The present disclosure relates generally to mounting brackets. More specifically, the present disclosure relates to mounting brackets for coupling solar modules to a framework.
Solar mounting systems are provided to support and couple an array of one or more photovoltaic (“PV”) modules to a framework, such as, for example, a plurality of parallel-oriented, rotatable torque tubes. The solar mounting systems are designed to maintain the PV modules in a fixed position relative to the torque tube while the torque tube is rotating during solar tracking.
Solar mounting systems can add significant cost to a solar power system for at least two reasons. First, the components themselves are expensive to manufacture, ship, and install. Second, installation and operation can be expensive because they require time and skilled operators to conduct quality control measures in the field. Therefore, there is a need for PV mounting systems that are easier and cheaper to package, ship, and install.
In one aspect of the present disclosure, a solar module mounting bracket assembly is provided. The solar module mounting bracket assembly includes a rail configured to support a solar module thereon, and a pair of braces each having a first end portion movably coupled to the rail. The braces are movable relative to the rail between a collapsed configuration and an expanded configuration. In the expanded configuration, the braces cooperatively define a channel dimensioned for receipt of a frame member.
In aspects, the braces may be parallel with the rail in the collapsed configuration, and perpendicular to the rail in the expanded configuration.
In aspects, the solar module mounting bracket assembly may assume a substantially linear shape when the braces are in the collapsed configuration. In further aspects, the solar module mounting bracket assembly may assume a substantially triangular shape when the braces are in the expanded configuration.
In aspects, the solar module mounting bracket assembly may further include a fastener configured to attach to a second end portion of each of the braces to fix the braces in the expanded configuration.
In aspects, the solar module mounting bracket assembly may further include a pair of truss arms. Each of the truss arms may include a first end portion movably coupled to a respective second end portion of the pair of braces, and a second end portion slidably coupled to a respective first and second end portion of the rail.
In aspects, the truss arms may be configured to move relative to the rail and the braces between a collapsed configuration and an expanded configuration. In the collapsed configuration, the truss arms may be parallel with the rail and the pair of braces, and in expanded configuration, the truss arms may extend perpendicularly relative to the rail.
In aspects, the second end portion of each of the truss arms may be configured to slide away from a central portion of the rail as the pair of truss arms move toward the collapsed configuration.
In aspects, the second end portion of each of the truss arms may move along the rail from an inward position to an outward position. In the inward position, the truss arms may assume the expanded configuration, and in the outward position, the truss arms may assume the collapsed configuration.
In aspects, each of the first and second end portions of the rail may define a track through which the respective second end portion of the truss arms slides.
In aspects, the solar module mounting bracket assembly may further include a fastener assembly coupled to the second end portion of a first of the truss arms. The fastener assembly may be configured to selectively fix the second end portion of the first truss arm in a position on the track of the rail.
In aspects, the fastener assembly may include a pair of washers disposed on opposite sides of the rail, and a fastener coupling the pair of washers to one another. The fastener may be configured to adjust a distance between the washers. At least one of the washers has a pair of first and second tabs extending therefrom. The first and second tabs may be configured for receipt in a corresponding slot defined in the rail.
In aspects, the first washer may further include a third tab extending therefrom. The third tab may be disposed in the track of the rail to guide the fastener assembly through the track.
In aspects, the solar module mounting bracket assembly may further include a protuberance protruding downwardly relative to an underside of the rail. The protuberance may extend into the channel defined by the braces when the braces are in the expanded configuration.
In aspects, each of the braces may have a concave inner surface, such that the channel cooperatively defined by the first and second braces has a circular shape.
In aspects, the solar module mounting bracket assembly may further include a plurality of coupling devices disposed on an upper side of the rail. The coupling devices may be configured to fix a solar module to the rail.
In further aspects of the present disclosure, a PV module mounting bracket assembly is provided that includes a rail, a pair of braces, a fastener, and a pair of truss arms. The rail is configured to support a PV module thereon and has a first end portion, a central portion, and a second end portion. Each of the braces includes a first end portion movably coupled to the central portion of the rail, and a second end portion. The braces are movable relative to the rail between a collapsed configuration and an expanded configuration. In the collapsed configuration, the braces are parallel with the rail, and in the expanded configuration, the braces are perpendicular to the rail and cooperatively define a channel dimensioned for receipt of a frame member. The fastener is configured to attach to the second end portion of each of the braces to fix the braces in the expanded configuration. Each of the truss arms includes a first end portion coupled to the respective second end portion of the pair of braces, and a second end portion slidably coupled to the respective first and second end portions of the rail.
Further details, advantages, and aspects of exemplary embodiments of the present disclosure are described in more detail below with reference to the appended figures.
As used herein, the terms parallel and perpendicular are understood to include relative configurations that are substantially parallel and substantially perpendicular up to about + or −30 degrees from true parallel and true perpendicular.
Embodiments of the present disclosure are described herein with reference to the accompanying drawings, wherein:
Embodiments of the presently disclosed solar module mounting bracket assemblies and methods of installing the same are described in detail with reference to the drawings, in which like reference numerals designate identical or corresponding elements in each of the several views. As described herein, the term “solar module” refers to any suitable solar panel or array of solar panels that convert energy from the sun into usable energy.
