The present disclosure generally relates to solar powered lighting devices. More particularly, the present disclosure include solar-powered lighting devices comprising an electronic cord with one or more lights.
Lighting in certain environments may be limited or difficult due to the availability of electricity. While solar power can provide a useful alternative, devices powered by solar energy often are not portable and/or provide one source of light, limited to one area.
Solar-powered lighting devices and related methods are disclosed herein. According to at least one example, the lighting device comprises a housing including a first section coupled to a second section, the first section including a solar panel coupled to an outer surface of the first section, the lighting device further comprising an electronic cord extending from the housing. For example, the housing may comprise a rechargeable battery operably coupled to the solar panel; a microprocessor operably coupled to the rechargeable battery; and a user interface configured to receive user input and transmit the user input to the microprocessor. The electronic cord may be operably coupled to the rechargeable battery, wherein the electronic cord is flexible and includes at least one light-emitting diode (LED) disposed along a length of the electronic cord, wherein the microprocessor is configured to control at least one operating mode of the LED of the electronic cord based on the user input. According to some aspects of the present disclosure, the microprocessor is configured to control a plurality of operating modes of the lighting device based on the user input, the plurality of operating modes including at least two operating modes of a plurality of LEDs of the electronic cord.
The lighting devices herein may further comprise at least one LED integrated into the housing and configured to emit light outside the housing, optionally wherein the microprocessor is configured control the LED of the housing independent of controlling the LED of the electronic cord. The electronic cord may comprise a plurality of nodes, each node containing at least one LED, e.g., optionally two or more LEDs. In the case of multiple LEDs, the LEDs may face in the same direction or a different direction from each other.
The housing of the lighting device may define a groove for receiving the electronic cord, e.g., in a wrapped configuration. In some examples, the electronic cord comprises braided wire and/or has a length of at least 6 feet, such as 6 feet to 50 feet, or 12 feet to 30 feet, e.g., 18 feet. The housing may have a first, closed configuration and a second, open configuration, the housing being movable between the first and second configurations by moving the first section relative to the second section. The housing may optionally include a third section coupled to the first section, wherein the first and third sections are movable (e.g., rotatable) relative to the second section. Thus, for example, rotating the first and third sections, e.g., as a unit, relative to the second section may move the housing between the first and second configurations for accessing the electronic cord. In at least one example, the first section of the housing is separated from, or coupled to, the second section by a spring. Tension in the spring may bias the first and second sections apart.
The present disclosure also includes a solar-powered lighting device comprising a housing including a first section coupled to a second section, the first section including a solar panel coupled to an outer surface of the first section, the housing further comprising a rechargeable battery operably coupled to the solar panel; a microprocessor operably coupled to the rechargeable battery; a user interface configured to receive user input and transmit the user input to the microprocessor; and a battery indicator operably coupled to the rechargeable battery. The lighting device further comprises an electronic cord coupled to the housing and operably coupled to the rechargeable battery. The electronic cord may be flexible and/or may include a plurality of nodes disposed along a length of the electronic cord, each node containing at least one light-emitting diode (LED). The microprocessor of the lighting device may be configured to control at least one operating mode of the LEDs of the electronic cord based on the user input, e.g., received at the user interface of the housing. Exemplary operating modes include changing an intensity of the LEDs, a wavelength of the LEDs, or both. For example, the at least one operating mode may include at least two operating modes, wherein a first selection of the user interface turns on the LEDs, and second selection of the user interface increases an intensity of the LEDs. Optionally the LEDs may be RGB (multi-color) LEDs, wherein the at least one operating mode includes changing a color of one or more of the LEDs.
