The present invention provides a device that provides the wearer a personal zone of cooling effect. Specifically, a headwear is provided that incorporates a stabilizing and aerating platform to house and support an array of photo-voltaic cells that in turn power strategically placed and positionable personal variable speed fans. The present invention also anticipates and counters the power decreases typically encountered by photo-voltaic cells when operating in elevated temperatures. The present invention also provides dual modality of use to provide a smaller photo-voltaic cell array in situations where a sacrifice in power is an acceptable trade off for a smaller footprint.
For centuries, mankind has looked to provide solutions to personal overheating. Modern air conditioning is quite sophisticated, but is only applicable in confined quarters such as an office, a home or a car. Moreover, despite its efficiencies, modern air conditioning still requires significant power consumption.
Hand held fans have been utilized for ages. Any large leaf or other flat, lightweight surface could suffice. Expanding paper or silk hand fans became popular for their ease of carrying and instantly unfolding into a suitable surface for the user to waft back and forth.
The earliest electric fans were introduced in around the 1880's. The first such fans were essentially a blade attached to an electric motor. These early fans were dangerous and expensive and generally had exposed blades and motors. Thereafter, motors were encased and fan cages appeared, but these fans were very cumbersome. As technology increased, fans became smaller, more efficient and provided design improvements, such as oscillation.
The present invention provides a personal cooling fan powered by solar energy in a dual configuration such that when a wearer is exposed to full sun and heat in an open environment, full capacity is achieved with a front facing adjustable and positionable fan powered by a front photo-voltaic cell array and a rear facing adjustable and positionable fan powered by a rear photo-voltaic cell array. The rear photo-voltaic cell array can also power an auxiliary smaller fan that cools the entirety of the photo-voltaic cells to maintain optimal efficiency. In environments where size is a concern, such as for example, in outdoor sporting events, graduations, concerts and the like, the present invention provides an alternative configuration wherein the rear platform and photo-voltaic cell array can disengage and slide underneath the front platform area to effectively curtail the footprint almost in half. The snake-like arms that connect the fan assemblies can be positioned down and out of the way leaving only the front portion of the headwear to cool the front area of the wearer, which in situations such as these, should be adequate. These advantages of maximizing efficiency of the solar power, providing flexibility of the fan arrays and dual modality of footprint have not heretofore been taught or suggested by the prior art
Inventors have attempted to provide headwear incorporating personal fan cooling. For example, U.S. Pat. No. 4,893,356 titled, AIR CONDITIONED HEADWEAR HAVING CONVERTIBLE POWER MODULE which issued Jan. 16, 1990 discloses “headwear, including all forms of caps, hats, hard hats, visor type caps, to include a switchable power module capable of converting an electric motor driven air moving means from battery power to solar power wherein the solar power is removable.”
In another example, U.S. Pat. No. 4,672,968 titled, HEADWEAR WITH BUILT-IN COOLING MEANS which issued Jun. 16, 1987 discloses, “[a] headpiece with two built-in fan units for cooling the face and back of the neck of a surgeon while he or she is performing surgery. Each of the fan units has a fan blade mounted perpendicularly within a cylindrical housing in close tolerance with the inner wall of the housing and includes an electric motor having a drive shaft to which the fan blade is attached. The motor and fan blade assembly is supported by vanes interconnecting it with the cylindrical housing which extend radially outwardly from the axis of the assembly. The headpiece has a frame that fits a wearer's head like a hat and supports the two fan units, one in front and the other in back of the frame. The frame also supports a power source for the two fan motors and other components of circuitry which permit adjustment of the speed of each motor for optimum cooling effect. The fan units are pivotally mounted and manually adjustable to different angular positions for control of the direction of airflow in front and back of the wearer's head.”
In another example, U.S. Pat. No. 4,680,815 titled, SOLAR POWERED HEADWEAR FAN which issued Jul. 21, 1987 discloses, “[a] self contained personal cooling device. It is a one-piece modular component which is pre-wired and interchangeable between different hats. The components of the modular unit are employed in the unit to effect total body cooling by evaporation and forced convection. The unit is powered by photo-voltaic energy. The cooling effect of this modular device is maximized by incorporating air vent slots adjacent to the fan motor assembly to increase the force of air delivery.”
