This disclosure is generally related to photovoltaic (or “PV”) tiles. More specifically, this disclosure is related to photovoltaic roof tiles free of a back encapsulate layer.
In residential and commercial solar energy installations, a building's roof typically is installed with photovoltaic (PV) modules, also called PV or solar panels, that can include a two-dimensional array (e.g., 6×12) of solar cells. A PV roof tile (or solar roof tile) can be a particular type of PV module offering weather protection for the home and a pleasing aesthetic appearance, while also functioning as a PV module to convert solar energy to electricity. The PV roof tile can be shaped like a conventional roof tile and can include one or more solar cells encapsulated between a front cover and a back cover, but typically encloses fewer solar cells than a conventional solar panel.
The front and back covers can be fortified glass or other material that can protect the PV cells from the weather elements. Note that a typical roof tile may have a dimension of 15 in×8 in=120 in2=774 cm2, and a typical solar cell may have a dimension of 6 in×6 in=36 in2=232 cm2. Similar to a conventional PV panel, the PV roof tile can include two encapsulant layers, a front encapsulant layer between the front cover and the solar cells and a back encapsulant layer between the back cover and the solar cells. A lamination process can seal the solar cells between the front and back covers.
One embodiment can provide a photovoltaic roof tile. The photovoltaic roof tile can include a front glass cover, a back glass cover, a plurality of photovoltaic structures positioned between the front and back glass covers, and a single encapsulant layer positioned between the front glass cover and the photovoltaic structures. A surface of the photovoltaic structures is in direct contact with the back glass cover.
In a variation on this embodiment, a respective photovoltaic structure can include a first edge busbar positioned near an edge of a first surface and a second edge busbar positioned near an opposite edge of a second surface, and the plurality of photovoltaic structures can be arranged in such a way that the first edge busbar of a first photovoltaic structure overlaps the second edge busbar of an adjacent photovoltaic structure, thereby resulting in the plurality of photovoltaic structures forming a serially coupled string.
In a further variation, the photovoltaic roof tile can further include a bridge electrode configured to couple to an edge busbar of the serially coupled string.
In a variation on this embodiment, the back glass cover can further include a glass substrate and a pre-laid circuit electrically coupled to the plurality of photovoltaic structures. The pre-laid circuit can include a plurality of metallic strips that are attached to and in direct contact with the glass substrate.
In a further variation, the plurality of metallic strips can be deposited on the glass substrate using a metallization technique selected from a group consisting of: screen printing, electroplating, evaporation, and sputtering.
In a further variation, the pre-laid circuit can be configured to facilitate an in-series or in-parallel electrical coupling between the photovoltaic roof tile and an adjacent photovoltaic roof tile.
One embodiment can provide a photovoltaic roof tile module. The photovoltaic roof tile module can include a plurality of photovoltaic roof tiles mechanically and electrically coupled to each other. A respective photovoltaic roof tile can include a front glass cover, a back glass cover, a plurality of photovoltaic structures positioned between the front and back glass covers, and a single encapsulant layer positioned between the front glass cover and the photovoltaic structures. A surface of the photovoltaic structures is in direct contact with the back glass cover.
One embodiment can provide a method for fabricating a photovoltaic roof tile. The fabrication method can include obtaining a back glass cover; obtaining a cascaded string of photovoltaic structures; placing the cascaded string directly on the back glass cover so that a surface of the cascaded string is in direct contact with the back glass cover; placing an encapsulant layer and a front glass cover on top of the cascaded string; and performing a lamination operation to laminate together the front glass cover, the cascaded string, and the back glass cover.
A “solar cell” or “cell” is a photovoltaic structure capable of converting light into electricity. A cell may have any size and any shape, and may be created from a variety of materials. For example, a solar cell may be a photovoltaic structure fabricated on a silicon wafer or one or more thin films on a substrate material (e.g., glass, plastic, or any other material capable of supporting the photovoltaic structure), or a combination thereof.
A “solar cell strip,” “photovoltaic strip,” “smaller cell,” or “strip” is a portion or segment of a photovoltaic structure, such as a solar cell. A photovoltaic structure may be divided into a number of strips. A strip may have any shape and any size. The width and length of a strip may be the same or different from each other. Strips may be formed by further dividing a previously divided strip.