The present disclosure also includes a solar-powered lighting device comprising a housing including a first section, a second section, and a third section, the housing being operably coupled to an electronic cord. The first section of the housing may include a solar panel coupled to an outer surface of the first section, and the first and third sections may be movable (e.g., rotatable) relative to the second section. The housing may further comprise a rechargeable battery operably coupled to the solar panel; a microprocessor operably coupled to the rechargeable battery; a user interface configured to receive user input and transmit the user input to the microprocessor; and a battery indicator operably coupled to the rechargeable battery. The electronic cord may be operably coupled to the rechargeable battery, wherein the electronic cord is flexible and includes a plurality of nodes disposed along a length of the electronic cord, each node containing at least one light-emitting diode (LED), wherein the microprocessor is configured to control at least one operating mode of the LEDs of the electronic cord based on the user input.
According to at least one example, the electronic cord comprises a plurality of nodes, and each node contains at least two LEDs that face in different directions. Additionally or alternatively, the housing may defines a groove for receiving the electronic cord, the electronic cord having a length of, e.g., 10 feet to 30 feet. The housing may have a first, closed configuration and a second, open configuration, the housing being movable between the first and second configurations by moving the first section relative to the second section. Optionally, an end of the electronic cord includes an electronic connector compatible with an external electronic device, or a clip, hook, or other attachment.
Any of the exemplary devices herein (including the examples above) may include more than one electronic cord, e.g., two, three, or more electronic cords. Such electronic cord(s) may be fixedly attached to the housing, e.g., fixed to an interior component of the lighting device, or may be detachable from the housing, e.g., via an electronic connector. For example, the electronic cord(s) may be mounted to an electronic component, such as a printed circuit board (PCB) assembly, or may be operably coupled to such electronic component via an electronic connector. Further, any of the exemplary devices herein (including the examples above) may include a handle or other type of support element, e.g., to facilitate hanging the device from a structure and/or to facilitate standing the device on a floor, table top, or other structure.
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate various exemplary embodiments and together with the description, serve to explain the principles of the disclosed embodiments.
Embodiments of the present disclosure include portable, solar-powered lighting devices that include one or more light sources that may be arranged in different configurations. For example, light sources of the devices herein may be coupled together via a cord, e.g., allowing for the lighting devices to be arranged in different configurations and/or the light sources to be hung from various structures, similar to string lights. The lighting devices herein may include a housing that includes at least one solar panel arranged on an exterior-facing surface, the solar panel(s) being operably coupled to a power source, e.g., one or more rechargeable batteries. The devices herein may be suitable for indoor and/or outdoor use.
An exemplary lighting device 100 is illustrated in
As shown, the housing 102 includes a first (upper) section 106, a second (lower) section 108, and a third section 104 therebetween forming one or more side walls between the first and second sections 106, 108. In some exemplary devices, the housing 102 may be cylindrical in shape, as illustrated in
Each component of the housing, e.g., sections 106, 108, 104 may comprise a polymer, e.g., a thermoplastic polymer such as acrylonitrile butadiene styrene (ABS), thermoplastic polyurethane (TPU) or other thermoplastic elastomer (TPE), or combinations thereof. In some examples herein, the housing 102 may include one or more designs or markings. For example, the housing 102 may bear a design, such as a logo, integrated with, painted on, attached to, embossed from, or engraved in the material of the housing 102.
With reference again to
The handle 115 may be permanently attached to the housing 102. For example, as shown in
Further referring to
The solar panel 105 may comprise any suitable materials for generating electricity. For example, the solar panel 105 may comprise silicon, e.g., monocrystalline or polycrystalline silicon. The solar panel 105 may be coupled to a support material, such as polycarbonate or other plastic or polymer. In some examples, the solar panel 105 is mounted to a circuit board (see
The surface of the solar panel 105 may be at least partially covered by a material for protection, wherein the material allows sunlight to pass therethrough for generating electricity. For example, the solar panel(s) 105 may be covered by a transparent film that allows natural and/or artificial light to pass therethrough to be received by the solar panel 105. For example, the solar panel 105 may be covered by a transparent or substantially transparent polymer (e.g., plastic) material, such as clear polyvinyl chloride (PVC). The cover may be integrated with housing 102, such that the film is flush with the surface of the first wall 106.
