The present invention relates to a solar panel support apparatus. It more particularly relates to such an apparatus that allows a safer and easier way to mount solar panels in an array in a more secure manner
This section describes the background art of the disclosed embodiments of the present invention. There is no intention, either express or implied, that the background art discussed in this section legally constitutes prior art.
Solar panel arrays have been constructed by installing them on purlins mounted on top of a foundation system or support structure, which may include a series of posts and other components to support the arrays high off of the ground. For example, the solar panel arrays may be mounted on top of car ports, canopies, photovoltaic structures and others. The solar panels may be connected electrically to feed the generated power to an electric power grid.
Conventional methods and systems of mounting solar panels to purlins typically employ a plurality of small individual edge clips that must be inserted in place and then driven with a tool to fasten the clips to the support structure in the field by an installer to tighten down the solar panels on the purlins. The individual edge clips are fastened in place to secure the solar panels to the support structure. This mounting process is slow and labor intensive, and thus expensive to install.
Additionally, for at least some applications, the installer must assemble four individual edge clips for each solar panel, two on each end of the panel. Thus, there are only four points of attachment to the support structure. Such a technique may not be entirely satisfactory for certain applications, such as high slope structures (e.g., 20 degrees or 30 degrees) as well as locations where there may be high winds or other harsh weather or other conditions.
For example, reference may be made to the following patents; U.S. Pat. No. 8,418,983; Germany Patent Publication No. DE202012005671; PCT Patent Publication No. WO10100376; Germany Patent Publication No. DE202009004746; U.S. Pat. No. 8,256,169; PCT Patent Publication No. WO10071085; U.S. Pat. No. 7,766,292; PCT Patent Publication No. WO11154019; PCT Patent Publication No. WO12104455; Germany Patent Publication No. DE202007012570; U.S. Patent Publication No. 2007/084504; U.S. Patent Publication No. 2012/267490; and U.S. Patent Publication No. 2012/175322. Reference is also made to the “Powers' Slide-in Solar Purlin” as shown at the website address: http://powersteel.com/solar/solar-purlin.html.
In addition, the placement of the solar panels and fastening them down by means of many separate small edge clips is conventionally done from above the array, while leaning over from a lift or standing on the rail of the lift. The installer is thus required to perform this task in a less than safe manner as compared to standing on the ground or other safe location. By undertaking the work from an elevated position in a conventional lift, the installer can fall from the lift and sustain serious injuries. Also, such an unsafe installation technique which places the installer at risk, may be a violation of governmental safety regulations such as the Occupational Safety and Health Administration federal regulations, and possibly others.
Further, when an inoperable panel requires replacement in conventional systems, the installer must again position themselves above the array in order to loosen the edge clips, take out the inoperable panel, insert a new panel, and then tighten back down each one of the edge clips. Furthermore, at least some conventional systems require that some or all of the adjacent solar panels be removed during the installation of a single new panel. Additionally, in some situations where the malfunctioning solar panel is located in the center of the array of panels, the installer may have to walk on the array of panels in a very unsafe manner to gain access to the panel to be replaced.
In order to better understand the invention and to see how the same may be carried out in practice, non-limiting preferred embodiments of the invention will now be described with reference to the accompanying drawings, in which:
Certain embodiments of the present invention will now be described more fully hereinafter with reference to the accompanying drawings, in which some, but not all, embodiments of the invention are shown. Indeed, these embodiments of the invention may be in many different forms and thus the invention should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided as illustrative examples only so that this disclosure will satisfy applicable legal requirements. Like numbers refer to like elements throughout.
It will be readily understood that the components of the embodiments as generally described and illustrated in the drawings herein, could be arranged and designed in a wide variety of different configurations. Thus, the following more detailed description of certain ones of the embodiments of the apparatus, system, components and methods of the present invention, as represented in the drawings, is not intended to limit the scope of the invention, as claimed, but is merely representative examples of one or more of the embodiment of the invention.
A support apparatus for securing a row of solar panels to a support structure may include a fastener extending between and attaching an elongated clamp rail to a purlin. The fastener has a first non-rotatable end portion. A rotatable member is connected to a second end portion of the fastener for causing, when rotated, the clamp rail to close onto upper marginal edges of the row of solar panels along a continuous line of engagement therewith to help secure the solar panels in place on the purlin.
