Solar electric panels, called “modules,” include interconnected solar cells disposed between a front (top) protective support sheet or superstrate and a transparent encapsulant layer, which may be a flexible plastic member or a glass plate that is transparent to most of the spectrum of the sun's radiation, and another transparent encapsulant layer and a back (bottom) support sheet or substrate. The superstrate may be a plastic member or a glass plate. The substrate may be a polymer-based material (for example, a “backskin”) or a glass plate. In one typical manufacturing process for this module, the solar cells have front electrodes in the form of fingers and busbars all located on the front surface of the cell, and back electrodes in the form of soldering “pads” on the back of the cell. The cells are first connected into “strings” by soldering the front electrode busbar (the “n+” electrode) of each cell to the back electrode (the “p+” electrode) pads of the adjacent cell in a sequential manner typically by using conductive ribbons or wires.
In the next process step for manufacturing a solar module, which may be termed the “interconnect (IC) process step,” multiple strings are assembled and enclosed: that is, encapsulated or “packaged” using the abovementioned construction of top and bottom support sheets and encapsulant layers, to protect them against the environment. The encapsulation protects most particularly against moisture, and against degradation from the ultraviolet (UV) portion of the sun's radiation. At the same time, the protective encapsulant is composed of materials which allow as much as possible of the solar radiation incident on the front support sheet to pass through it and impinge on the solar cells. The encapsulant is typically a polymeric material or an ionomer. This polymeric encapsulant is bonded to the front and back support sheets with a suitable heat or light treatment. The back support sheet may be in the form of a glass plate or a polymeric sheet (the backskin). The entire sandwich construction or layered construct of these materials is referred to as a “laminate,” because the materials are bonded in a lamination process. Wiring from the interconnected cells is brought outside of the laminate so that the module can be completed by attachment of a junction box for electrical connections and a frame to support and protect the edges of the laminate.
A modification of the cell design relocates the front n+ electrodes, either busbar alone or both fingers and busbars, to the back of the cell. Improved cell performance is provided by a reduction of the shadowing of parts of the front of the solar cell by removal of the n+ electrode material to the back of the cell. Consequently, the area of the front of the cell that can actively collect the sun's energy is increased.
Some designs of solar cells have the busbars removed from the front of the solar cell to the back. In one approach to solar cell design, all the front electrode metallization; that is, both fingers and busbars, are completely contained on the back of the cell. In one implementation, the fingers are an interdigitated array of n+ and p+ electrodes on the back connected to the busbars, which are designated the back contact solar (BCS) cell. In other approaches to solar cell design, the finger metallization is retained on the front of the cell, but metal strips are extended from the fingers to the back of the cell for purposes of removing the busbar to the back of the cell, hence making all the contacts (n+ and p+) at the back of the cell. The extension of the fingers is accomplished either through vias or holes drilled through the body of the cell, such as the emitter wrap-through (EWT) cell, or by suitable metal “wrapped” around the cell edges, the emitter wrap-around (EWA) cell.
In one aspect, the invention features a method of fabricating a solar electric module having photovoltaic cells. Each photovoltaic cell has conductive contacts located on a back surface of the photovoltaic cell. The method includes feeding a flexible electrical backplane including a flexible substrate onto a planar surface. The flexible electrical backplane has preformed conductive interconnects in contact with interconnect pads exposed on a front surface of the flexible substrate at predetermined locations. The method also includes forming interconnect attachments in electrical contact with the exposed interconnect pads based on applying an interconnect material onto the exposed interconnect pads. The method further includes placing the conductive contacts of the photovoltaic cells in an alignment with the predetermined locations of the interconnect pads and in contact with the interconnect attachments. The predetermined locations are determined to provide the alignment for the interconnect pads, the interconnect attachments, and the conductive contacts. The method also includes providing an underlay encapsulant to fill spaces formed between the back surfaces of the photovoltaic cells and the front surface of the flexible substrate. Furthermore, the method includes applying a curing process to the liquid underlay encapsulant to solidify the liquid encapsulant and to the interconnect attachments forming a conductive path from each conductive contact through a respective one of the interconnect attachments to a respective one of the interconnect pads.
In one embodiment, feeding the flexible electrical backplane includes feeding a layer of flexible backskin onto the planar surface from a roll of backskin material, feeding a layer of encapsulant from a roll of encapsulant material, and feeding the flexible electrical backplane from the roll of the backplane material. In another embodiment, forming the interconnect attachments includes printing a solder paste onto the exposed interconnect pads. Providing an underlay encapsulant, in one embodiment, includes depositing a liquid underlay encapsulant into an array of the photovoltaic cells having gaps between the photovoltaic cells. The gaps receive the liquid underlay encapsulant, and the predetermined locations for the interconnect pads provide a configuration for the array providing the gaps. The method further includes, in various embodiments, applying an ultraviolet light curing process, a thermal curing process, or a microwave curing process to the underlay encapsulant. In another embodiment, the interconnect attachments include solder and applying the curing process to the interconnect attachments includes applying a thermal process to, flow the solder. The interconnect attachments, in another embodiment, include a conductive adhesive and applying the curing process to the interconnect attachments includes applying the curing process to set the conductive adhesive. The interconnect attachments, in another embodiment, include a conductive ink and applying the curing process to the interconnect attachments includes applying the curing process to set the conductive ink. The method, in another embodiment, includes removing the flexible substrate while retaining the conductive interconnects and the interconnect pads and providing a back cover adjacent to the conductive interconnects and the interconnect pads.
In another aspect, the invention features a method of fabricating a solar electric module having photovoltaic cells. Each photovoltaic cell has conductive contacts located on a back surface of each photovoltaic cell. The method includes feeding a flexible electrical backplane including a flexible substrate onto a planar surface. The flexible electrical backplane has preformed conductive interconnects in contact with interconnect pads exposed on a front surface of the flexible substrate at predetermined locations. The method also includes forming interconnect attachments in electrical contact with the exposed interconnect pads based on applying an interconnect material onto the exposed interconnect pads. The method further includes placing the conductive contacts of the photovoltaic cells in an alignment with the predetermined locations of the interconnect pads and in contact with the interconnect attachments. The predetermined locations are determined to provide the alignment for the interconnect pads, the interconnect attachments, and the conductive contacts. The method also includes applying a thermal process to the interconnect attachments forming a conductive path from each conductive contact through a respective one of the interconnect attachments to a respective one of the interconnect pads. Also, the method includes depositing a liquid underlay encapsulant flowing to fill spaces formed between the back surfaces of the photovoltaic cells and the front surface of the flexible substrate. Furthermore, the method includes applying a curing process to the liquid underlay encapsulant solidifying the liquid encapsulant.