The lighting device 100 may comprise one or more rechargeable batteries 140 operably coupled to the solar panel 105 in order to store electricity generated by the solar panel 105. Exemplary batteries 140 useful for the devices herein include, but are not limited to, lithium-ion batteries, including lithium-ion polymer and lithium nickel manganese cobalt oxide (NMC). Each rechargeable battery 140 may generate a voltage from about 2V to about 5V, such as from about 3V to about 4V, e.g., a voltage of about 3.2V, about 3.5V, about 3.7V, or about 4.0V. Each battery 140 may have a capacity of about 500 mAh to about 2500 mAh, e.g., a capacity up to at least 2000 mAh. For example, the each battery 140 may have a capacity of about 500 mAh, about 750 mAh, about 1000 mAh, about 1250 mAh, about 1500 mAh, about 1750 mAh, or about 2000 mAh. The battery 140 may have a capacity up to at least 2000 mAh, such as a capacity of about 500 mAh, about 750 mAh, about 1000 mAh, about 1250 mAh, about 1500 mAh, about 1750 mAh, about 2000 mAh, about 2250 mAh, or about 2500 mAh. For example, the capacity of the battery 140 may be sufficient to charge an external electronic device such as a mobile phone or tablet device. In at least one example, the lighting device 100 comprises at least one 2000 mAh or 2500 mAh battery, such as a 200 mAh 3.7V lithium ion polymer battery In at least one example, the lighting device 100 comprises two 2500 mAh batteries, forming a 5000 mAh power cell.
The rechargeable battery 140 may provide sufficient power for illuminating LEDs of the lighting device for at least 12 hours, at least 15 hours, or at least 20 hours on a low setting (15 lumens), e.g., from 6 hours to 24 hours, or from 16 hours to 20 hours. The solar panel 105 may allow for recharging the battery 140 in less than 24 hours in direct sunlight, such as less than 18 hours, less than 14 hours, less than 12 hours, or less than 8 hours, e.g., from 6 hours to 18 hours, or from 12 hours to 14 hours in direct sunlight.
Two or more electronic components may be coupled together in an electronics assembly, e.g., via a circuit board, such as a printed circuit board (PCB). For example, the lighting device 100 may include a PCB assembly 130 that includes or is otherwise operably coupled to one or more solar panels, rechargeable batteries, light sources, processors/microprocessors, transceivers, current regulators, and/or electronic connectors.
The lighting device 100 also includes at least one base light 110 and a plurality of indicator lights 116 mounted to the PCB assembly 130 (see
The indicator lights 116 are coupled to a battery indicator 114 (which also may be in the form of a button or switch), which when selected by a user, provides information regarding the amount of power remaining in the lighting device 100. That is, selecting the battery indicator 114 may cause all of the indicator lights 116 to illuminate in the case of a fully charged battery 140, some of the indicator lights 116 in the case of a partially charged battery 140, and none of the indicator lights 116 in the case of a battery 140 without charge.
The user interface 112 and battery indicator 114 may be integrated into a portion of the housing 102 such as the first section 106, the second section 108, the third section 106, or between the first and third sections 106, 104 (as shown in
In addition to controlling the base light 110, the user interface 112 may be used to control different operating modes of other light sources (e.g., light sources 185 of cord 170). For example, the PCB assembly 130 may include one or more microprocessors configured to control different operating modes of the lighting device 100, described below. In some examples, the PCB assembly 130 may include a transceiver configured to receive data from an external electronic device, such as, e.g., a mobile device, for initiating or altering different operating modes. The transceiver may communicate with the external electronic device using Near Field Communication (NFC), Bluetooth, WiFi, or infrared signals.
The lighting device 100 may include one or more electronic connectors to allow for transfer of power between the lighting device 100 and an external electronic device. Exemplary electronic connectors include, but are not limited to, universal serial bus (USB) and USB-like connectors (USB-A, USB-B, USB-C, micro-USB, etc.), Thunderbolt connectors, and Lightning connectors (e.g., for electronic devices manufactured by Apple Inc.). Each electronic connector may be a male or female connector.
