The present invention relates to solar-powered lights, and more particularly to a solar lighting system that is portable and can be secured at outdoor gears such as outdoor umbrellas and tents.
Recently, solar energy becomes more and more popular to convert sunlight into other types of energy such as electricity and heat. Solar power is advantageous in situations where other power sources are unavailable because solar energy can be collected during the daytime via solar panels and the collected energy can be used to power other devices during the nighttime. In some situations, the solar cell can directly power a device, but it is more common to have the solar cell charged and maintain an energy storage device.
An LED (light-emitting diodes) lamp is a type of solid-state lighting that utilizes LEDs as a source of illumination. Recently, the use of LEDs for various lighting purposes has increased because LEDs have a very long lifespan (at least 100,000 hours), compared with common incandescent and fluorescent sources. Also, with newer doping techniques, LEDs are becoming increasingly efficient, and colored LED sources currently available may consume an order of magnitude less power than incandescent bulbs of equivalent light output. Because of these advantages, LEDs have been widely used in solar lighting devices in recent years.
Solar lighting devices can be disposed at some outdoor gears. U.S. Pat. No. 6,837,255 to Bunch et al. discloses an illuminated umbrella assembly having self-contained and protected lights. More specifically, Bunch et al. discloses an illuminated umbrella assembly that has a removable lighting protected from damage by being internally placed within the umbrella assembly. Also, the lighting is powered by solar panels disposed on the umbrella, as shown in
U.S. Pub. No. 2005/0254228 to Li discloses an outdoors umbrella which incorporates with a solar lighting system for providing illumination utilizing solar energy as an external energy source, as shown in
U.S. Pat. No. 7,497,583 to Ma also discloses a light provider for an umbrella and stand assembly. More specifically, Ma discloses a portable, multi-purpose lighting device which can be easily fastened to, as well as un-fastened from, a pole-like object such as an umbrella stand, and without the trouble of having an electrical cord hanging undesirably from it. A plurality of solar panels are disposed near the post of the umbrella, as shown in
Therefore, there remains a need for a new and improved solar lighting system that is indeed portable, light weight, and easy to transfer to other outdoor gears to overcome the problems stated above.
It is an object of the present invention to provide a solar lighting system that is indeed portable, light weight, and easy to transfer to other outdoor gears such as outdoor umbrellas and tents.
It is another object of the present invention to provide a solar lighting system that can be divided into at least two portions, and these two portions can be tightly coupled with each other due to strong magnetic force therebetween.
It is a further object of the present invention to provide a solar lighting system that can be securely fixed at any fabric, wherein one portion of the solar lighting system is disposed at one side of the fabric, while the other portion is disposed at the other side of the fabric, and these two portions can be tightly coupled with each other due to strong magnetic force therebetween.
It is still a further object of the present invention to provide a solar lighting system in which the electrodes can be used to poke through the fabric to further secure the lighting system thereon.
In one aspect, a solar lighting apparatus may include a controlling portion and an energy collecting portion. The controlling portion has a button on top of the controlling portion and a switch located on one side thereof. A plurality of lights are arranged in the button and in one embodiment, these lights are LED lights. The energy collecting portion has a solar panel to absorb sunlight during the daytime at the bottom surface thereof, and the solar energy can be converted to charge the batteries to further power the lights.
In another embodiment, the solar lighting apparatus also has an alignment groove that may include a first groove and a second groove, located at the controlling portion and energy collecting portion respectively. In a further embodiment, a first magnetic may be embedded near the first conjugating surface of the controlling portion, while a second magnetic is embedded at the second conjugating surface of the energy collecting portion, and a strong magnetic force is thus generated to bring together the controlling and energy collecting portions. It is noted that the strongest magnetic force between the controlling and energy collecting portions may be generated when the first groove and the second groove are aligned to form the alignment groove to bring these two portions together. On the other hand, when the first groove and the second groove are not well-aligned, the magnetic force between the controlling portion and the energy collecting portion becomes much weaker, and these two portions cannot be properly coupled to form the solar lighting apparatus.
In a further embodiment, the solar lighting apparatus also includes a conducting portion, from which the solar energy collected from the solar panel can be converted to charge the batteries. The conducting portion may include a pair of electrodes and a pair of receiving holes having corresponding electrodes. When the controlling portion and the energy collecting portion are aligned and brought together within a predetermined distance, the electrodes that are initially hidden inside the controlling portion would be attracted out from the controlling portion by the magnetic force to plug into the receiving holes. Under such circumstances, an energy conversion circuit is formed, so the solar energy collected by the solar panel can be converted to charge the batteries through the conducting portion.