In one embodiment, feeding the flexible electrical backplane includes feeding a layer of flexible backskin onto the planar surface from a roll of backskin material, feeding a layer of encapsulant from a roll of encapsulant material, and feeding the flexible electrical backplane from the roll of the backplane material. In another embodiment, forming the interconnect attachments includes printing a solder paste onto the exposed interconnect pads. Depositing the liquid underlay encapsulant, in another embodiment, includes depositing the liquid underlay encapsulant into an array of the photovoltaic cells having gaps between the photovoltaic cells. The gaps receive the liquid underlay encapsulant, and the predetermined locations for the interconnect pads provide a configuration for the array providing the gaps. In a further embodiment, the interconnect attachments include solder and applying the thermal process to the interconnect attachments includes flowing the solder. In a further embodiment, the interconnect attachments include conductive adhesive and applying the thermal process to the interconnect attachments includes applying the thermal process to set the conductive adhesive. In another embodiment, the interconnect attachments include conductive ink and applying the thermal process to the interconnect attachments includes applying the thermal process to set the conductive ink. Applying the curing process includes, in various embodiments, applying an ultraviolet light curing process, a thermal curing process, or microwave curing process to the liquid underlay encapsulant to solidify the liquid underlay encapsulant. In another embodiment, the method includes removing the flexible substrate while retaining the conductive interconnects and the interconnect pads and providing a back cover adjacent to the conductive interconnects and the interconnect pads.
In one aspect, the invention features a method of fabricating a solar electric module. The method includes placing photovoltaic cells on a flexible electrical backplane in predetermined positions. The flexible electrical backplane has conductive interconnects preformed thereon and interconnect attachments preformed on the conductive interconnects. The predetermined positions are determined to align conductive contacts on each photovoltaic cell with respective conductive interconnects. The method also includes applying a thermal process to substantially simultaneously form a conductive path between each conductive contact and a respective one of the conductive interconnects.
In one embodiment, the flexible electrical backplane includes a removable substrate. The method includes removing the removable substrate after formation of the conductive paths between the conductive contacts and the conductive interconnects, while retaining the conductive interconnects, and providing a back cover adjacent to the conductive interconnects. The method, in another embodiment, further includes disposing an encapsulant on the photovoltaic cells after placing the photovoltaic cells and prior to applying the thermal process. Applying the thermal process substantially simultaneously forms the conductive paths and flows the encapsulant.
In another aspect, the invention features a solar electric module. The solar electric module includes a flexible electrical backplane, photovoltaic cells, and interconnect attachments. The flexible electrical backplane includes a flexible substrate and conductive interconnects preformed thereon in a predetermined pattern. Each of the photovoltaic cells has metallized contacts on the back surfaces of the cells. Each of the interconnect attachments are disposed between one of the conductive interconnects and one of the metallized contacts of one of the photovoltaic cells.
In one embodiment, the flexible electrical backplane includes an encapsulant. In another embodiment, the flexible substrate is a removable substrate. The interconnect attachments, in various embodiments, include solder, conductive adhesive, or conductive ink. In one embodiment, the flexible substrate has a back surface facing away from the photovoltaic cells and further includes a back sheet of encapsulant disposed adjacent to the back surface of the flexible substrate. In a further embodiment, the flexible substrate has a back surface facing away from the photovoltaic cells and further includes a back cover disposed adjacent to the back surface of the flexible substrate. In another embodiment, an encapsulant is disposed to encapsulate the photovoltaic cells. The encapsulant has a front surface facing away from the photovoltaic cells and further includes a front cover disposed adjacent to the front surface of the encapsulant. The flexible substrate, in another embodiment, has windows disposed adjacent to the back surfaces of the photovoltaic cells. Each window is adjacent to a respective one of the photovoltaic cells. In a further embodiment, the interconnect attachments comprise a conductive adhesive.
The above and further advantages of this invention may be better understood by referring to the following description in conjunction with the accompanying drawings, in which like numerals indicate like structural elements and features in various figures. The drawings are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the invention.
In brief overview, the present invention relates to an improved method for manufacturing solar modules for use with solar cells where all or part of the front electrode metallization is located on the back of the solar cells: for example, the back contact cell (BCS), the emitter wrap-through cell (EWT), and/or the emitter wrap-around cell (EWA). The present invention also relates to improved material for use with the manufacturing process, including a flexible electrical backplane that includes a flexible substrate and preformed electrical circuits for contact with the electrodes (typical both n+ and p+ electrodes) located on the back of the solar cells.
Modification of the cell design, away from the conventional metallization on the front of the solar cells, requires changes in the conventional assembly process of the module materials and the design and materials selection of the module. In one embodiment, the approach of the invention provides for a revised set of fewer manufacturing steps for modules, for use with solar cells where the front n+ electrodes, either the busbar alone or both fingers and busbars, are relocated to the back of the solar cell to form an interdigitated array together with the p+ electrode (which is typically already located on the back of the solar cell). The approach of the invention provides materials of construction, for example, the flexible electrical backplane, and means whereby they are assembled in a module, such as automatically feeding the flexible electrical backplane 14 from a roll of such material. The manufacturing approach of this invention reduces labor intervention when used in the production processes for modules including solar cells which are not of the front contact design. The benefits which are gained include the simplified manufacturing and improved performance for a comparable solar cell material.