In some examples, the housing 102 may include one or more electronic connectors 118. As mentioned above, the rechargeable battery 140 may have sufficient capacity to charge an external electronic device such as a mobile phone or tablet device, among other types of electronic devices. Similarly, the electronic connector 118 may be used to charge the battery 140 from an external power source. For example, the electronic connector 118 may recharge the battery 140 in less than 12 hours, less than 8 hours, or less than 6 hours, e.g., from 2 to 10 hours, or 6 to 8 hours. While the lighting device 100 is shown with one electronic connector 118, the devices herein may include a plurality of electronic connectors, e.g., two or more electronic connectors (see, e.g., discussion below regarding electronic connector 175 of lighting device 100, and the device features shown in
According to some aspects of the present disclosure, the lighting device 100 may further include one or more sensors, e.g., coupled to the PCB assembly 130. The sensors may be configured to detect environmental conditions such as the presence or absence of ambient light, the amount of ambient light, the time of day, and/or ambient temperature. The sensor(s) may communicate with the PCB assembly 130 in order to initiate or change an operating mode of the lighting device 100, e.g., via instructions programmed in a microprocessor.
As mentioned above, the lighting device 100 includes a cord 170, e.g., an electronic cable or wire, coupled to the housing 102. In some examples, the cord 170 includes braided wire. The cord 170 optionally may include an outer covering, such as a polymeric or fabric sheath. While only one cord 170 is shown in the example of
The cord 170 includes at least one node 180, wherein each node contains at least one light source 185, such as an LED. In some examples, the cord 170 includes a plurality of nodes 180 arranged along the length of the cord 170, e.g., at regular intervals. The cord 170 optionally may include one or more clips 190 to assist with securing the cord 170 for storage.
According to some aspects of the present disclosure, the cord 170 may be 1 foot to 30 feet or more in length, e.g., 2-20 feet, 5-10 feet, 15-30 feet, e.g., 12 feet, 15 feet, 18 feet, 20 feet, 22 feet, 25 feet, 28 feet, or 30 feet. Further, for example, the cord 170 may include two or more nodes 180, e.g., 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 25, 30, 40, or 50 or more nodes, disposed along the length of the cord 170. Each node 180 may include one, two, or three of more LEDs 185. Thus, for example, the cord 170 may include from one LED 185 (in cases of one node 180 with one LED 185) to 150 or more LEDs 185 (in cases of three or more LEDs per node). In some examples, the cord 170 includes 5 to 50 LEDs, such as 10 to 30 LEDs, 20 to 25 LEDs, 40 to 50 LEDs, or 25 to 35 LEDs. When the node 180 contains more than one LED, the LEDs may face in the same direction or different directions. For example, the node 180 may contain two LEDs 185 facing in opposite directions, away from the cord 170.
Each node 180 may include a housing that comprises a transparent or translucent material allowing light generated by the LEDs 185 to pass therethrough. The material may be clear or colored and/or the housing may be frosted or have a texture to allow for diffusion of light. Exemplary materials for the housing include, but are not limited to, rigid polymers such as ABS. The node 180 may have any suitable shape, including, for example, ellipsoidal, e.g., pill shaped, spherical, cylindrical, conical, trapezoidal, cuboidal, or other polygonal shapes. The housing of each node 180 may be a single piece or may be formed from two or more pieces coupled together.
Reference is also made to
Referring again to
In some examples, a first end 171 of the cord 170 may be fixedly attached to an interior portion of the housing 102, wherein the housing 102 includes a slot 172 (between the third section 104 and the second section 108) through which the cord 170 extends. The cord 170 is operably coupled to the rechargeable battery 140 and the solar panel 105, such that power stored within the battery 140 can be used to power the light sources 185. For example, the first end 171 of the cord 170 (see
The opposite, free end of the cord 170 optionally may include an electronic connector 175, which may include any of the features of the electronic connector 118 of the housing 102. For example, the electronic connector 175 may be a USB-type connector or port, such as USB 2.0, USB 3.0, USB-C, or micro-USB, or another type of connector compatible with electronic devices, e.g., Thunderbolt or Lightning. The electronic connector 175 may provide the ability to charge the battery of an external electronic device, e.g., a portable device such as a smartphone or tablet, from the lighting device 100.