The present disclosure, in accordance with various example embodiments thereof, relates to a mounting bracket assembly for coupling one or more solar modules (e.g., PV modules) to a framework. The mounting bracket assembly has a rail for affixing the one or more PV modules thereon, and a pair of braces pivotably coupled to the rail. The braces are movable relative to the rail from a collapsed configuration to an expanded configuration. The collapsed configuration reduces the overall footprint of the mounting bracket assembly, thereby reducing packaging and shipping costs. In the expanded configuration, the braces grasp the framework (e.g., a torque tube) to fix the mounting bracket assembly and, in turn, the one or more PV modules, to the framework. The mounting bracket assembly may also include a pair of truss arms that couple to the respective braces to provide support for the braces. The truss arms are configured to collapse with the braces. These and further details of the mounting bracket assemblies will be described below.
With reference to
While not illustrated, the system 10 may include more than one torque tube 14, connected end to end and wherein each set of end to end connected torque tubes 14 are arranged in a parallel orientation with one another. Each torque tube 14 may have an array of PV modules 12 affixed thereto via a plurality of mounting bracket assemblies 100. In embodiments, two mounting bracket assemblies 100 may be utilized for coupling four PV modules 12 to the torque tube 14. It is contemplated that any suitable number of mounting bracket assemblies 100 are employed to affix any suitable number of PV modules 12 to the torque tube 14.
With reference to
With specific reference to
During assembly, with two longitudinal sides of a pair of adjacent PV modules 12 (
It is contemplated that the rail 102 may also have coupling devices in the form of flexible, hook-shaped members 134 disposed on opposing first and second end portions 102a, 102b of the rail 102. The hook-shaped members 134 are configured to snap over an end of a PV module 12 to resist movement of the PV module 12 along the longitudinal axis “X” of the rail 102.
The first end portion 102a of the rail 102 defines a first pair of linear tracks 136 in the opposing lateral side walls 114, 116 of the rail 102 (only the track 136 in the first side wall 114 is illustrated in
As best shown in
With reference to
The braces 104, 106 may each have a concave inner surface 146, 148, respectively. When the braces 104, 106 are in the expanded configuration, the concave inner surfaces 146 of the braces 104, 106 and the concave inner surface 142 of the insert 140 cooperatively define a circular channel 150 dimensioned for receipt of the torque tube 14 (
The mounting bracket assembly 100 further includes a main fastener 156, such as, for example, a nut 156a and a bolt 156b, interconnecting the second portions 104b, 106b of the first and second braces 104, 106. The main fastener 156 is configured to extend through an opening 158, 160 (
Depicted in
With continued reference to
The first end portion 108a, 110a of each of the truss arms 108, 110 is pivotable relative to the respective brace 104, 106 between an in-use or expanded configuration, as shown in
With reference to
With reference to
With specific reference to
The washers 174, 176 of the fastener assembly 170 each include a pair of first and second flanges or tabs 174a, 174b and 176a, 176b extending perpendicularly from an outer periphery thereof. The first and second tabs 174a, 174b and 176a, 176b of each of the washers 174, 176 are disposed on opposite sides of the respective washer 174, 176. The tabs 174a, 174b and 176a, 176b of the washers 174, 176 may have a squared configuration and be dimensioned for receipt in a pair of corresponding slots 180, 180b (
Upon moving the fastener assembly 170 toward the inward position, as shown in
The washers 174, 176 may further include a third flange or tab 174c extending perpendicularly from the outer periphery thereof. The third tab 174c is received in the track 136 of the first end portion 102a of the rail 102 to guide the fastener assembly 170 along the track 136. A compression tube 179 (
With respect to the compression tubes 179 depicted in
During assembly, with reference to
With the torque tube 14 captured within the channel 150 defined by the insert 140 and the braces 104, 106, the main fastener 156 is actuated to approximate the second end portions 104b, 106b of the braces 104, 106, whereby the braces 104, 106 exert an upwardly-oriented force on the torque tube 14 to drive the torque tube 14 into engagement with the protuberance 144 of the insert 140. In embodiments, the concave inner surfaces 146, 148 of the braces 104, 106 may be coated or lined with a similar material as the protuberance 144 to strengthen the frictional engagement with the torque tube 14.
As described above, when the braces 104, 106 enter the expanded configuration, the second end portion 108b, 110b of each of the truss arms 108, 110 is simultaneously moved to the inward position on the respective track 136, 138 of the rail 102. With the second end portions 108b, 110b of the truss arms 108, 110 in the inward position, the first and second tabs 174a, 174b and 176a, 176b of the washers 174, 176 of the fastener assembly 170 are disposed adjacent the slots 180a, 180b defined in the rail 102. To fix the second end portion 108b, 110b of the truss arms 108, 110 in the inward position along the respective track 136, 138, the fastener 178 of the fastener assembly 170 is actuated to drive an approximation of the washers 174, 176, whereby the tabs 174a, 174b and 176a, 176b of the washers 174, 176 are received in the corresponding slots 180a, 180b in the rail 102 to fix or lock the fastener assembly 170 to the rail 102 and, in turn, lock the second end portion 108b of the first truss arm 108 in the inward position.