The solar cell subassembly 10 is a partial module because it does not include a front or top layer of encapsulant and/or the front cover of glass or other transparent material, which can be included in a finished module. A solar electric module can be formed, when the encapsulant and front cover are layered with the solar cell subassembly 10, optionally with other layers of materials (for example, layers of encapsulant and/or a back cover), and subjected to a thermal process, lamination process, or other manufacturing process to form the module (see
The flexible substrate 28 is a flexible cloth-like material made of a suitable material (for example, a polymer based material, such as a polyimide material). The encapsulant 16 is a protective light transmitting material that provides protection again physical damage and UV damage. In one embodiment, the encapsulant 16 is a polymer based material; for example, ethyl vinyl acetate (EVA). In other embodiments, the encapsulant 16 is composed of other suitable transparent materials, such as plastic materials, an ionomer material, silicon rubber, or other suitable materials.
The conductive interconnects 18 are patterns of electrically conductive materials integrally included in the top surface 32 (surface facing the photovoltaic cells) of the flexible electric backplane 14. In some embodiments, the conductive interconnects 18 include one or more electrically conductive metals, such as copper, aluminum, silver, gold, and/or other suitable metals, as well as related metallic alloys. In other embodiments, the conductive interconnects 18 are composed of one or more other electrically conductive materials, such as a conductive plastic or polymeric material including particles of a conductive metal or other electrically conductive material.
The cover coat 20 covers the layer of conductive interconnects 18, allowing openings for contact between the conductive interconnects 18 and the interconnect attachments 22. The interconnect attachments 22 enable electrical conduction with conductive contacts (designated generally by the reference numeral 26), also referred to herein as “electrodes,” located on the back surface 13 (surface facing the flexible electrical backplane 14) of the photovoltaic cells 12. The interconnect attachments 22 are composed of one or more interconnect materials that provide electrically conductive paths between the photovoltaic cells 12 and the conductive interconnects 18; for example, solder, electrically conductive adhesive, other suitable material, or combination of materials. In one embodiment, if the interconnect attachments 22 are a conductive adhesive, then the cover coat is, for example, a polyimide material. If, in one embodiment, the interconnect attachments 22 are solder, then the cover coat 20 is a solder mask, and the cover coat 20 is, for example, an epoxy material. In one embodiment, the conductive interconnects 18 are based on a material that is not solder wettable, such as nickel or a conductive material plated with nickel, and a cover coat 20 is not required. In various embodiments, a cover coat 20 is not required if the conductive interconnects 18 are based on a conductive adhesive or conductive ink.
The approach of the invention does not require the spacing of interconnect attachments 22 to be evenly spaced. The positioning of the interconnect attachments 22 is predetermined to align with the conductive contacts 26 so as to form the electrically conductive path between each PV cell 12 and the conductive interconnects 18.
In one embodiment, a back sheet of encapsulant (not shown in
In one embodiment, the approach, as shown in
Several of these cell designs are further described in U.S. Pat. Nos. 5,468,652 and 5,972,732 (both by James Gee et al), which are provided by way of example and not limitation and are incorporated herein by reference. In the examples of U.S. Pat. Nos. 5,468,652 and 5,972,732, the n+ and p− electrodes may be formed partially on the front of the photovoltaic cell and then extended to the back of the cell through a multiplicity of vias or holes drilled through the cell material. U.S. Pat. No. 5,468,652 describes a method of making a back contacted solar cell 12. A solar cell 12 is produced that has both negative and positive current-collection grids positioned on the back side of the photovoltaic cell 12, by using vias drilled in the top surface 11 of the cell 12 to transmit the current from the front side current-collection junction to a back-surface grid. The approach is to treat the vias to provide high conductivity and to isolate each via electrically from the rest of the cell 12. On the back-side of the cell 12, each via is connected to one of the current-collection grids. Another grid (of opposite polarity) connects to the bulk semiconductor with doping opposite to that used for the front-surface collection junction. To minimize electrical resistance and carrier recombination, the two grids are interdigitated and optimized.
U.S. Pat. No. 5,972,732 describes methods for assembly that use back-contact photovoltaic cells 12 that are located in contact with circuit elements, typically copper foil, which is affixed to a planar support, typically with the use of a conductive adhesive. The photovoltaic cells 12 are encapsulated using encapsulant materials such as EVA. This approach allows the connection of multiple cells 12 in an encapsulation process, in a one-stage soldering process.
By way of example but not limitation the modules may take the form of those described and illustrated in U.S. Pat. No. 5,478,402 (by Jack Hanoka), U.S. Pat. No. 5,972,732 (by James Gee et al, 1999); which is described above, and U.S. Pat. No. 6,133,395 B1 (by Richard Crane et al, 2001), all of which are incorporated herein by reference, wherein designs of photovoltaic cells 12 which may be used are constructed with a plurality of electrodes for positive and negative charge collection either both on the front and back of the solar cells, or, alternately, entirely on the back of the solar cells, as in the BCS cell.
In the approach used by U.S. Pat. No. 5,478,402, an array of electrically interconnected photovoltaic cells is disposed in an assembly between two sheets of supporting material (front and back). The assembly is encapsulated by using thermosetting plastic composed of ionomer in layers to the front of the cells and to the back of the cells. Each solar cell is connected to the next adjacent solar cell by a ribbon-like conductor. Each conductor is soldered to a back contact of one cell and is also soldered to a front contact of the next adjacent cell. In this approach, a string of cells is constructed. The whole interconnected array has terminal leads that extend out of the module.
In the approach used by U.S. Pat. No. 6,133,395 B1, foil interconnect strips are used to connect photovoltaic cells, which are placed next to each other or relatively close to each other. The foil interconnect strips are soldered or welded to contacts on the adjacent cells, or between a cell and a bus. Thus the adjacent cells are connected by the foil interconnect strips to the same surface of the adjacent cell (for example, the connection is from the front surface of one cell to the front surface of the adjacent cell). The peripheral interconnects (on the periphery of the array of cells) have a special structure, such as a flattened spiral to avoid problems of buckling or deformation that may occur for this type of solar module.