The housing 102 may be movable between a first configuration and a second configuration to allow a user to access the cord 170 stored within the housing 102. For example, the lighting device 100 may have a first, closed configuration as illustrated in
The housing 102 may define a space for storing the cord 170. That is, a user may place the cord 170 within the housing 102 to facilitate storing the lighting device 100 when not in use. As shown in
The cord 170 may be manually wrapped around the cylindrical structure 120 and/or a motor may be used to automatically retract and/or advance the cord 170. For example, the housing 102 may contain a motor coupled to a proximal portion of the cord 170, such that, as the motor turns, the proximal portion of the cord 170 rotates so as to cause the cord 170 to wrap (and/or unwrap) around the cylindrical structure 120 automatically. In such cases, the lighting device may include an actuator to initiate and terminate the motor.
As illustrated in
The cylindrical structure 120 of the second section 108 of the housing 230 includes one or more slots 126. The third section 104 of the housing 102 includes a cylindrical structure 128 having a projection corresponding to each slot 126. For example, the lighting device 100 may include two projections for two slots 126, three projections for three slots 126, four projections for four slots 126, etc. A spring 160 biases the second and third sections 108, 104 apart. Pressing the third section 104 towards the second section 106 (compressing the spring 160) while rotating the third section 104 relative to the second section 108 allows the projections to engage with the slots 126. For example, each slot 126 may be L-shaped having a horizontal leg and a vertical leg, such that pressing the housing sections 104, 108 together engages each projection first with the vertical leg of each slot 126. Then, rotating the third section 104 relative to the second section 108 moves each projection along the horizontal leg of each slot 126 to lock the housing 102 in the closed configuration. Rotating the third section 104 relative to the second section 108 in the opposite direction disengages the projections from the slots 126. Due to the tension of the spring 160, the third section 104 moves away from the second section 108, such that the housing 102 is in the open configuration.
According to some examples, the lighting device 100 may include one or more pairs of magnets 150, e.g., to assist in moving the housing 102 between the first configuration and the second configuration. When the housing 102 is in the first (closed) configuration, pairs of magnets 150 may be aligned and attracted together so as to help secure the housing sections together. Rotating the third section 104 relative to the second section 108 may cause the pair(s) of magnets 150 to rotate out of alignment.
As mentioned above, user input may be used to initiate and transition between various operating modes of the lighting device 100. For example, selections inputted via the user interface 112 may control the LED(s) 110 of the housing 102, the LED(s) 185 of the cord 170 and/or other functions of the lighting device 100. A microprocessor of the PCB assembly 130 operably coupled to the user interface 112 may be configured to control the LEDs and/or other electronic components of the lighting device. Any of the operating modes of U.S. Pat. No. 9,080,736, incorporated by reference herein, may be used in the present disclosure.
For example, a first section via the user interface 112 (e.g., pressing a button or actuating a switch) may initiate a first operating mode, a second selection may initiate a second operating mode, and an nth selection may initiate an nth operating mode. Additionally or alternatively, a transceiver may receive data wirelessly, e.g., from the Internet and/or via Bluetooth technology, and transmit the data to a microprocessor of the PCB assembly 130 for initiating different operating modes of the lighting device 100. The lighting device 100 may be provided with hardware and/or processing devices for implementing Z-wave, X-10, Insteon, Zigbee, C-Bus, EnOcean, KNX, and/or UPB home automation standards, e.g., for control using a smartphone, television, touchscreen, voice control, or any other desired user interface, such as part of a home automation or other internet of things (IOT) system.