At this stage, the remaining fasteners of the mounting bracket assembly 100 may be tightened to ensure that the mounting bracket assembly 100 remains fixed in the expanded or in-use configuration. The PV modules 12 are then secured to the rail 102 of the mounting bracket assembly 100 via the coupling devices 120, 134 in the manner described above.
Yet a further aspect of the present disclosure can be seen in
Finally, though generally described in connection with a rail 102 having a generally C-shaped cross-section, the present disclosure is not so limited. Rather, a variety of cross-sectional shapes may be employed without departing from the scope of the present disclosure. For example, a high hat configuration as depicted in
In embodiments, the fasteners described herein may be any suitable fastening mechanism, including, but not limited to, adhesives, hinges, clips, ties, straps, belts, tapes and/or fabric hook-and-loop fasteners.
It will be understood that various modifications may be made to the embodiments disclosed herein. Therefore, the above description should not be construed as limiting, but merely as exemplifications of various embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the claims appended thereto.
The present application is a continuation of U.S. patent application Ser. No. 16/991,585, filed on Aug. 12, 2020, which is a continuation of U.S. patent application Ser. No. 16/116,238, filed on Aug. 29, 2019, now U.S. Pat. No. 10,797,635, the entire contents of each of which is hereby incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
4089148 | Oehmsen et al. | May 1978 | A |
4148456 | Garchinsky | Apr 1979 | A |
7435897 | Russell | Oct 2008 | B2 |
8156697 | Miros et al. | Apr 2012 | B2 |
8316590 | Cusson | Nov 2012 | B2 |
8375654 | West et al. | Feb 2013 | B1 |
8413944 | Harberts et al. | Apr 2013 | B2 |
8661747 | Eide | Mar 2014 | B2 |
8875455 | Yang et al. | Nov 2014 | B1 |
9347691 | West et al. | May 2016 | B2 |
20080308091 | Corio | Dec 2008 | A1 |
20090250580 | Strizki | Oct 2009 | A1 |
20100065108 | West et al. | Mar 2010 | A1 |
20100089389 | Seery et al. | Apr 2010 | A1 |
20100236183 | Cusson et al. | Sep 2010 | A1 |
20100237029 | Cusson et al. | Sep 2010 | A1 |
20100243023 | Patton et al. | Sep 2010 | A1 |
20100269428 | Stancel et al. | Oct 2010 | A1 |
20100276558 | Faust et al. | Nov 2010 | A1 |
20100319277 | Suarez et al. | Dec 2010 | A1 |
20110000520 | West | Jan 2011 | A1 |
20110088740 | Mittan et al. | Apr 2011 | A1 |
20110214366 | Haddock et al. | Sep 2011 | A1 |
20110232212 | Pierson et al. | Sep 2011 | A1 |
20110253190 | Farnham | Oct 2011 | A1 |
20110265860 | Ciasulli et al. | Nov 2011 | A1 |
20120073220 | Kobayashi et al. | Mar 2012 | A1 |
20120152326 | West et al. | Jun 2012 | A1 |
20120175322 | Park et al. | Jul 2012 | A1 |
20120285515 | Sagayama | Nov 2012 | A1 |
20120298188 | West et al. | Nov 2012 | A1 |
20130011187 | Schuit et al. | Jan 2013 | A1 |
20130125959 | Sagayama et al. | May 2013 | A1 |
20130340358 | Danning | Dec 2013 | A1 |
20140174511 | West et al. | Jun 2014 | A1 |
20140246549 | West et al. | Sep 2014 | A1 |
20150200621 | Reed | Jul 2015 | A1 |
20160190976 | Corio | Jun 2016 | A1 |
20170359017 | Corio | Dec 2017 | A1 |
Number | Date | Country |
---|---|---|
202905734 | Apr 2013 | CN |
202905734 | Apr 2013 | CN |
2017155798 | Sep 2017 | WO |
Entry |
---|
English machine translation of CN 202905734 (Year: 2023). |
Examination Report No. 1 issued in Australian Patent Application No. 2019327491 dated Oct. 21, 2021, 4 pages. |
Extended European Search Report issued in European Patent Application No. 19855184.8 dated Apr. 8, 2022, 13 pages. |
Notice of Acceptance issued in Australian Patent Application No. 2019327491 dated Mar. 1, 2022, 4 pages. |
PCT Search Report and Written Opinion issued in PCT/US2019/048894 dated Oct. 29, 2019, 15 pages. |
First Examination Report issued in Indian Patent Application No. 202117006833 dated Aug. 29, 2022 with English translation. |
Examination Report No. 1 issued in Australian Patent Application No. 2022202289 dated Feb. 17, 2023. |
Number | Date | Country | |
---|---|---|---|
20220149772 A1 | May 2022 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16991585 | Aug 2020 | US |
Child | 17584021 | US | |
Parent | 16116238 | Aug 2018 | US |
Child | 16991585 | US |