A support apparatus for securing at least one solar panel to a support structure is constructed in accordance with another embodiment. The support apparatus may include a fastener attached at its upper end to a clamp rail in a non-rotatable manner and adapted to be installed at its lower end to a purlin. A resilient spacer holds the clamp rail open to receive a solar panel marginal edge and is compressed when rotating a rotatable member on the bottom portion of the fastener from below the solar panel to close the clamp rail onto an upper marginal edge of the at least one solar panel along a continuous line of engagement therewith.
According to another embodiment, a clamp apparatus for securing at least one solar panel to a purlin may include a fastener attached at its upper end portion to the underside of a clamp rail in a generally non-rotatable manner and having a rotatable member at its lower end portion. A resilient spacer helps to position the clamp rail in its opened position to provide a panel receiving opening above a panel receiving surface of the purlin. The resilient spacer compresses responsive to driving the rotatable member of the fastener from below the solar panel to cause the clamp rail to close and thus to engage an upper marginal edge of the at least one solar panel along a continuous line of engagement therewith, to secure it in place on the purlin.
Another embodiment relates to a support apparatus for securing at least one solar panel to a support structure. The support apparatus may include clamp apparatus for mounting above a purlin to secure the at least one solar panel on top of the purlin. The clamp apparatus includes a clamp rail and a series of fastening devices. Each fastening device includes a fastener attached at its upper end to the clamp rail in a generally non-rotatable manner and attached to an upper surface of the purlin. The fastening device further includes a rotatable member at its lower end. A resilient spacer helps to position the clamp rail in its opened position to provide a panel receiving opening above a panel receiving surface of the purlin. The resilient spacer compresses in response to driving the rotatable member of the fastener from below the solar panel to cause the clamp rail to close and thus to engage an upper marginal edge of the at least one solar panel along a continuous line of engagement therewith, to secure the at least one solar panel in place on the purlin.
Therefore, according to at least one embodiment, an installer can safely tighten down an array of solar panels from a safe position such as standing on the ground, in a quick and easy manner. Also, for some applications, the installer can also still be safely positioned in the lift (not shown) and be able to tighten from underneath the array of panels. These novel techniques eliminate, or greatly reduce the possibility of endangering the safety of the installer attempting to install conventional edge clips from unsafe heights.
According to an embodiment, there is provided approximately two fastening devices per panel along a clamp rail. The fastening devices can quickly and easily be tightened to secure the clamp rail into a continuous line of engagement with a marginal edge of either one solar panel or two adjacent solar panels. This is in sharp contrast to conventional techniques where the installer must both install and tighten four small individual clips for securing each panel in place. With the present embodiments, no installation of edge clips is required, since the support apparatus may all be assembled in the factor and not at the job site. Also, there may be only about half as many fastening manipulations required, since there are about half as many fastening devices employed per solar panel as compared to conventional edge clips. Thus, the time to assemble the solar panel array at a given job site is dramatically reduced as compared to conventional mounting techniques, and therefore the overall cost of the project is significantly reduced accordingly.
Additionally, by utilizing the solar panel support apparatus, the solar panels are held much more securely in place. According to an embodiment, a pair of clamp rails may be used to secure the opposite marginal edges of each panel along a continuous line of engagement therewith. This technique enables a much more secure attachment of the panels to the underlying purlin, as compared to single points of attachment by edge clips.
Referring now to the drawings, and more particularly to
In other embodiments, the purlins may have other shapes such as a Z-shape purlin (not shown) or any other shape that allows access to the top of the purlin from the side and/or below the purlin. Individual solar panels 18 may be installed between the clamp apparatus 50, 60 and 70 and the purlins 16. The clamp apparatus 50, 60 and 70 including the mounted solar panels 18 may be inclined at an angle to achieve maximum or at least more favorable total energy output for the entire solar panel array purlin assembly 10. This tilt angle may range from about 2 degrees to about 45 degrees, and more preferably from about 10 degrees to about 20 degrees, depending upon location and application of the solar panel system 10. One example as indicated in the drawings may be about 15 degrees as shown in the drawings.
The dimensions of one conventional type of solar panel 18 may be approximately 65 inches by about 39 inches by about 2 inches. Other types and sizes of solar panels may also be usable with the support apparatus of the present embodiments. The clamp apparatus 50, 60 and 70 may be prefabricated and preassembled of a metal material such as galvanized steel, aluminum or other suitable materials.