The conventional module manufacturing process proceeds as follows: The solar electric module is manufactured by assembling a configuration of solar cells in a grid-like pattern in which the solar cells are interconnected by a network of conducting strips or wires, called “tabbing.” The tabbing is first solder coated and then flux coated in order to provide desired soldering properties when heated to the solder melt temperature. The grid configuration is chosen so this cell array can deliver a pre-selected set of currents, voltages and Watts in the output product. In order to assemble the module array, cells are first connected in series in units called “strings.” To assemble the strings, cells are individually placed on a processing unit called a “stringer” or “assembler,” which may also be termed “the interconnect (IC) unit.” Individual tabbing strips, already pre-cut to desired lengths (of dimensions of the order of those of the cells to be soldered), solder-coated and fluxed, are each positioned individually on cell surfaces, which have designed contact locations. The contact locations are the n+ busbar on the front of the cell, and multiple islands or strips of silver (or silver alloys) on the back. The tabbing is held down by mechanical clamps, which are usually automatically actuated. While the cells and tabbing are clamped in the abovementioned manner, a heater, such as an IR (infrared) lamp for example, heats the solder to the melting temperature to enable the formation of a solder bond in multiple locations. The locations are typically all along the front busbar, and at 6 through 12 locations or pads on the back of the conventional solar cell. Strings of up to 10 through 12 cells are typically incorporated into a single laminated solar cell module, and individual strings may be combined in series by wires or tabbing to form an array of up to 72 cells in a sequential process. By example, in the latter case, a module configuration of 72 cells in series includes six individual strings, each of 12 cells, connected by tabbing strips across the ends of adjacent strings alternating from end to end. In order to complete the electrical grid, a copper wire “harness” is used to electrically connect to the strings within the laminate and to act as a continuous connection to the outside of the laminate is used. The copper wire harness can be used both when there is only one string, or in the case when there are multiple strings connected as above. The copper wire harness is assembled and placed on and soldered to the ends of the cell strings through solder joints.
In the conventional manufacturing process for a solar module, once a string of solar cells has been completed, the next step of the conventional process is to bring the string to a “layup” station location in the assembler. At the layup station, a mechanical pick and place robot holding an entire string is used to integrate the strings into the desired electrical grid with materials needed to complete the laminated solar cell module; that is, typically the front cover, the encapsulant layers, and the back cover.
Further details of the conventional process for manufacturing solar modules are provided as follows: In the back cover assembly step, a back cover (for example, backskin) is placed on a table that is part of an assembler device. Then, a back layer of encapsulant is placed on the back cover. Strings of solar cells are assembled, as described elsewhere herein, including the tabbing wiring or ribbons that connect adjacent solar cells. The strings must be handled and indexed to pre-assigned locations on the encapsulant layer. The string wiring must be implemented through individual placing of the copper wiring harness and soldering steps. Then a further layer of encapsulant and a front cover are placed on top of the solar cell strings. The assembly now typically includes the back cover, back or bottom layer of encapsulant, strings of solar cells, front or top layer of encapsulant, and front cover. The assembly is subjected to a lamination process using high pressure and temperature sufficient to melt the encapsulant to form a solar cell module. The assembly is then subject to testing.
In the approach of the invention, an integrated cell assembly process, for example for the BCS cell module, has a high yield and high reliability relative to the conventional process. The conventional process, as described elsewhere herein, includes individual soldering, fluxing and handling/placing steps for the many tabbing strips and harnesses which are interconnected typically by a hot bar soldering method. The process of the present invention eliminates the individual tabbing strips and step-by-step soldering of the solar cells and cell strings usually done in a multiplicity of stations in the conventional approach. A single pre-formed material sheet or flexible substrate 28 is provided for the backplane 14 that integrally includes the conductive interconnects 18 and is flexible.
In one embodiment, the process introduces material sheets such as the back cover (for example, backskin) and encapsulant from rolls, and utilizes high speed assembly of the cells 12 using automated pick and place (or robotic) assembly equipment capable of handling both the smaller solar cells 12 and panels of glass (for example, for a front cover for the module). In one embodiment, if large panels must be manipulated, a robotic assembly equipment is appropriate; for example, for large panels of glass suitable for use as front covers for modules with large number of PV cells 12 (for example, 72 cells 12). The integrated flexible electrical backplane 14 includes the flexible substrate 28, which is a flexible material, with properties of a cloth, (also termed the “flex material” or “Flex”). The flexible material, in one embodiment, can be a polymeric material, a paper or paper-like material, or cloth (woven or nonwoven) Attached to the front surface 32 of the flexible substrate 28 of the flexible electrical backplane 14 are the finger and the n+ and p+ electrode circuits, which are utilized for the primary wiring structure that connects to the contacts 26 on the photovoltaic cells 12 (for example, back contacts 26 on BCS cells). The assembled PV cells are interconnected using mass interconnection techniques; for example, reflow soldering, or, alternatively, conductive adhesive curing.
An improved manufacture of the module is possible through use of the metallized flexible sheets of material composed of a flexible cloth-like material, when the flexible material is adapted and configured in patterns (for example, conductive interconnects 18) as described for example for the flexible electrical backplane 14 of
Further details for one embodiment of the invention are now described. A flexible electrical backplane 14 is used. In one embodiment, the flexible substrate 28 of the flexible electrical backplane 14 is coated with the patterned metal films. The flexible electrical backplane 14 can also become the back cover, if a moisture barrier coating is applied to the back-side or outside (that is, back surface 34) of the flexible electrical backplane 14. In one embodiment, conducting epoxies can be combined with copper to form the pre-pattern conductors (for example, conductive interconnects 18).
In one embodiment, a back cover sheet, an encapsulant sheet (that is, a back sheet of encapsulant), and the flexible electrical backplane 14 including the electrodes (for example, conductive interconnects 18) are brought into the assembler device by a roller feed in one automated step. In a particular embodiment, the back cover sheet (for example, backskin) is provided as one roll of material, the encapsulant sheet is provided as another roll of material, and the flexible electrical backplane is provided as another roll of material. The assembler device is configured to hold the three rolls of material and feed them simultaneously into the assembler device in an automated step so that the back cover sheet is the bottom layer, the back sheet of encapsulant is the next layer, and the flexible electrical backplane 14 is the next layer.
The advantage is provided of a one-step production of a back cover assembly including the back cover sheet, a back sheet of encapsulant, and the flexible electrical back plane 14 (including conductive interconnects 18). The patterned metal electrode (conductive interconnects 18 included in the flexible electrical backplane 14) has the advantage of eliminating the individual cell tabbing strips of the convention approach, which is prone to failure in thermal cycling caused by differential thermal expansion stress when assembled by a conventional module manufacturing process.