With respect to controlling the LEDs, each operating mode may include different intensity settings (e.g., off/on, low brightness, medium brightness, high brightness), different color settings (e.g., changing or cycling between different colors of light), timed on/off sequences, and the like. For example, the LEDs may be operated a different levels of intensity, such as low (such as about 20-40 lumens, e.g., 15 lumens), medium (such as about 50-75 lumens, e.g., 55 lumens), high (such as about 75-150 lumens, e.g., 100 or more lumens).
For example, a first operating mode may include illuminating the base light 110, without illuminating the LEDs 185 of the cord 170. A second operating mode may include illuminating the LEDs 185 at a low intensity setting (with or without illuminating the base light 110), a third operating mode may include increasing the intensity of the LEDs 185 to a medium setting, and a fourth operating mode may include increasing the intensity of the LEDs 185 to a high setting. Additional or alternative operating modes may result in blinking or flickering of the LEDs 185, among other on/off sequences or patterns of the LEDs 185. In some examples, the lighting device 100 may be configured to cycle through two or more different operating modes.
The operating modes, e.g., algorithms or protocols, may be stored on the PCB assembly 130. For example, a microprocessor of the PCB assembly 130 may be configured to control at least one operating mode or a plurality of operating modes, e.g., 2, 3, 4, 5, or 6 or more different operating modes. Additionally or alternatively, instructions for one or more operating modes may be stored on other electronic components, such as a control circuit contained within one or more nodes 180 of the cord 170, or as part of a sensor or other electronic component(s) of the lighting device 100, such as a speaker (see
Referring to
In some examples, the extensions 282 may be configured to pivot such that the extensions 282 are transverse to the cord 270 in use (as illustrated in
The lighting device 300 of
For example,
The lighting device 320 of
As mentioned above, the lighting devices herein may be configured to generate sound. For example,
Exemplary operating modes audio-enable devices such as lighting device 500 may include generating such sounds as white noise, babbling brook, wind, lightning storm, bird sounds, crickets, waterfall, rainfall, crashing waves, and/or other ambient sounds that may be associated with an urban, residential, or rural location. Further, for example, the lighting device 500 may be configured to play music, e.g., via an integrated audio player such as an MP3 player and/or by connecting the lighting device 500 to an audio device. Various operating modes of the lighting device 500 may combine light and sound. For example, the lighting device 500 may be configured to modify light output from base light 510 (and/or LEDs of a cord coupled to the housing 502, such as LEDs 185 of cord 170), according to the sound and/or rhythm of music generated and/or detected by the lighting device 500.
The lighting devices herein may be configured to be coupled together in use, e.g., in a modular fashion.
The lighting devices 400a, 400b may be configured to be stacked upon one another. In some examples, the second section 408 may include a shape and/or mating elements complementary to the shape or mating elements of the first section 404 to facilitate assembling the lighting devices 400a, 400b together. In some cases, assembling the lighting devices 400a, 400b together may provide for electronic connection between the two, allowing for the devices 400a, 400b to be controlled simultaneous via a single user interface of one of the lighting devices 400a or 400b. for example, user input to the housing of one lighting device 400a may cause LEDs of the other lighting device 400b to illuminate. In this way, a user may selectively couple together a plurality of lighting devices for integrated control, synchronized powering on, synchronized powering off, synchronized color changes, synchronized flickering, and so on. Additional examples of modular lighting devices are illustrated in
Another exemplary lighting device 600 according to the present disclosure is illustrated in
The cord 670 is coupled to the housing via an electronic connector 672 (and corresponding electronic connector or port of the housing) to allow a user to selectively attach and detach the cord 670. That is one end of the cord 670 includes the electronic connector 672. In this way, the user may exchange different types and configurations of cords (including, e.g., the types of cords shown in
The lighting devices 700a, 700b may be coupled together by any suitable mechanism.