In another example, U.S. Pat. No. 4,551,857 titled, HOT WEATHER HAT which issued Nov. 12, 1985 discloses, “[a] hot weather hat having a solar-powered Peltier-effect thermoelectric device mounted to a headpiece such that the cold surface of the thermoelectric device is in communication with the forehead of the wearer and the hot surface of the thermoelectric device is in communication with ambient atmospheric air. A thermally conductive strip provides conductive heat transport between the forehead and the cold surface. A finned radiator provides radiative and convective heat transport between the hot surface and ambient air.”
In another example, U.S. Pat. No. 7,290,292 titled, COMBINED SOLAR POWERED FAN AND HAT ARRANGEMENT FOR MAXIMIZING AIRFLOW THROUGH THE HAT which issued Nov. 6, 2007 discloses “an apparatus includes a hat including a unitary brim that is provided with spaced inner and outer edges defining a slope traveling downwardly and outwardly towards the outer edge. The hat further includes a raised head region including a pair of spaced and coextensive apex regions and a trough intercalated therebetween. The hat has an oblong opening disposed at the rear of the head region for allowing air to flow outwardly from the head region at a rate equal to at least twice an inlet air flow rate. A motorized fan is mounted to a front side of the head region and subjacent to the trough. Solar panels are connected to a top surface of the brim. A sleeve is formed along an interior surface of the hat that extends from the solar panels and is connected to the fan for housing electrical leads coupled thereto.
In another example, U.S. Pat. No. 6,032,291 titled, SOLAR POWERED HEAD COOLING DEVICE which issued Mar. 7, 2000 discloses, “an apparatus for providing solar powered air circulation to the face and upper body of the user. A means for mounting photoelectric cells to the apex of the top of a hat is provided which cells are connected by wire to a directionally selective fan which is located under the brim of the hat. The fan receives air transmitted through a conduit under the brim of the hat which has its air inlets on the lateral edges of the brim of the hat. The fan is also provided with a horizontally movable axle means whereby it is partially rotatable in the horizontal axis to selectively distribute the air. An alternative embodiment is provided wherein the components of the present invention are assembled into a modular semi-flexible frame which can be attached to an existing favorite cap by means of hook and loop material thereby providing a portable cooling unit which can be easily attached to various hats
In another example, U.S. Pat. No. 8,480,365 titled, CAP HAVING PIVOTBLY MOVABLE FAN which issued Jul. 9, 2013 discloses, “[an] article of headwear having a body with a hole extending completely through bottom and top surfaces thereof and a cooling device mounted to the article of headwear. The cooling device is mounted via a mounting ring received at the hole which mounts the cooling device to the body at the through hole to permit selective manipulation of the cooling device about a horizontal axis in a range between 0 to 360 degrees relative to the headwear body and the mounting ring.”
There remains, therefore an unmet need for a device that provides power through optimized photo-voltaic cells to an independent and manipulable fan array such that the wearer has complete control over fan speed and positioning to provide ultimate cooling effects. Moreover, by providing a mounting surface and airflow and an optional third fan for additional cooling to the photo-voltaic cell surface, efficiency is optimized such that the solar power provides sufficient energy to power the entire array of cooling fans. Additionally, a dual modality is provided for instances where a sacrifice in power is an acceptable trade-off for a smaller footprint.
The present invention provides a solution to the unmet need, by providing a device comprising:
In one embodiment, the device of the present invention contains at least two repositionable fan and motor assemblies wherein one such assembly is mounted in a manner such that it can be positioned to easily fan the front of the wearer and another such assembly is mounted in a manner such that it can be positioned to easily fan the rear of the wearer.
In one embodiment, the device of the present invention further comprises a fan and motor assembly mounted such that it can be positioned to fan the photo-voltaic cell array to further cool the photo-voltaic cell array.