In still a further embodiment, if the connection between the electrodes and receiving holes are somewhat improper, the user can force the electrodes to plug into the receiving holes by pressing the button on the controlling portion. Likewise, once the energy conversion circuit is formed, the solar energy collected by the solar panel can be converted to charge the batteries through the conducting portion, and further power the lights.
In an exemplary embodiment, the solar lighting apparatus can be fixed on a piece of covering fabric of a tent, on which the energy collecting portion is disposed outside (the tent) to receiving sunlight during the daytime, while the controlling portion is disposed inside (the tent) to illuminate the tent during the nighttime. More particularly, the second conjugating surface would face an outer surface of the covering fabric, while the first conjugating surface would face an inner surface thereof, and the covering fabric would be disposed between the controlling portion and energy collecting portion when they are tightly coupled by the magnetic force therebetween. Furthermore, the electrode can poke through the covering fabric of the tent to further secure the solar lighting apparatus thereon. In other words, the solar lighting apparatus is actually clipped on the covering fabric of the tent. With this arrangement, the campers can leave the solar lighting apparatus on the tent during the daytime as long as they desire, and enjoy the illumination during the nighttime. The solar lighting apparatus can be fixed on other outdoor gears such as outdoor umbrellas.
In another aspect, a method for attaching a solar lighting system to an outdoor gear may include steps of separating the solar lighting system into two portions: a controlling portion and an energy collecting portion, wherein the controlling portion has a first conjugating surface and a button with a plurality of lights, while the energy collecting portion has a second conjugating surface and a solar panel; disposing the energy collecting portion on one side of a fabric material of the outdoor gear, wherein the solar panel of the energy collecting portion faces the sunlight, while the second conjugating surface thereof is facing the fabric material; disposing the controlling portion on the other side of the fabric material, wherein the first conjugating surface faces the second conjugating surface; and integrating the controlling portion and energy collecting portion to form the solar lighting system on the fabric material of the outdoor gear.
The detailed description set forth below is intended as a description of the presently exemplary device provided in accordance with aspects of the present invention and is not intended to represent the only forms in which the present invention may be prepared or utilized. It is to be understood, rather, that the same or equivalent functions and components may be accomplished by different embodiments that are also intended to be encompassed within the spirit and scope of the invention.
Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood to one of ordinary skill in the art to which this invention belongs. Although any methods, devices and materials similar or equivalent to those described can be used in the practice or testing of the invention, the exemplary methods, devices and materials are now described.
All publications mentioned are incorporated by reference for the purpose of describing and disclosing, for example, the designs and methodologies that are described in the publications that might be used in connection with the presently described invention. The publications listed or discussed above, below and throughout the text are provided solely for their disclosure prior to the filing date of the present application. Nothing herein is to be construed as an admission that the inventors are not entitled to antedate such disclosure by virtue of prior invention.
In order to further understand the goal, characteristics and effect of the present invention, a number of embodiments along with the drawings are illustrated as following:
Referring to
As shown in
In an exemplary embodiment shown in
In another embodiment illustrated in
In still an exemplary embodiment shown in
In another aspect, a method for attaching a solar lighting system to a substrate 500 may include steps of separating the solar lighting system into two portions: a controlling portion and an energy collecting portion 510, wherein the controlling portion has a first conjugating surface, a button with a plurality of lights, and electrodes hidden therein, while the energy collecting portion has a second conjugating surface and a solar panel; disposing the energy collecting portion on one side of the substrate 520, wherein the solar panel of the energy collecting portion faces the sunlight, while the second conjugating surface thereof is facing the substrate; disposing the controlling portion on the other side of the substrate 530, wherein the first conjugating surface faces the second conjugating surface; and integrating the controlling portion and energy collecting portion to form the solar lighting system on the substrate 540.
In one embodiment, the step of integrating the controlling portion and energy collecting portion to form the solar lighting system 540 may include steps of utilizing magnetic force generated between the controlling portion and energy collecting portion to tightly bind these two portions 541; and arranging the electrodes on the controlling portion to poke through the substrate to clip the solar system thereon 542. In an exemplary embodiment, the substrate is a covering fabric of an outdoor gear including a tent, an outdoor umbrella or the like.
Having described the invention by the description and illustrations above, it should be understood that these are exemplary of the invention and are not to be considered as limiting. Accordingly, the invention is not to be considered as limited by the foregoing description, but includes any equivalent.