In one embodiment, fluxless solder systems are provided that are not typically used in the photovoltaic industry, which has the advantage of preventing flux from being released from the solder into the solar cell module, which can cause degradation of materials and degradation of reliability due to the flux residue remaining within the finished solar cell module.
Regarding the cell placement step of the manufacturing process, the approach includes the preformed flexible electrical backplane 14, which, in one embodiment, contains electroplated and solder dipped copper pattern (for example, conductive interconnects 18) etched to the designed configuration to match the photovoltaic cell back contacts as one complete unit. All of the locations covering an entire module of photovoltaic cells (for example, 72 cells) can be soldered with one step of heating. The approach of the invention is not limiting of the number of cells that can be included in a solar module. The approach of the invention eliminates individual tabbing strip handling, placement and soldering, thus enhancing bond quality. The approach of the invention also reduces thermal stresses in wiring as a result of the flexible material of the flexible substrate 28 of the flexible electrical backplane 14 and circuit compliance.
In one embodiment of the invention, a liquid encapsulant 16A is used with an ultraviolet (UV) cure to solidify the liquid encapsulant. In the manufacturing process for various embodiments, a one step approach is provided that combines soldering with the UV cure, or a one step approach that includes thermal processing of the interconnect attachments 22 (for example, conductive adhesive) and the encapsulant 16A. This approach has the advantage of eliminating the conventional individual steps of soldering individual conductive ribbons or wires between adjacent solar cells and then laminating. The approach of the invention, in one embodiment, also has the advantage of eliminating the pressure aspect of the lamination step, which can cause failures, and is particularly critical in obtaining a high yield of successfully produced solar cell modules when using thin cell wafers. The thin cell wafer typically has a thickness of about 150 microns.
In one embodiment, three rolls of material are available to the assembler device. One roll is a back cover (for example, 54 in
In one embodiment, the flexible electrical backplane 14 is fed or positioned onto the planar surface of the assembler device as sheets of backplane material. In another embodiment, the flexible electrical backplane 14 is fed from precut rolls of backplane material.
In step 104, the procedure prints a solder paste on the flexible electrical backplane 14; for example in a stencil printing process that applies the solder paste to predetermined portions of the conductive interconnects 18. In one embodiment, the process includes printing or providing a cover coat (or solder mask) 20 before applying the solder paste. The solder paste is applied to form interconnect attachments 22 composed of an interconnect material (for example, solder paste) at predetermined positions that are located to align with the back contacts 26 of the PV cells 12, which occurs during step 106 when the PV cells 12 are placed onto the flexible electrical backplane 14.
In one embodiment, a conductive adhesive or conductive ink can be printed or applied to the flexible electrical backplane 14 to form the interconnect attachments 22. In various embodiments, a syringe and needle approach is used to deposit (or dispense) the interconnect material to form the interconnect attachments 22. A pump or pressure approach is used to apply the interconnect material (for example, solder paste, conductive adhesive, conductive ink, or other suitable material) to the flexible electrical backplane 14.
In step 106, the procedure 100 places the PV cells 12 already fixtured in step 102 onto the flexible electrical backplane 14 so the back contacts on the PV cells 12 align with the interconnect attachments 22. In one embodiment, the placement of the PV cells 12 is performed by an automated pick and place device. In one embodiment, this device is an automated pick and place machine. In another embodiment, this device is a placement robot, for example a gantry robot or XY robot.
In step 108, the procedure 100 mass solders the PV cells 12 to the flexible electrical backplane 14. In one embodiment, heat is provided by an IR (infrared) lamp to melt solder in the interconnect attachments 22. In various embodiments, heat is provided by convection heating, microwave heating, or vapor phase (or vapor phase flow) heating (that is, a liquid vapor at a controlled temperature). In one embodiment a lead free solder is used. In another embodiment, a fluxless solder is used. In another embodiment, the interconnect attachments 22 are a conductive adhesive, and heat is provided to cause the conductive adhesive to set. Generally, the thermal processing of the interconnect attachments 22 is in the range of 80 degrees centigrade to 250 degrees centigrade, which covers a range suitable for various types of solder. In one embodiment, if a solder is used, the solder is a low temperature solder, for example, indium. For conductive adhesive, the thermal processing can be in the range of 80 degrees centigrade to 180 degrees centigrade, with a typical range of 120 degrees centigrade to 150 degrees centigrade.
In step 110, an underlay encapsulant 16A is deposited or dispensed. In one embodiment, the underlay encapsulant 16A is a liquid encapsulant that is deposited or dispensed in gaps 38 between the PV cells 12, so that the liquid encapsulant 16A flows into spaces between the solar cells 12 and the flexible electrical backplane 14. In one embodiment, the alignment of the interconnect pads 24 and interconnect attachments 22 insure that the solar cells 12 in an array are positioned such that there are sufficient gaps 38 between the solar cells 12 to allow liquid encapsulant 16 to flow between the solar cells 12 in order to reach the spaces between the solar cells 12 and the flexible electrical backplane 14. In one embodiment, vertical barriers are placed around the partial module (as assembled in steps 102 through 108) to insure that the liquid encapsulant 16 does not leak out. In one embodiment, the liquid encapsulant is deposited or dispensed by an automated syringe and needle approach, using one or more syringes and needles.