In one embodiment, the stabilizing mounting platform is mounted to the top of the headwear with at least one, and preferably three to five support struts to provide a minimum clearance of ½ inch of space between the headwear and the underside of the platform. One of skill in the art will appreciate that the space clearance is designed to provide air flow around the mounting platform to which the photo-voltaic cells are attached such that the temperature of such cells is minimized. Depending on the curvature of the headwear, the size of the mounting platform, the size of the actual photo-voltaic cell array implemented and the ambient conditions, such as ambient wind speed and temperature, such desired clearance may preferably vary anywhere from 1/64th inch to 1 inch.
In one embodiment, the headwear could comprise a helmet of the style of a typical bicycle helmet. In an alternative embodiment, the headwear could comprise a baseball cap. In an alternative embodiment, the headwear could comprise any hat, cap, helmet or other head covering suitable to mounting a platform capable of attaching a photo-voltaic cell array and at least one personal cooling fan and motor assembly and the electronic circuitry required to harness the power of the photo-voltaic cell array and power the motor(s) of the personal cooling fan and motor assembly(s).
In one embodiment, the at least one personal cooling fan and motor assembly is attached to the headwear by way of a flexible snake like mounting arm with a sufficient hollow core to pass through the required electronic cabling to conduit the power generated by the photo-voltaic cell array to the motor of the personal cooling fan and motor assembly.
In one embodiment, the at least one personal cooling fan and motor assembly is attached directly to the stabilizing support platform by way of a flexible snake like mounting arm with a sufficient hollow core to pass through the required electronic cabling to conduit the power generated by the photo-voltaic cell array to the motor of the personal cooling fan and motor assembly. In an alternate embodiment, the least one personal cooling fan and motor assembly is attached directly to tabs incorporated into either the stabilizing support platform or the photo-voltaic cell array that is attached to the stabilizing support platform.
In one embodiment, the photo-voltaic cell array will be constructed from a light color material to minimize temperature and increase efficiency.
In one embodiment, the stabilizing mounting platform is five inches square. In another embodiment, the stabilizing platform is any size capable of supporting a side by side photo-voltaic cell array. For example, if a side by side photo-voltaic cell array is approximately 18 inches by 14 inches in a fully extended state, then it is preferable that the stabilizing support platform be 12 inches by 8 inches such that no more than 3 inches of photo-voltaic cell array overhangs the stabilizing support platform on any side.
In one embodiment, the stabilizing platform further comprises tabs to support and connect any of the personal cooling fan and motor assemblies and/or the smaller fan and motor assembly that cools the photo-voltaic cell array.
In one embodiment, the photo-voltaic cell array is eighteen inches square. In an alternative embodiment, the photo-voltaic cell array is of sufficient size to generate enough power to power the number of accessories attached in a given configuration. In one embodiment, the photo-voltaic cell array comprises a side by side array, and a front area and a rear area, the front area powering the front personal cooling fan assembly and the rear area powering the rear mounted cooling fan assemblies. Each side by side array is configured in a series of two by five photo-voltaic each connected in series and parallel with three by two cells attached to the front area of the support platform and two by two cells attached to the rear part of the support platform, each area connected but separable such that each area is capable of powering the fans in its respective areas and the rear area is capable of shutting off in certain circumstances while the front area remains operational. In this embodiment, the rear part of the platform is then capable of disengaging and sliding underneath the front portion when desired as described elsewhere herein. In this embodiment, when the rear platform is disengaged and slid underneath the front area, the front area connections are then completed to maintain circuitry integrity.
In one embodiment, both the stabilizing mounting platform and the attached photo-voltaic cell array further comprise a corresponding longitudinal hinge approximately centered such that the device can be folded for easy storage. In such an embodiment, the supporting struts are attached with a pivoting mechanism to allow the folding and the headwear either has a corresponding hinge to also fold or can be constructed from a collapsible material. In one embodiment, only the photo-voltaic cell array structure is hinged and folded while maintaining its attachment to the solid stabilizing mounting platform. This allows the entire device to have a smaller footprint for easy transportation.
In one embodiment, the photo-voltaic cell array is constructed in two side by side arrays wherein the rear part of the platform is capable of disengaging and sliding under the front part and out of the way when circumstances warrant, such as when full power is not required or when a sacrifice of power is a proper tradeoff for a smaller size.
