Concentrated solar power systems concentrate sunlight before converting the light into useful power. The sunlight is concentrated typically using parabolic dish reflectors or lenses that are automatically positioned based on the location of the sun. At the location of concentration, power conversion units collect the power thermally or via photovoltaic converters.
A connector 10 is used to affix solar receiver 19 to a surface that is or can be exposed to sunlight. For example, the surface can be a rooftop of a building, a surface area on the ground, or a surface of a mobile device that can be moved into sunlight. A support pillar 11 is part of a base support structure that attaches connector 10 to frame 12. Frame 12 can be rotated an axis of support pillar 11 allowing positioning of the receiver modules 15 with respect to the sun to be optimized for capture of solar energy. Fluid flowing through transport pipes 14 is heated by receiver modules 15.
A solar tracker 24 monitors a position of the sun to allow for optimal positioning of receiver module 15 for efficient collection of solar energy. Module linkage 35 links each receiver module 15 to frame 12 and allows each receiver module 15 to pivot around its axis of rotation 13. Elevation motion motor 36 and associated motion mechanisms controls rotation of each receiver module 15 around its axis of rotation 13.
An assembly 21 is used to control rotation of frame 12 around an axis of rotation 37. A motion motor and mechanism 23 controls rotation of frame 12 around an axis of support pillar 11.
Solar receivers 43 utilize energy in the concentrated light to heat fluid from transport pipes 14 through solar receivers 43. Solar receivers 43 also convert the concentrated light to electricity via a concentrated photovoltaic (CPV) receiver included as part of each solar receiver 43.
A receiver interface plate 75 is attached to receiver body 76 by fasteners 77, which, for example, may be screws, bolts, clamps, rivets or some other type of fastener.
A CPV cell 72 is placed on receiver interface plate 75 and partially surrounded by a cathode interface plate 73. Electricity generated by CPV cell 72 passes through a wire 74 attached to cathode interface plate 73 and through a wire 78 connected to receiver interface plate 75.
Receiver interface plate 75 functions as an anode interface for CPV cell 72 and as a thermal conductor to conduct heat from CPV cell 72 to fluid flowing in a passage 83 between inlet 71 and outlet 81. A peninsula 82 within solar receiver 43 results in passage 83 being narrowed. The size of peninsula 82 is selected so that heat is efficiently transferred to the liquid with a minimum of pressure drop. For example, fluid flow through solar receiver 43 is selected so that operating temperatures of solar receiver 43 are below 100 degrees Celsius.
A CPV cell 103 is placed on solar receiver 64 and partially surrounded by a cathode interface plate 105. Electricity generated by CPV cell 103 passes through a wire attached to cathode interface plate 105 and through a wire 78 connected to a body 100 of solar receiver 64. An area 104 demarks a focal area of concentrated sunlight reflected from reflector 41 shown in
Body 100 of solar receiver 64 functions as an anode interface for CPV cell 103 and as a thermal conductor to conduct heat from CPV cell 103 to fluid flowing in a passage 107 between inlet 101 and outlet 102. For example, body 100 is a copper pipe, or some other type of pipe, which has been squeezed so that passage 107 is narrowed. Fluid flow through 107 is selected so that heat is efficiently transferred to the liquid with a minimum of pressure drop. For example, fluid flow through solar receiver 64 is selected so that operating temperatures of solar receiver 64 are below 100 degrees Celsius when the fluid is water.
Solar receiver 64 provides a relatively inexpensive way to heat water while at the same time generating electricity vial CPV cell 103. Water running through copper pipes is heated by heat generated when running through narrowed passages near the location of a CPV cell. Concentrated light at the location of the CPV cell results in electrical current produced by the CPV cell and thermal energy being transferred to the water flowing through the narrowed passages.
The foregoing discussion discloses and describes merely exemplary methods and implementations. As will be understood by those familiar with the art, the disclosed subject matter may be embodied in other specific forms without departing from the spirit or characteristics thereof. Accordingly, the present disclosure is intended to be illustrative, but not limiting, of the scope of the invention, which is set forth in the following claims.