In one embodiment, the liquid encapsulant 16 covers the top or front surface II of the PV cells 12 (the surface facing away from the flexible electrical backplane 14); forming a front or top encapsulant layer (for example, see 16B in
In one embodiment, the underlay encapsulant 16A is one or more sheets of encapsulant material layered under the back surface 13 of the PV cells 12 and/or layered beneath the flexible backplane 14. In one embodiment, the flexible substrate 28 has windows (also termed “openings,” “cut-outs,” or “holes”) for parts of the flexible electrical backplane 14 that do not have conductive interconnects 18 embedded or included in the flexible electrical backplane 14. The windows allow for the encapsulant 16 to flow into spaces underneath the PV cells 12. In one embodiment, strips of encapsulant 56 can be provided to insure that the spaces beneath the PV cells 12 are fully filled with encapsulant 16 (see
In step 112, the underlay encapsulant 16A is cured (for example, by UV light, a thermal process, a microwave process, or other suitable process) to cause the encapsulant 16A to solidify. The windows allow UV light to reach an encapsulant 16A that requires UV light to cure the encapsulant 16A. In one embodiment, UV light is provided to the back side of the solar cell subassembly 40, and is incident on the encapsulant 16A through the windows (for example, before an opaque back cover is applied that would block the transmission of UV light). In one example, the UV light is provided by UV lamps through a transparent planar surface that the solar cell subassembly 40 is disposed upon. In one embodiment, the UV light is provided for about one to about two minutes to effect the cure of the encapsulant 16A.
In one embodiment, a UV light approach is used with liquid encapsulant 16 for a partial solar electric module that is assembled in a reverse manner than what is shown in
In one embodiment, the underlay encapsulant 16A, as shown in
If a front cover (for example glass) 62 (not shown in
In step 114, the procedure 100 singulates the solar cell subassembly 10 for module assembly. The solar cell subassembly 10 includes the flexible electrical backplane 14 attached (for example, soldered) to the PV cells 12, and the cured encapsulant 16A. In one embodiment, the solar cell subassembly 10 is separated (for example, cut) from the incoming roll of backplane material. The solar cell subassembly 10 can then be transferred to a module assembly or lay-up station where additional layers of encapsulant (for example, back sheet of encapsulant 52,
If a front glass cover 62 has been provided previous to step 112, then a module has been formed that includes the solar cell subassembly 10. In this case, in step 114, the module is singulated for further processing, which can include adding a frame (of metal or other material) to support and protect the edges of the module and/or attachment of a junction box for electrical connections.
In another embodiment, the flexible electrical backplane 14 can be singulated at an earlier stage of the process, for example, before step 104, when the flexible electrical backplane 14 is separated (for example, cut) from a roll of backplane material used as input to the assembly station.
In one embodiment, three rolls of material are available to the assembler device. One roll is a back cover (for example, 54 in
In one embodiment, the flexible electrical backplane 14 is fed or positioned onto the planar surface of the assembler device as sheets of backplane material. In another embodiment, the flexible electrical backplane 14 is fed from precut rolls of backplane material.
In step 206, the procedure 200 applies interconnect attachments 18 to predetermined portions of the conductive interconnects 18. In one embodiment, the process includes printing or providing a cover coat (or solder mask) 20 before applying an interconnect material that forms the interconnect attachments 18. The interconnect material, in various embodiments, can be a conductive adhesive or conductive ink. In other embodiments, the interconnect material is a metal particle material. In one embodiment, the process includes printing or providing a cover coat (or solder mask) 20 before applying the interconnect material. In one embodiment, the interconnect material is a solder or solder paste. The interconnect material is applied to form interconnect attachments 22 at predetermined positions that are located to align with the back contacts 26 of the PV cells 12, which occurs during step 208 when the PV cells 12 are placed onto the flexible electrical backplane 14.
In various embodiments, a syringe and needle approach is used to deposit or dispense the interconnect material to form the interconnect attachments 22. A pump or pressure approach is used to apply the interconnect material (for example, conductive adhesive) to the flexible electrical backplane 14.
In step 208, the procedure 200 places the PV cells 12 already fixtured in step 202 onto the flexible electrical backplane 14 so the back contacts on the PV cells 12 align with the interconnect attachments 22. In one embodiment, the placement of the PV cells 12 is performed by an automated pick and place device. In one embodiment, this device is an automated pick and place machine. In another embodiment, this device is a placement robot, for example a gantry robot or XY robot.
In step 210, an underlay encapsulant 16A is provided. In one embodiment, the underlay encapsulant 16A is one or more sheets of encapsulant material layered under the back surface 13 of the PV cells 12 and/or layered beneath the flexible backplane 14. In one embodiment, the flexible substrate 28 has windows (also termed “openings,” “cut-outs,” or “holes”) in parts of the flexible electrical backplane 14 that do not have conductive interconnects 18 embedded or included in the flexible electrical backplane 14. The windows allow for the encapsulant 16A to flow into spaces underneath the PV cells 12 when the thermal process is applied (step 212). In one embodiment, strips of encapsulant can be provided to insure that the spaces beneath the PV cells 12 are fully filled with encapsulant 16A (see
In one embodiment, the underlay encapsulant 16A is a liquid encapsulant that is deposited or dispensed in gaps 38 between the PV cells 12, so that the liquid encapsulant flows into the spaces between the solar cells 12 and the flexible electrical backplane 14. In another embodiment, a liquid encapsulant is provided for the underlay encapsulant 16A before the placement of the photovoltaic cells 12 (that is, before step 208), and the liquid encapsulant is cured by the application of UV light. The interconnect attachments 22 can be covered with a mask material to prevent the interconnect attachments 22 from being covered with encapsulant 16A, and the mask material must be removed before the placement of the photovoltaic cells 12.
In step 212, the underlay encapsulant 16A is cured by applying a thermal process (for example, by infrared light), a microwave process, a UV light process, or other suitable curing process. The thermal or microwave process causes the encapsulant 16A to flow (if in the form of sheets and/or strips of encapsulant) material to fill the spaces underneath the PV cells 12 (that is, between the PV cells 12 and the conductive interconnects 18). In a substantially simultaneous process, the thermal or microwave process causers the PV cells 12 to bond to the flexible electrical backplane 14. In one embodiment, the thermal or microwave process causes a thermosetting conductive adhesive to set. In another embodiment, a UV light process causes the encapsulant 16A (for example, liquid encapsulant) to set. In another embodiment, a UV light process causes the conductive adhesive or conductive ink to set.
In another embodiment, the underlay encapsulant 16A is first treated with UV light to initiate a curing process (for example, for a liquid encapsulant 16), and then the curing is completed with a thermal process. In another embodiment, step 212 includes the application of pressure as well as other processes (for example, a thermal, microwave, and/or UV light process).