“Finger lines,” “finger electrodes,” and “fingers” refer to elongated, electrically conductive (e.g., metallic) electrodes of a photovoltaic structure for collecting carriers.
“Busbar,” “bus line,” or “bus electrode” refer to elongated, electrically conductive (e.g., metallic) electrodes of a photovoltaic structure for aggregating current collected by two or more finger lines. A busbar is usually wider than a finger line, and can be deposited or otherwise positioned anywhere on or within the photovoltaic structure. A single photovoltaic structure may have one or more busbars.
A “photovoltaic structure” can refer to a solar cell, a segment, or a solar cell strip. A photovoltaic structure is not limited to a device fabricated by a particular method. For example, a photovoltaic structure can be a crystalline silicon-based solar cell, a thin film solar cell, an amorphous silicon-based solar cell, a polycrystalline silicon-based solar cell, or a strip thereof.
In the figures, like reference numerals refer to the same figure elements.
The following description is presented to enable any person skilled in the art to make and use the embodiments, and is provided in the context of a particular application and its requirements. Various modifications to the disclosed embodiments will be readily apparent to those skilled in the art, and the general principles defined herein may be applied to other embodiments and applications without departing from the spirit and scope of the present disclosure. Thus, the disclosed system is not limited to the embodiments shown, but is to be accorded the widest scope consistent with the principles and features disclosed herein.
Overview
Embodiments of the invention solve at least the technical problem of enabling low-cost fabrication of solar roof tiles or tile modules. More specifically, a novel solar roof tile can include only a single encapsulant layer that is positioned between the front cover of the tile and photovoltaic strips. The back surface of the photovoltaic strips can be in direct contact with the back cover, and the front surface of the photovoltaic strips can be covered by the single encapsulant layer, which can also cover areas of the back cover not covered by the photovoltaic strips. After lamination, the single encapsulant layer can seal the photovoltaic strips between the front and back covers by filling empty spaces between the front and back covers of the solar roof tile.
PV Roof Tiles and Multi-Tile Modules
A PV roof tile (or solar roof tile) is a type of PV module shaped like a roof tile and typically enclosing fewer solar cells than a conventional solar panel. Note that such PV roof tiles can function as both PV cells and roof tiles at the same time. PV roof tiles and modules are described in more detail in U.S. Provisional Patent Application No. 62/465,694, Attorney Docket No. P357-1PUS, entitled “SYSTEM AND METHOD FOR PACKAGING PHOTOVOLTAIC ROOF TILES” filed Mar. 1, 2017, which is incorporated herein by reference. In some embodiments, the system disclosed herein can be applied to PV roof tiles and/or other types of PV module.
A PV roof tile can enclose multiple solar cells or PV structures, and a respective PV structure can include one or more electrodes, such as busbars and finger lines. The PV structures within a PV roof tile can be electrically and, optionally, mechanically coupled to each other. For example, multiple PV structures can be electrically coupled together by a metallic tab, via their respective busbars, to create serial or parallel connections. Moreover, electrical connections can be made between two adjacent tiles, so that a number of PV roof tiles can jointly provide electrical power.
To facilitate more scalable production and easier installation, multiple photovoltaic roof tiles can be fabricated together, while the tiles are linked in a rigid or semi-rigid way.
It is possible to use a single piece of glass as glass cover 420. In one embodiment, grooves 422 and 424 can be made on glass cover 420, so that the appearance of three separate roof tiles can be achieved. It is also possible to use three separate pieces of glass to cover the six cells, which are laid out on a common backsheet. In this case, gaps 422 and 424 can be sealed with an encapsulant material, establishing a semi-rigid coupling between adjacent tiles. Prefabricating multiple tiles into a rigid or semi-rigid multi-tile module can significantly reduce the complexity in roof installation, because the tiles within the module have been connected with the tabbing strips. Note that the number of tiles included in each multi-tile module can be more or fewer than what is shown in
The gap between two adjacent PV tiles can be filled with encapsulant, protecting tabbing strips interconnecting the two adjacent tiles from the weather elements. For example, encapsulant 470 fills the gap between tiles 454 and 456, protecting tabbing strip 468 from weather elements. Furthermore, the three glass covers, backsheet 452, and the encapsulant together form a semi-rigid construction for multi-tile module 450. This semi-rigid construction can facilitate easier installation while providing a certain degree of flexibility among the tiles.
