perpendicularly enters into a concentration plate 100, the incident light 21 passes through the upper light guide plate 120 without changing its angle to reach the hologram 110. The hologram 110 selects red light 13 from the incident light 21 to diffract it at twice the Bragg angle (2θB) (22), and passes blue light 11 and green light 12 without changing an incident angle thereof. Since Bragg diffraction has wavelength selectivity, it may diffract only a specific wavelength range. Bragg diffracted light 23 reaches an interface 132 between the lower light guide plate 130 and air, wherein since the incidence angle 2θB, is larger than the angle of total reflection of the light guide plate 130, the light 23 is totally reflected at the interface 132 (24).
Light 25 totally reflected at the interface 132 between the light guide plate 130 and air meets the hologram 110 again, and passes through the hologram 110 without diffraction (26), which is further described in detail with reference to
Referring to
The light 25 that passed through the hologram 110 enters into the upper light guide plate 120 and advances to meet an interface 122 between the upper light guide plate 120 and air. Here, since the incidence angle is equal to 2θB and larger than an angle of total reflection of the light guide plate 120, the light 25 is also totally reflected at the interface 122 (27). As described above, the perpendicularly incident light 21 entering into the concentration plate 100 begins to be guided toward one direction, i.e., leftward direction, of the concentration plate 100.
However, when light 28 totally reflected at the interface 122 between the upper light guide plate 120 and air meets the hologram 110, diffraction occurs (29) and light may 30 go toward a lower direction, which gets out of the concentration plate 100.
Referring to
In order that the light 28 totally reflected at the interface 122 between the upper light guide plate 120 and air does not get out of the concentration plate 100 to be continuously guided, the light 28 may go straight toward the direction indicated by reference numeral 31 without being diffracted by the hologram 110, which will be further described in the following embodiment.
Another exemplary embodiment of a solar light concentration plate is described with reference to
Referring to
In the present exemplary embodiment, perpendicularly entering incident light 51 passes through the upper light guide plate 420 without significant change in the progressing direction to reach the hologram 410, and it is diffracted to a reference direction 63. Since an upper surface of the upper light guide plate 420 is slightly tilted relative to the horizontal axis, slight refraction may occur when the incident light 51 enters the upper light guide plate 420 from the air, and an incident angle the incident light 51 entering the hologram 410 may be substantially slightly out of the perpendicular direction, but such refraction may be ignored for better comprehension and ease of description because the incident angle the incident light 51 entering the hologram 410 may be corrected when recording the hologram 410 or be within angular selectivity range.
Light 52 diffracted by the hologram 410 passes through the lower light guide plate 430 and totally reflected at an interface 432 between the lower light guide plate and air (53). Totally reflected light 54 passes through the hologram 410 without diffraction, enters the upper light guide plate 420, reaches an interface 422 between the upper light guide plate and air, and is totally reflected at the interface 422 (55). The twice totally reflected light 56 meets the hologram 410 again, and at this time, since the incidence angle of the twice totally reflected light 56 entering the hologram 410 is larger than angular selectivity around the reference direction 63, the light 56 passes through the hologram 410 without diffraction. Finally, the incident light repeats this process and is guided to one end of the concentration plate 400, i.e., leftward direction.
This process is further described in detail with reference to
Referring to
Supposing that a direction perpendicular to the interface 432 between the lower light guide plate 430 and air is a perpendicular direction 64 to the lower light guide plate 430, the perpendicular direction 64 to the lower light guide plate 430 is tilted at an angle (θT) to the perpendicular direction 62 to the hologram. The angle θ|1 at which diffracted light 52 enters the interface 432 should be determined with reference to the perpendicular direction 64 to the lower light guide plate 430, as represented by the following equation 4;
θ|1=2θB+θT <Equation 4>
Light 54 reflected at the interface 432 according the law of reflection also makes an angle of θ|1 relative to the perpendicular direction 64 perpendicular to the lower light guide plate 430.
An incidence angle θR1 at which the light 54 reflected at the interface 432 enters the hologram 410 again should be calculated with reference to the perpendicular direction 62 to the hologram instead of the perpendicular direction 64 to the lower light guide plate 430, as represented by the following equation 5;
θR1=θ|1+θT=(2θB+θT)+θT=2θB+2θT <Equation 5>
Since the incidence angle θR1 is distant from the perpendicular direction 62 and the reference direction 63, the light 54 passes through the hologram 410 without diffraction.
