A solar module is a packaged interconnected assembly of solar cells, also known as photovoltaic cells. The solar module can be used as a component of a larger photovoltaic system to generate and supply electricity in commercial and residential applications. Most solar module arrays use an inverter to convert the direct current (DC) power produced by the modules into alternating current (AC) that can power lights, motors, and other loads. The solar modules in a solar module array can be connected in series to obtain the desired voltage and then the series coupled groups of modules can be connected in parallel to allow the system to produce more current.
Each solar module in the solar module array can be attached to a fixed mount that tilts the solar module towards the yearly average position of the midday sun. For example, the modules installed in the northern hemisphere may face due south and conversely, southern hemisphere solar modules may face north. The tilt angle of the solar modules can be fixed and can be set to give optimal array output during the peak electrical demand portion of a typical year. Each of the solar modules in the solar module array is mounted to a stable support structure that can hold the solar modules in the desired position and elevate each of the solar module off the ground. For example, for improved space efficiency, the array of solar modules can be mounted on elevated posts over a car parking area so that cars can be parked in shaded areas under the solar modules which are fully exposed to the solar energy. This use can provide the dual benefit of providing sun protection to keep the cars cooler and utilizing the exposed parking lot area for the collection of solar energy.
A problem with existing solar installations is that the primary mounting structure is built to a specific size solar module. Thus, the solar module dimensions must be known before the mounting structure can be completed. If the primary mounting structure is built for a first solar module and the order is changed to a second solar module, the mounting devices on the structure must be removed and replaced with new mounting devices for the second solar module. In most cases, the mounting hardware can include welded components that must be removed by grinding or cutting and then replacement. A similar reconfiguration procedure is needed if an older inefficient solar module is replaced with a newer more efficient solar module that has a different size. In order to eliminate these problems, a universal solar module mounting system is needed that is compatible with and can securely mount many different sized solar modules to the mounting structure.
The present invention is directed towards a universal solar module mounting system which can be used to secure solar modules having different sizes to mounting brackets. The mounting brackets can include a plurality of parallel beams that are horizontal or angled so that the modules are positioned for maximum solar exposure. Each of the beams is supported by one or more vertical posts. The universal mounting system can include a plurality of purlins that are placed over the beams in a substantially perpendicular orientation and secured to the beams with purlin clips. The purlin clips can be L shaped with a vertical portion and a horizontal portion. The vertical and horizontal portions of the purlin clip can also have mounting holes that can accommodate fasteners. The vertical portion can be fastened to the purlin and the horizontal portion can be fastened to the beam with self tapping screws, threaded bolts or bolts which are coupled to nuts.
The solar modules are secured to the tops of two or more purlins that run across the widths of the modules. Each solar module can have a different mounting position for the purlins. In an embodiment, the purlin clip can include slots that allow the purlin to be moved within a range of positions to accommodate the specific mounting requirements of the solar modules being used. In other embodiments, slots can be formed in the beams to allow the purlins to move in a range of positions relative to the beams. Once the purlins are properly positioned, they are secured in place with fasteners.
In an embodiment, the solar module mounting system includes mounting components at a plurality of connection points. The mounting components can include a spacer clip, a module clip and a fastener. The module clip can be a “T” shaped structure that engages the upper surface of the solar module and the spacer clip can be positioned between the bottom surface of the module and the top surface of the purlin. In an embodiment, the lower portion of the module clip and the spacer tabs extending from the spacer clip can have approximately the same widths. The module clip and spacer tabs can function as spacing guides to properly separate the two adjacent solar modules. In an embodiment, the spacer clip can include engagement tabs which fit into corresponding holes in the bottom surface of the solar modules. The engagement tabs can prevent the solar modules from sliding out of the proper mounting position on the mounting bracket. A fastener can pass through holes in the module clip and the spacer clip and be threaded into the purlin or a nut on the opposite side of the purlin. The fastener can then be tightened to the proper torque to secure the solar module to the mounting system.
If the solar modules need to be replaced, the fasteners that secure the module clips and spacer clips to the purlin can be removed to free the solar modules. The proper purlin locations can be determined for the new solar modules and the bolts securing the purlin clips to the beams can be loosened and the purlins can slide to the proper mounting positions for the new solar modules. Once the purlins are properly positioned on the beams, the bolts can be tightened to secure the purlins to the beams. The new modules can then be mounted on the purlins by securing the module clips and the spacer clips to the purlins with fasteners. This process is a significant improvement over the prior art systems which can require cutting the attachment points to move the purlins and module clips.