If a front cover (for example glass) 62 is placed over the PV cells 12 and a front encapsulant layer 16B provided between the front cover 62 and the PV cells 12, before step 212, then the front cover 62 can be bonded to the encapsulant 16B by the thermal process of step 212. In this approach, a solar module 60, as shown for example in
In step 214, the procedure 100 singulates the solar cell subassembly 10 for module assembly. The solar cell subassembly 10 includes the flexible electrical backplane 14 attached (for example, soldered) to the PV cells 12, and the cured encapsulant 16A. In one embodiment, the solar cell subassembly 10 is separated (for example, cut) from the incoming roll of backplane material. The solar cell subassembly 10 can then be transferred to a module assembly or lay-up station where additional layers of encapsulant (for example, back sheet of encapsulant 52, FIG. 6B, and front sheet of encapsulant 16B;
If a front glass cover 62 has been provided previous to step 212, then a module has been formed that includes the solar cell subassembly 10. In this case, in step 14, the module is singulated for further processing, which can include adding a frame (of metal or other material) to support and protect the edges of the module and/or attachment of a junction box for electrical connections.
In another embodiment, the flexible electrical backplane 14 can be singulated at an earlier stage of the process, for example, before step 206, when the flexible electrical backplane 14 is separated (for example, cut) from a roll of backplane material used as input to the assembly station.
The procedures 100 described in
In the approach of the invention, key materials include the following: backplane flex circuit material for the flexible electrical backplane 14; metallization of the backplane interconnects 18; metallization of the PV cell 12; PV cell 12 to backplane 14 interconnect material for the interconnect attachments 22; and PV cell 12 to backplane 14 underlay material for stress relief and void elimination beneath the PV cell 12.
The backplane flex circuit material for the flexible electrical backplane 14 is based on a flexible substrate 28 of various materials in various embodiments of the invention. In one embodiment, the flexible backplane material used in the flexible substrate 28 is a flexible polymer material. In another embodiment, the flexible backplane material is a polyimide material. In another embodiment, the flexible backplane material is an LCP (liquid crystal polymer). The flexible backplane material, in various embodiments, is a polyester, or can be a polyolefin, such as polyethylene or polypropylene. In other embodiments, the flexible backplane material is a cloth or cloth-like material that can be woven or nonwoven. In another embodiment, the flexible backplane material can be a paper or paper-like product or material, for example, a high temperature bonded paper that is ionically pure. The flexible backplane material can also be based on suitable materials to be developed in the future.
In one embodiment, the flexible electrical backplane 14 becomes part of the encapsulant material 16 if the flexible electrical backplane 14 includes an encapsulant material, such as EVA. In such a case, a back sheet of encapsulant (for example, 52 in
In one embodiment, the flexible substrate 28 of the flexible electrical backplane 14 is a removable substrate that can be removed, for example, by being dissolved by water or a solvent, while retaining the conductive interconnects 18 and interconnect pads 24. In one embodiment, after removal, a layer of encapsulant (for example, back sheet of encapsulant 52) and a back cover (for example, 54), such as glass or a backskin, is optionally provided. The back sheet of encapsulant 52 is provided adjacent to or bonded to a back surface 36 (facing away from the PV cells 12) of the conductive interconnects 18 and interconnect pads 24 and then a back cover 54 is provided adjacent to or bonded to a back surface 58 (facing away from the PV cells 12) of the back sheet of encapsulant 52 to provide a protective back cover. In another embodiment, after removal, a back cover 54 (for example, glass or a backskin) is provided adjacent to or bonded to a back surface 36 (facing away from the PV cells 12) of the conductive interconnects 18 to provide a protective back cover.
In another embodiment, the flexible substrate 28 has windows, openings cut-outs, or holes in parts of the flexible electrical backplane 14 that do not have conductive interconnects 18 embedded or included in the flexible electrical backplane 14. In one embodiment, the flexible electrical backplane 14 is placed next to a sheet of encapsulant (for example, 52) adjacent to the bottom or back surface 34 of the flexible electrical backplane 14. In one embodiment, the windows located adjacent to the back surface 13 of the PV cells 12 allow encapsulant 16A to flow into the spaces beneath the PV cells to insure that these spaces are filled with encapsulant; for example, when subjected to heat in a thermal process, or to both heat and pressure as part of a lamination process for a solar electric module. In another embodiment, strips of encapsulant (for example, 56) are provided that approximately fill each window (see
The metallization of the backplane interconnects 18 can be based on a conductive metal such as copper, aluminum, silver, gold, or related alloys. In one embodiment, the conductive interconnects 18 is based on copper with an antioxide surface coating, which can be an organic surface coating. In another embodiment, the conductive interconnects 18 are copper plated with silver or gold. In another embodiment, the conductive interconnects 18 are composed of a material that is not solder wettable, such as nickel, or a metal (for example, copper) plated with nickel, and a cover coat 20 is not required. The interconnect pads 24 are composed of a solder wettable material (for example, copper).
In another embodiment, the backplane interconnects 18 are composed of a conductive adhesive or a conductive ink; for example, when the flexible backplane is composed of a polyester material with conductive ink applied or printed onto the polyester material to form the backplane interconnects 18. The conductive interconnects 18 can also be based on suitable materials to be developed in the future.
The metallization of the PV cell 12 requires that the contacts (for example, back contacts 26) be solder wettable, or, if not, then the contacts are compatible with conductive adhesives or conductive inks. The metallization of the PV cell (for example, back contacts 26 and electrical circuitry used to collect current such as fingers and busbars) can be based on a conductive metal such as copper, aluminum, silver, gold, or related alloys. In one embodiment, the back contacts 26 are based on copper with an antioxide surface coating, which can be an organic surface coating.