In one embodiment, the side by side arrays of photo-voltaic cells are connected in series and parallel configurations.
In one embodiment, the personal cooling fan and motor assemblies are attached directly to the headwear.
In an alternative embodiment, the personal cooling fan and motor assemblies are attached to the stabilizing mounting platform.
In an alternative embodiment, the personal cooling fan and motor assemblies are attached either to the headwear directly and/or to the stabilizing mounting platform.
In an alternative embodiment, a rechargeable electric storage cell is provided to store charge gathered by the photo-voltaic cell array such that the device may be utilized in less than fully illuminated circumstances.
In one embodiment, the motor of the personal fan and motor assembly is a shunt wound DC powered motor.
In one embodiment, where the device comprises a photo-voltaic cell array cooling fan and motor assembly, such assembly is smaller than the personal cooling fan and motor assemblies. Additionally, this photo-voltaic cell array cooling fan and motor assembly is controlled by a capillary type thermostat calibrated to respond to extremely hot conditions of 80° F. or more which, when arriving at such predetermined temperature, the thermostat causes a switch to close which turns on this auxiliary photo-voltaic cell array cooling fan and motor assembly. In one embodiment, the preferred activation temperature may be 90° or slightly higher. The auxiliary cooling fan assembly is designed to cool the photo-voltaic cell array by 20° lower than ambient temperature. Where the photo-voltaic cell array maximum temperature is in the 110° to 115° area, then the preferred temperature to start the auxiliary fan would be 90° to 95°.
In one embodiment, any attached cooling fan and motor assembly may have a variable control speed rheostat switch such that the wearer may control whether any attached fan is on or off and at minimum to maximum speeds.
In one embodiment, various sections of the photo-voltaic cell array may generate power exclusively for any one fan and motor assembly. It may be desirable for the front personal cooling fan and motor assembly to have full capacity capability whether or not the user cares that the back personal cooling fan and motor assembly may be impacted by the concurrent use of the auxiliary photo-voltaic cell cooling fan and motor assembly.
In one embodiment, commercial, light-colored photo-voltaic cells approximately 3 to 3½ inches square will be connected in series to increase voltage output and then in parallel to increase current flow when mounted to the stabilizing mounting platform.
In one embodiment, a section of the photo-voltaic cell array may slide under the remaining sections to decrease the size of the exposed photo-voltaic cell array for use when conditions do not require maximum energy and size of the overall device is desired to be minimized.
In one embodiment, more than one section of the photo-voltaic cell array may slide under the remaining sections to further decrease the overall size.
In one embodiment, where sections of the photo-voltaic cell array slide under other sections of the photo-voltaic cell array, the sections are arranged on tracks that contain circuitry to maintain the integrity of the series and/or parallel electronic connections.
For clarity of disclosure, and not by way of limitation, the detailed description of the invention is divided into the following subsections that describe or illustrate certain features, embodiments or applications of the present invention.
“Photo-voltaic cell” as used herein means a device that converts the energy of light directly into electricity by the photo voltaic effect through the absorption of light generating either electron-hole pairs or excitons, the separation of charge carriers of opposite types and the separate extraction of those charge carriers to an external circuit.
“Cooling fan and motor assembly” as used herein means any self contained propelled fan blade assembly powered by an electric motor capable of being powered by electric charge generated by a photo-voltaic cell.
One embodiment of the device of the present invention comprises:
In one embodiment, the device of the present invention utilizes commercially available photo-voltaic cells of 3.3 inches square and arranges them on a dual platform in two 5×2 rows, one such 5×2 array on the one side of the platform and the second such 5×2 array on the other side of the platform.
In this embodiment, the front three of the 5×2 array is separate from the rear two or the 5×2 array such that the when the rear part of the platform disengages and slides underneath the front portion in a drawer like fashion, the rear portions of the side by side photo voltaic cell arrays are taken off line. The front powering array powers the front fan and the rear powering array powers the back fan and any other auxiliary fan, such as the smaller photo-voltaic cell array cooling fan, if present. However, when the rear portion of the platform is disengaged, the rear and auxiliary fans are then disengaged from power and are inoperative. In this embodiment, the front area array circuitry is completed via a circuit engagement. However, the size of the overall platform is substantially reduced to almost half of its original size configuration.