As shown in
The middle elongated clamp rail 20 may be a one-piece rail and may include a U-shape section 22 having a short upwardly extending flange 26 and a long downwardly extending flange 24. The flanges extend outwardly in a common plane from the top of U-shape section 22. Both the short flange 26 and a long flange 24 are designed to hold down adjacent solar panels 18 onto the top of the C-shape purlin 16 during final installation to help form an array of solar panels. The flanges 24 and 26 engage upper marginal edges of the adjacent panels along continuous lines of engagement. The U-shaped section 22 may be connected to the C-shape purlin 16 with a series of spaced apart fastening devices 28 for causing the clamp rail 20 to move into engagement with the adjacent panels 18 to secure them in substantially a common plane.
The top clamp rail 30 may include a W-shaped section 32 having a long flange 34 and a leg flange 36. The long flange 34 extends downwardly outwardly in a parallel direction to the panel engaging top surface of the purlin 18, to form one side of the W-shape portion and is designed to press downwardly against an end marginal edge of a top end solar panel 18 of a solar panel array and against the top of the C-shape purlin 16. The leg flange 36 extends downwardly to form the other side of the W-shaped portion and serves to stabilize the clamp rail 20 when it is closed against the panel 18 as shown. The W-shaped section 32 may be connected to the C-shaped purlin 16 with a series of spaced apart fastening devices 28. During final installation, the leg flange 36 is designed to press against the panel engaging upper surface of the C-shape purlin 16 as the fastening device 28 is being tightened from below such that the long flange 34 is forced downward against an upper marginal edge of the solar panel 18 along a continuous line of engagement therewith.
In another embodiment (not shown), the fastening device 28 may be reversed so that the nut 48 is captured within the bottom of the U-shape section 22 and the bolt 41 having a head 49 may be a rotatable member disposed below the C-shape purlin 16. In this embodiment, the nut 48 is designed to be captured so as not to substantially rotate while tightening, when rotating the bolt 41 from below the solar panels. Thus the bold head may be rotated from the ground or other safe location to close the clamp device onto the margin edge of at least one solar panel.
As best seen in
After a solar panel 18 is installed on either or both sides of the fastening device 28, the bolt 48 is tightened by an installer from below the solar panel while standing on the ground or other safe location, to force the middle clamp rail 20 downwardly thus compressing the resilient sleeve 53 until the solar panel 18 is held firmly in place.
Similarly, a top clamp rail apparatus and a bottom clamp rail apparatus may include W-shaped sections and a fastening device 28 that may connect a W-shaped section 32 and a W-shaped section 42 respectively to a C-shape purlin. Also, the C-shaped purlin or other similar purlin (not shown) may be designed to permit easy accessed to the rotatable member such as the bolt 48 by a suitable conventional tool (not shown) used by an installer.
Next, as shown in
As shown in
As shown in
In this embodiment, the fastening device further includes a stop in the form of a rigid sleeve 45 that surrounds telescopically resilient sleeve 53. The rigid sleeve may be made of a rigid material such as PVC pipe or other suitable rigid load bearing material. After a solar panel 18 is installed on either or both sides of the fastening device 28, nut 42 may be tightened from below by an installer from through opening 47 in the C-shape purlin 16 which forces the middle clamp rail 20 downward thus compressing the resilient sleeve 53 onto the upper marginal edge or edges of solar panel 18. In this embodiment, the downward motion of the middle clamp rail 20 is stopped when contacting the rigid sleeve 45.
The rigid sleeve 45 is designed to provide additional stability to the clamp rail apparatus 31. This embodiment of the clamp rail apparatus 31 may be employed as shown in
Referring now to
Referring now to
Referring now to
Although the invention has been described with reference to the above examples, it will be understood that many modifications and variations are contemplated within the true spirit and scope of the embodiments as disclosed herein. Many modifications and other embodiments will come to mind to one skilled in the art to which the invention pertains having the benefit of the teachings presented in the foregoing descriptions and the associated drawings. Therefore, it is to be understood that the invention shall not be limited in any way to the specific embodiments disclosed herein or modifications thereof, and that modifications and other embodiments are intended and contemplated to be included within the scope of the appended claims. Although specific terms are employed herein, they are used in a generic and descriptive sense only and not for purposes of limitation.
The present patent application is related to U.S. patent application entitled SOLAR PANEL MOUNTING METHODS, filed Jan. 2, 2014, and assigned application Ser. No. ______, which is incorporated herein by reference as if set forth herein in its entirety.