In addition to the examples shown in
In some embodiments, multiple solar roof tiles, each encapsulating a cascaded string, can be assembled to obtain a multi-tile module. Inner-tile electrical coupling has been accomplished by overlapping corresponding edge busbars of adjacent strips. However, inter-tile electrical coupling within such a multi-tile module can be a challenge. Strain-relief connectors and long bussing strips have been used to facilitate inter-tile coupling. However, strain-relief connectors can be expensive, and arranging bussing strips after laying out the cascaded strings can be cumbersome. To facilitate low-cost, high-throughput manufacturing of the solar roof tiles, in some embodiments, metal strips can be pre-laid onto the back covers of the solar tiles, forming an embedded circuitry that can be similar to metal traces on a printed circuit board (PCB). More specifically, the embedded circuitry can be configured in such a way that it facilitates the electrical coupling among the multiple solar roof tiles within a multi-tile module.
Moreover, to facilitate electrical coupling between the embedded circuitry and an edge busbar situated on a front surface of a cascaded string, in some embodiments, a Si-based bridge electrode can be attached to the cascaded string. The Si-based bridge electrode can include a metallic layer covering its entire back surface and, optionally, a back edge busbar. By overlapping its edge (e.g., back edge busbar) to the front edge busbar of the cascaded string, the Si-based bridge electrode can turn itself into an electrode for the cascaded string, converting the forwardly facing electrode of the cascaded string to an electrode accessible from the back side of the cascaded string.
Detailed descriptions of the Si-based bridge electrode can be found in U.S. patent application Ser. No. 16/006,645, filed Jun. 12, 2018 and entitled “SOLAR ROOF TILE CONNECTORS,” the disclosure of which is incorporated herein by reference in its entirety.
Multi-Tile Modules with Pre-Laid Circuitry
In some embodiments, the second set of metallic strips can be arranged in such a way that they can electrically couple to the busbars of the cascaded strings. For example, metallic strips 712 and 714 can be arranged in specific locations such that, when a cascaded string is placed onto back tile cover 702, metallic strips 712 and 714 are directly under the bottom busbar and the bridge electrode of the cascaded string strip, forming electrical couplings. As a result, metallic strips 712 and 714 can become the positive and negative lead electrodes, respectively, of the cascaded string. The first set of metallic strips can then electrically couple to the second set of metallic strips to facilitate electrical coupling among cascaded strings belonging to the different tiles. By configuring the coupling between the first and second sets of metallic strips, different types of electrical couplings (e.g., in-series, in-parallel, or a combination thereof) can be achieved.
In the example shown in
Other configurations can also be possible.
In some embodiments, the metallic strips that form the pre-laid circuitry can include individual metal pieces that are simply placed on top of the back tile covers. In further embodiments, an adhesive can be used to bond the metallic strips to the back tile covers. In some embodiments, the metallic strips can include metal traces that are directly printed onto the back tile covers, which can be glass covers. Note that, in such a scenario, portions of the first set of metallic strips that are located between two adjacent glass covers may include separate metal pieces coupled to corresponding printed metal traces.
Similarly, back cover 744 can include lateral traces 756 and 758, and vertical traces 760 and 762. The metal traces can be printed using various metallization techniques, such as screen printing or laser jet printing. In some embodiments, the metal traces can include Cu or Ag traces.
As one can see in
Because printed metal traces can only exist on the back covers, an additional metal piece is needed to connect a metal trace located on one back cover to another metal trace located on an adjacent back cover. In the example shown in
To ensure precise and localized coupling between the two metallic strips or traces that cross paths, in some embodiments, metallic strips or traces that cross multiple tiles (referred to as cross-tile metallic strips) can be partially insulated with only the desired areas exposed. In the scenario where individual metallic strips are used, one can wrap around each individual metallic strip a layer of insulation tape (e.g., polyvinyl fluoride (PVF) tape) with the desired portion of the metallic strips exposed. In the scenario where metallic traces have been pre-printed onto the glass cover, the metallic traces can be coated with an insulation layer (e.g., an organic solderability preservative (OSP) layer). The OSP layer can then be partially etched off to expose desired portions of the metallic traces.