The present invention is directed towards a universal system for mounting solar modules to support structures that can accommodate a wide range of module sizes. This universal sizing feature is important because it allows a standard support structure to be fabricated that will work with all common sized solar modules currently being produced. This universal system allows the primary support structures to be built and installed without knowing the exact dimensions of the solar modules that will be mounted on the support structures. This is an improvement over fixed mounting systems which are designed for a specific solar module which cannot be completely constructed until the exact dimensions of the solar modules are known. The inventive system also allows the modules to be replaced at any time with solar modules that have different dimensions.
When solar module installations are ordered, the end user may only care about the price and power output of the installed solar system, the type or brand of solar modules used in the system may not be important to the end user. However, the contractor installing the solar module system will try to make the most amount of profit from the installation and may purchase solar modules that have the best cost per power output ratio. Because there are many solar companies, the manufacturer who has the best price per power output may change regularly and the solar modules may only be purchased just before they are to be mounted on the support structures. By using the inventive universal module mounting system, the mounting structure can be completely built without knowing the size of the solar modules that are to be installed.
Solar modules are increasing in efficiency each year and in many older solar module installations, there can be a significant economic benefit to replacing the older solar modules with newer modules that have improved efficiency. The universal sizing system also allows the existing support structure to be changed to properly secure new solar modules with new module dimensions without a significant amount of reconstruction of the support structure. In contrast, existing solar module support structures are made for a predetermined solar module having specific length, width and thickness dimensions. If the solar modules are replaced with newer modules that have different dimensions, the mounting hardware of the inventive system can simply be released to remove the old modules and adjusted to accommodate the different size of the new modules. This flexibility in module compatibility is a significant improvement over existing solar module mounting systems.
Table 1 includes a listing of solar module manufacturers and the dimensions of their solar modules. Although many of the modules are similar in size, none of the manufacturers make the same sized solar modules. Thus, a mounting system made for a solar module made by a first manufacturer will not be compatible with a solar module made by a second manufacturer.
With reference to
The depth D of the foundation 109 and bending strength of the post 107 can depend upon the length of the foundation L1 and the length of the post L2 as well as the weight of the structure as well as the surface area of the solar modules and ambient weather conditions including: wind, rain, snow, storm activity, etc. The posts 107 can be vertically oriented and the I-beams 105 can be mounted at an angle on the posts 107 depending upon the optimum solar module 101 exposure angle.
With reference to
The solar module 101 is secured to the purlin 103 with a module fastener 131 which extends through a module clip 121, a module spacer 129 and the upper portion of the purlin 103. The lower surface of the module spacer 129 can be shaped to match the upper portion of the purlin 103 for a secure fit. The module clip 121 and module spacer 129 components will be described in more detail later. In an embodiment, the purlin 103 can have a “Z” cross section and the fastener 131 can be a self-drilling fastener which drills and taps the upper portion of the purlin 103. In other embodiments, the fastener 131 can be a threaded bolt that is secured to the purlin 103 with a nut having a mating thread. The fastener 131 can be tightened to a predetermined torque to properly secure the module 101 to the purlin 103. In an embodiment, the purlin 103 can have a “C” or “I” cross section.
With reference to
With reference to
With reference to
The solar modules are secured to the mounting system with a set of fixtures which clamp the upper and lower edges of the solar modules to the purlins. As illustrated in
With reference to
A benefit of the inventive system is the ability to adapt to various solar module sizes.
The inventive system can be used for various types of installations. As illustrated in
It will be understood that the inventive system has been described with reference to particular embodiments, however additions, deletions and changes could be made to these embodiments without departing from the scope of the inventive system. Although the order filling apparatus and method have been described include various components, it is well understood that these components and the described configuration can be modified and rearranged in various other configurations.
This application claims priority to U.S. Provisional Patent Application No. 61/497,384, “Modular Horizontal T-Structure For Parking PV Array” filed Jun. 15, 2011 and U.S. Provisional Patent Application No. 61/507,014, “Modular Horizontal T-Structure For Parking PV Array” filed Jul. 12, 2011. U.S. Provisional Patent Application Nos. 61/497,384 and 61/507,014 are hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
61497384 | Jun 2011 | US | |
61507014 | Jul 2011 | US |