The interconnect material used in the interconnect attachments 22 is solder in one embodiment. In one embodiment, the solder is a lead free SAC alloy (tin, silver, and copper alloy). The solder can include a flux, in which case a flux residue can remain after the soldering process. In another embodiment, a wash cycle can be performed after the soldering process to remove the flux, before other steps such as adding encapsulant 16. The solder can also be a fluxless solder. In one embodiment, the soldering process is done in a vacuum with fluxless solder. In one embodiment, the solder is a low temperature solder, useable at a temperature as low as 80 degrees centigrade; for example, an indium based solder. In another embodiment, the interconnect material is a conductive adhesive. In other embodiments, the interconnect material is a metal particle material. In one embodiment, the manufacturing process is related to those used in the semiconductor printed-board industry; for example, the interconnect material is a conductive adhesive with a compression bond process using metal bumps with gold-coated surfaces designed to promote adhesion under a compression force introduced during a process involving pressure, such as a lamination process; for example forming a bond between the conductive interconnects 18 and the contacts 26. In one embodiment, the compression bond process is done without any interconnect material to form a bond between the conductive interconnects 18 and the contacts 26. The interconnect attachments 22 can also be based on suitable materials, such as new types of solder, to be developed in the future.
The underlay encapsulant 16A is, in one embodiment, a liquid encapsulant, for example, a liquid form of a polymer based material, such as EVA, and/or an epoxy material. In other embodiments, the liquid encapsulant is a plastic material, such as an acrylic or urethane material, a silicone rubber material, or other transparent suitable material. In one embodiment, the encapsulant is a high temperature encapsulant, suitable for use with a fluxless solder process and/or low temperature solder. In another embodiment, the encapsulant 16A is a film encapsulant or a sheet of encapsulant (for example, a film or sheet of a polymer based material). The film or sheet of encapsulant 16A, in one embodiment, has a punched pattern that matches the PV cell 12 pattern. The interconnect attachments 22 can also be based on suitable encapsulating materials to be developed in the future.
If a backskin is included (for example, for a back cover 54), the backskin can be a TPT backskin. TPT is a layered material of TEDLAR®, polyester, and TEDLAR®. TEDLAR® is the trade name for a polyvinyl fluoride polymer made by E.I. Dupont de Nemeurs Co. In one embodiment, the TPT backskin has a thickness in the range of about 0.006 inch to about 0.010 inch. In another embodiment, the backskin is composed of TPE, which is a layered material of TEDLAR®, polyester, and EVA, or thermoplastic EVA. In one embodiment, the backskin is PROTEKT® HD available from Madico, Woburn, Mass.
The solar cell subassembly 10 includes photovoltaic cells 12, a flexible electric backplane 14, encapsulant 16A, cover coat 20, and interconnect attachments 22 of interconnect material. The flexible electric backplane 14 includes conductive interconnects 18, and a flexible substrate 28. The approach of the invention does not require the spacing of interconnect attachments 22 to be evenly spaced. The PV cells 12 can also include conductive contacts 26; for example, backside contacts (not shown in
The solar cell subassembly 40, in one embodiment, can be used with other layers, such as a front or top layer of encapsulant 16B or the front cover 62 of glass or other transparent material, or back layers, such as a back sheet of encapsulant (for example, 52) and back cover (for example, 56). In one embodiment, the encapsulant 16B and front cover 62 are layered with the solar cell subassembly 10, optionally with other layers of materials (for example, 52 and/or 56), and subjected to a lamination process, thermal process, or other manufacturing process to form a solar electric module (see
The flexible substrate 28 has a window 50 that is disposed underneath the PV cell 12. The window 50 allows the encapsulant back sheet 52 to flow into the opening provided by the window 50 to fill the space below the PV cell 12 (and bounded generally on the edges by the contacts 26 and interconnect attachments 22, as shown in
The window 50, in one embodiment, is about 80 percent through about 90 percent of the size of the PV cell 12 (that is, the bottom surface 13 of the PV cell 12).
In
In another embodiment, the strip of encapsulant 56 is combined with the back sheet of encapsulant 52, forming a protrusion or “rib” on the back sheet 52. The rib is not required by the invention to have the shape indicated by
In another embodiment, liquid encapsulant 16 can also be provided, for example deposited or dispensed in gaps 38 between photovoltaic cells 12, to flow into contact with the outermost edges of the conductive contacts 26, the interconnect attachments 22, and the conductive interconnects 18 (the edge areas farthest away from the window 50) to insure their coverage with encapsulant 16 and to insure that the gaps 38 between photovoltaic cells 12 are filled with encapsulant.
The position of the contacts 26 and window 50 shown in
In one embodiment, the solar electric module 60 is formed by placing a solar cell subassembly (for example, 40) on a back cover 54 disposed on a planar surface in an assembler or laminating device, next placing a front layer of encapsulant 16B (for example, sheet of encapsulant) having a front surface 64 facing away from the photovoltaic cells 12, and then next placing a front cover 62 adjacent to the front surface 64 of the front layer of encapsulant 16B, and then subjecting these components (for example, back cover 54, subassembly 40, encapsulant 16B, and 62 front cover) to a thermal or lamination process (that involves heat and pressure applied substantially simultaneously). In one embodiment, a protective back coating is applied to the back surface 34 of the flexible electrical backplane 14.
In another embodiment, a solar electric module is formed by placing a back cover 54 (for example, backskin) on a planar surface in an assembler or a laminating device, next a sheet or layer of encapsulant 52, next a solar cell subassembly (for example, 40), next placing a front layer of encapsulant 16B (for example, sheet of encapsulant), and then next placing a front cover 62. These components (for example, back cover 54, encapsulant 52, subassembly 40, encapsulant 16B, and front cover 62) are then subjected to a thermal process or lamination process that involves heat and pressure applied substantially simultaneously to form a solar electric module 60. In a further embodiment, the substrate 28 of the flexible electrical backplane 14 of the solar cell subassembly (for example 40) is removed before placing the solar cell subassembly (for example 40) into the assembly or lamination device. The solar cell subassembly (for example, 40) retains the conductive interconnects 18 after removal of the substrate.
In one embodiment, the solar electric module 60 of
Having described the preferred embodiments of the invention, it will now become apparent to one of skill in the arts that other embodiments incorporating the concepts may be used. It is felt, therefore, that these embodiments should not be limited to the disclosed embodiments but rather should be limited only by the spirit and scope of the following claims.
This application claims the benefit of U.S. Provisional Patent Application No. 60/908,750, titled “Solar Module Manufacturing Processes,” filed on Mar. 29, 2007, the entire teachings of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
60908750 | Mar 2007 | US |