The stacked configuration of
As depicted in the exploded view of
The first section 806 also includes two electronic connectors 818 and a cover 819 with a shape and dimensions suitable for covering both electronic connectors when not in use. Both electronic connectors may be mounted to or otherwise coupled to the PCB assembly 830 to allow for the transfer of power to and/or from other electronic components of the lighting device 800, including rechargeable batteries 840. Thus, as discussed in connection to lighting device 100, the electronic connectors 818 may allow for charging an external electronic device such as a mobile phone or tablet device from power provided by the batteries 840 and/or the batteries 840 may be recharged via the electronic connectors 818 from an external power source.
The electronic connectors 818 additionally or alternatively may be used to provide power to a cord 870 with light sources, such as LEDs 885.
As mentioned above, the lighting devices herein may be configured to connect to multiple cords.
The cords 970 are connected to the housing 902 at regularly-spaced intervals, e.g., six cords 970 spaced 60 degrees apart. In other examples, the lighting device 900 may include more or fewer cords 970 spaced at different angles. One end of each cord 970 is attached to the housing 902, e.g., via a permanent or detachable connection, which may be similar to any of the mechanisms by which cords are attached to housings described elsewhere herein. For example, the cords 970 may include electronic connectors received within corresponding electronic connectors (or ports) of the housing, or the cords 970 may be fixedly attached to an interior portion of the housing (e.g., the ends mounted to the PCB assembly 930). The opposite free end of each cord 970 is shown configured as a loop, e.g., to allow for hanging the lighting device 900 to various structures and/or attaching the cords 970 to other structures or devices.
The outward-facing surface of the second section 908 of the housing 902 defines a plurality of sockets 924, each socket having a shape complementary to the shape of the nodes 980 of the cords 970. Thus, each node 980 may be disposed within a corresponding socket 924, e.g., to facilitate storage of the lighting device 900 when not in use.
Yet another exemplary lighting device 1000 in accordance with the principles herein is depicted in
The lighting device 1000 also includes a PCB assembly 1030 with solar panel 1005 mounted thereto. One or more rechargeable batteries (not shown) may be mounted to the opposite side of the PCB assembly 1030 or otherwise coupled to the solar panel 1005, e.g., the batteries being accommodated in a cavity defined by the second section 1004 of the housing. The first section 1006 includes a user element 1012, a battery indicator 1014, and indicator lights 1016, which may be similar to corresponding features of other devices described herein. The lighting device 1000 further includes at least one electronic connector 1018 and optionally a corresponding cover 1019 (two electronic connectors 1018 and covers 1019 shown in
The housing in this example differs from some previous examples herein, in that the first and third sections 1006, 1004 are configured to pivot as a unit relative to the third section 1008. As shown, the lower surface of the third section 1004 includes a projection 1028 having a size and shape complementary to a receptacle 1020 of the third section 1008, such that the projection 1028 is received within, and movable within, the receptacle 1020. The connection between the projection 1028 and the receptacle 1020 may be mechanical, such that a user can rotate the first and third sections 1006, 1004 manually, or the connection may be electronic, such that the user can move the first and third sections 1006, 1004 electronically. For example, in the case of the electronic connection, the user may initiate an operating mode via the user element 1012 to cause the first and third section 1006, 1004 to rotate as a unit relative to the third section 1008. The pivoting motion may allow a user may position the first and third sections 1006, 1004 so that the solar panel 1005 is aimed towards the sun for charging.
The lighting device 1000 also include a cord 1070, which may include any of the features of the cords described above. As shown in
Any features disclosed herein in connection with one embodiment or example may be combined with any other embodiments or examples. Other embodiments and examples of the present disclosure will be apparent to those skilled in the art from consideration of the specification and practice of the principles disclosed herein. It is intended that the specification and examples be considered as exemplary only, with a true scope and spirit of the disclosure indicated by the following claims.
This application claims priority to U.S. Provisional Application No. 62/626,959 filed on Feb. 6, 2018, and U.S. Provisional Application No. 62/660,698 filed on Apr. 20, 2018, each of which is incorporated by reference herein in its entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2019/016660 | 2/5/2019 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
62626959 | Feb 2018 | US | |
62660698 | Apr 2018 | US |