In the open position, where there are two 5×2 cell arrays made from 3.3 inch square individual photo-voltaic cells, the platform is approximately 17 to 18 inches by 14 to 14½ inches. When in the closed position, the latter dimension is reduced to 10 inches or less.
Each 3.3 inch square photo-voltaic cell individually is capable of producing 0.60 volts at 2 amps for a power output of 1.2 watts. When connected in parallel and series, the total output from 10 cells is thus 12 watts which is sufficient to fully operate a personal shunt wound dc motor cooling fan assembly.
The front powering photo-voltaic cell array attached to the front part of the platform is always exposed and connected to the front personal cooling fan and motor assembly and is always on line. The rear powering photo-voltaic cell array attached to the rear part of the platform is only operational in the open position. When in the open position, it is kept open with a spring loaded latch that operates to catch the top of the front platform and preventing the rear platform from sliding. When the closed position is desired, the spring loaded catch is depressed releasing the rear platform, which can then slide into its drawer underneath the front platform on rollers and a second spring loaded catch secures the rear platform in place in the closed position. In the closed position, the photo-voltaic cell array on the rear platform is disengaged from the circuitry and can no longer power the rear and/or auxiliary cooling fan assemblies.
In a preferred embodiment, the device of the present invention utilizes a stabile headwear, such as with a typical bicycle helmet with aerating vents and of a suitable material to enable a stabilizing support platform, photo-voltaic cell array and cooling fans to be attached and manipulated.
In a preferred embodiment, there are two separate photo-voltaic cell arrays in a side by side configuration attached to both a front platform and a rear platform, such that the rear platform is capable of disengaging and sliding underneath the front platform. The front platform will have twelve 3.3 inch square individual photo-voltaic cells arranged in a double 3×2 array and connected in series and parallel and the rear platform will have eight 3.3 inch square individual photo-voltaic cells arranged in a double 2×2 array and connected in series and parallel to generate a total of 12 watts of power. One side is connected to one front facing personal cooling fan and motor assembly with a rheostat control switch to adjust the speed of the fan. The other side is connected to a rear personal cooling fan and motor assembly and a smaller device cooling fan and motor assembly. However, in situations where space is at a premium, such as a public event, and movement is at a minimum, again such as when seated at a public event, it may be desirable to only operate the front fan and save space by sliding the rear platform into the closed position as described elsewhere herein. By doing so, the rear photo-voltaic cells become disengaged from the overall circuitry and no longer generates power. The connected rear facing and auxiliary fans become disengaged.
In a preferred embodiment, when the rear platform is open and the device is fully powered and operational, the smaller fan assembly that cools the photo-voltaic cell platforms to maximize power generated therefrom, is controlled by a capillary style thermostat switch such that that fan is only operational above a certain programmable temperature. All of the fans may have on/off switches and/or rheostat speed controls for ultimate user control.
In a preferred embodiment, the photo-voltaic cell array will contain rounded edges and soft corners to insure that anyone coming in contact with the device of the present invention will not be injured by sharp corners or edges. Additionally, the entire edge of the device of the present invention may contain a soft material such as a neoprene or rubber or foam or foam-like material to further soften and cushion any contact with its edges.
Each and every feature described herein, and each and every combination of two or more of such features, is included within the scope of the present invention provided that the features included in such a combination are not mutually exclusive.
This application claims priority to Provisional U.S. Patent Application Ser. No. 62/025,293 filed Jul. 16, 2014.