An incidence angle θ|2 at which the light 54 passing through the hologram 410 enters the interface 422 between the upper light guide plate 420 and air should be determined with reference to a perpendicular direction 65 to the upper light guide plate 420 which is perpendicular to the interface 422 between the upper light guide plate 420 and air. And, since the direction 65 perpendicular to the upper surface of the upper light guide plate 420 is tilted at an angle θT with reference to a perpendicular direction 62 to the hologram 410 in the opposite direction to the perpendicular direction 64 to the lower surface of the lower light guide plate, the incidence angle θ|2 is calculated by the following equation 6;
θ|2=θR1+θT=(2θB+2θT)+θT=2θB+3θT <Equation 6>
And, the light 56 reflected by the interface 422 also makes an angle of θ|2 relative to the perpendicular direction 65 to the upper surface of the upper light guide plate 420.
The incidence angle θR2 at which the light 56 reflected at the interface 422 enters the hologram 410 again is calculated with reference to the perpendicular direction 62 to the hologram, as represented by the following equation 7;
θR2=θ|2+θT=(2θB+3θT)+θT=2θB+4θT <Equation 7>
Therefore, if 4θT is Irger than angular selectivity (Δθ) of the hologram 410, the light 56 passes through without diffraction by the hologram 410.
In one exemplary embodiment, only one of the two light guide plates 420 and 430 may be inclined using the above principle.
Meanwhile, wavelength selectivity Δλ of 150 nm means that diffraction efficiency of light deviating 150 nm from the center wavelength becomes 0. Specifically, the entire range including a shorter wavelength range and a longer wavelength range with reference to the center wavelength is 300 nm. However, since substantially effective amount of light is about an half of maximum diffraction efficiency and thus the wavelength range decrease by half, light within about 150 nm range is substantially diffracted and satisfies guide condition. Thus, reference to wavelength selectivity is determined as Δθ of about 11 degrees, and the tilt angle (θT) shown in
A thick concentration plate 400 may cause loss when transmitting light from the concentration plate 400 to optical fiber 200, and increase manufacture cost.
The tilt angle (θT) should be substantially decreased to reduce the thickness of the concentration plate 400, and angular selectivity of the hologram 410 should be substantially reduced to substantially decrease the tilt angle (θT),
The exemplary embodiment shown in
Then, the operation of the exemplary embodiment of the solar light concentration plate as shown in
Referring to
In
In one exemplary embodiment, a number of holograms may be three or more, and as a number of holograms increases, the Bragg angle of each hologram decreases in proportion to the number of the holograms.
If the thickness of the thicker side of the light guide plate is determined as 10 mm, for example, length may increase to 104 mm in a single diffraction lattice structure, 227 mm in a double diffraction lattice structure, and 385 mm in a triple diffraction lattice structure, which means that an area of the concentration plate also increases.
So far, exemplary embodiments of a method of efficiently guiding solar light entering in a perpendicular direction to the concentration plate have been described. However, an incidence angle of solar light changes every hour by the rotation of earth and every season due to the revolution of the earth. Therefore, it is important to maintain high efficiency concentration performance during change in the location of the sun. In this regard, angular selectivity (Δθ) is a substantially important parameter. If Δθ is substantially large, it may be difficult to avoid diffraction of the light inside the concentration plate by a diffraction lattice, and if Δθ is substantially small, entering solar light may become sensitive to incidence angle and high efficiency concentration may be achieved only at substantially perpendicular angle relative to the concentration plate. Therefore, there is a need to relax solar light incidence conditions while eliminating light loss by interaction between guided light and a diffraction lattice.
Therefore, in one exemplary embodiment, the upper hologram related to incidence condition may be designed to have large Δθ, and the lower hologram may be designed to have small Δθ. The exemplary embodiment is shown in
Relationship between angular selectivity and thickness is described in detail with reference to
To further relaxing incidence condition, angle multiplexing may be introduced in the upper hologram 410 to form multiple holograms. Referring to
As described above, according to the present exemplary embodiments, high concentration efficiency and wavelength separation may be enabled while using inexpensive and less space occupying light guide plate.
While this disclosure has been described in connection with what is presently considered to be practical exemplary embodiments, it is to be understood that the invention is not limited to the disclosed embodiments, but, on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
10-2010-0124955 | Dec 2010 | KR | national |
Number | Name | Date | Kind |
---|---|---|---|
5725970 | Martin et al. | Mar 1998 | A |
5877874 | Rosenberg | Mar 1999 | A |
6169614 | Whitcomb et al. | Jan 2001 | B1 |
20060176533 | Sekine et al. | Aug 2006 | A1 |
20070023079 | Mills et al. | Feb 2007 | A1 |
20080049450 | Sampsell | Feb 2008 | A1 |
20090199893 | Bita et al. | Aug 2009 | A1 |
20100133422 | Lin et al. | Jun 2010 | A1 |
20100186818 | Okorogu et al. | Jul 2010 | A1 |
Number | Date | Country |
---|---|---|
1020090047548 | May 2009 | KR |
2009102671 | Aug 2009 | WO |
Number | Date | Country | |
---|---|---|---|
20120147443 A1 | Jun 2012 | US |