Number | Name | Date | Kind |
---|---|---|---|
3881198 | Waters | May 1975 | A |
4149903 | Lindmayer | Apr 1979 | A |
4321912 | Larsen | Mar 1982 | A |
4551857 | Galvin | Nov 1985 | A |
4568521 | Spector | Feb 1986 | A |
4596083 | Thompson | Jun 1986 | A |
4672968 | Lenox | Jun 1987 | A |
4680815 | Hirsch | Jul 1987 | A |
4824013 | Gouldey | Apr 1989 | A |
4827534 | Haugen | May 1989 | A |
4858627 | Netschert | Aug 1989 | A |
4893356 | Waters | Jan 1990 | A |
RE33286 | Waters | Aug 1990 | E |
5029342 | Stein | Jul 1991 | A |
5088127 | Thornock | Feb 1992 | A |
5250265 | Kawaguchi | Oct 1993 | A |
5425620 | Stroud | Jun 1995 | A |
5433259 | Faludy | Jul 1995 | A |
5541816 | Miserendino | Jul 1996 | A |
5561862 | Flores, Sr. | Oct 1996 | A |
5711033 | Green | Jan 1998 | A |
5785280 | Baghdasarian | Jul 1998 | A |
5855692 | Kaji | Jan 1999 | A |
6032291 | Asenguah | Mar 2000 | A |
6081929 | Rothrock | Jul 2000 | A |
6115846 | Truesdale | Sep 2000 | A |
6406168 | Whiting | Jun 2002 | B1 |
6476311 | Lee | Nov 2002 | B1 |
6515217 | Aylaian | Feb 2003 | B1 |
6711748 | Paris | Mar 2004 | B2 |
6760925 | Maxwell | Jul 2004 | B1 |
6870089 | Gray | Mar 2005 | B1 |
6932150 | Yeh | Aug 2005 | B1 |
7003353 | Parkhouse | Feb 2006 | B1 |
7026541 | Heidrich | Apr 2006 | B2 |
7143451 | Lundgren | Dec 2006 | B2 |
7290292 | Nellon | Nov 2007 | B1 |
7331064 | Quintal | Feb 2008 | B1 |
7721349 | Strauss | May 2010 | B1 |
8156570 | Hockaday | Apr 2012 | B1 |
8230685 | Lin | Jul 2012 | B2 |
8234722 | VanDerWoude | Aug 2012 | B2 |
8336113 | Uttrachi | Dec 2012 | B2 |
8410748 | Wilson | Apr 2013 | B2 |
8480365 | Ochoa | Jul 2013 | B2 |
8757831 | Waters | Jun 2014 | B2 |
20050058317 | Montgomery | Mar 2005 | A1 |
20080130272 | Waters | Jun 2008 | A1 |
20080196758 | McGuire | Aug 2008 | A1 |
20080222777 | Schneider | Sep 2008 | A1 |
20090089917 | Chen | Apr 2009 | A1 |
20090126076 | Ochoa | May 2009 | A1 |
20110146751 | McGuire | Jun 2011 | A1 |
20110162690 | Workman | Jul 2011 | A1 |
20110216529 | Weng | Sep 2011 | A1 |
20110231977 | Rupnick | Sep 2011 | A1 |
20110259393 | Lai | Oct 2011 | A1 |
20110272001 | Li | Nov 2011 | A1 |
20110286620 | Flynn | Nov 2011 | A1 |
20110318197 | Huber | Dec 2011 | A1 |
20120073623 | Jones | Mar 2012 | A1 |
20130033852 | Liao | Feb 2013 | A1 |
20130160195 | Clement | Jun 2013 | A1 |
20130285595 | Eaton, Jr. | Oct 2013 | A1 |
20140210609 | Yang | Jul 2014 | A1 |
20140224302 | Keenihan | Aug 2014 | A1 |
20140230114 | Wilson, Jr. | Aug 2014 | A1 |
20140238044 | Lau | Aug 2014 | A1 |
20140332058 | Hong | Nov 2014 | A1 |
20150027511 | Jang | Jan 2015 | A1 |
20150059825 | Swatek | Mar 2015 | A1 |
20150136201 | Mariotto | May 2015 | A1 |
20150143612 | Noble | May 2015 | A1 |
20150143613 | Chu | May 2015 | A1 |
20150365047 | Swatek | Dec 2015 | A1 |
20160015113 | Plain | Jan 2016 | A1 |
20160065126 | Felgemacher | Mar 2016 | A1 |
20160106174 | Chung | Apr 2016 | A1 |
Number | Date | Country | |
---|---|---|---|
20160015113 A1 | Jan 2016 | US |
Number | Date | Country | |
---|---|---|---|
62025293 | Jul 2014 | US |