Like conventional photovoltaic panels, a photovoltaic roof tile can include both a front encapsulant layer and a back encapsulant layer, which facilitate the encapsulation of the cascaded string between the front and back covers of the photovoltaic roof tile. In some embodiments, a back encapsulant layer, which is typically insulating, can be inserted between the back cover of a solar roof tile and a cascaded string. Such an insulation layer may interfere with the electrical coupling between the cascaded string and the pre-laid circuitry. To enable such electrical coupling with the presence of the back encapsulant layer, in some embodiments, the back encapsulant layer can cover only a center region of the back cover, leaving surrounding regions uncovered.
Other configurations of the encapsulant layer can also be possible.
In alternative embodiments, there is no encapsulant between the back glass cover and the cascaded string, and the pre-laid circuit on the back glass cover can directly couple to electrodes of the cascaded string Eliminating the encapsulant layer between the back glass cover and the cascaded string not only can ensure proper electrical coupling between the pre-laid circuit on the back cover and the cascaded string, but also can simplify the fabrication process and reduce cost. In such an approach, only a single encapsulant layer is needed during fabrication of the photovoltaic roof tile. More specifically, such a single encapsulant layer can be inserted between the cascaded string and the front glass cover, covering the front surface of the cascaded string. The back surface of the cascaded string can be in direct contact with the back cover of the photovoltaic roof tile.
Fabrication of a Photovoltaic Roof Tile
In some embodiments, instead of conductive paste, electrical and mechanical bonding between the adjacent strips at their corresponding edges can be achieved via adhesive conductive films. Detailed descriptions about the bonding of adjacent photovoltaic strips using adhesive conductive films can be found in U.S. patent application Ser. No. 16/007,599, entitled “CASCADED SOLAR CELL STRING USING ADHESIVE CONDUCTIVE FILM,” filed Jun. 13, 2018, the disclosure of which is incorporated herein by reference in its entirety.
One or more glass back covers for solar roof tiles can be obtained (operation 1004), and pre-laid circuit can be formed on the back covers (operation 1006). In some embodiments, the pre-laid circuit can be formed by attaching (e.g., using an adhesive) individual metallic strips at desired locations on the back covers. To prevent unwanted electrical coupling, a metallic strip running across multiple cascaded strips or even multiple tiles can be wrapped by an insulation film with openings at one or more desired locations. In alternative embodiments, the pre-laid circuit can be formed by printing, or depositing using other metallization techniques (e.g., evaporation, sputtering, plating, etc.) metallic traces at desired locations of the back covers. Similarly, a metallic trace that runs across multiple cascaded strips can be covered by an insulation film with one or more openings formed at desired locations.
The previously prepared cascaded strings can then be placed directly onto the back covers (operation 1008). In some embodiments, a robotic arm with vacuum-enabled wafer pickers can pick up the cascaded strings and lay them on desired locations of the back covers. The cascaded strings should be arranged in such a way that the bottom edge busbar of a cascaded string overlaps a corresponding metallic strip or trace of the pre-laid circuit. Various alignment techniques (e.g., laser vision or computer vision) can be used to align the cascaded string. The coupling between the metallic strip or trace in the pre-laid circuit and the edge busbar of the cascaded string can be achieved using electrically conductive adhesive (ECA). Alternatively, no adhesive is needed because the rigid coupling between the front and back glass covers can sufficiently secure the metal-to-metal contact.
Subsequently, a bridge electrode can be attached to each cascaded string (operation 1010). More specifically, an edge of the back surface of the bridge electrode can stack on the top edge busbar of the cascaded string. If the bridge electrode includes an edge busbar on its back surface, such an edge busbar can overlap the top edge busbar of the cascaded string in a way similar to the cascading of two adjacent strips. Moreover, the contact pads on the other edge of the back surface can overlap a corresponding metallic strip or trace of the pre-laid circuit. The coupling between the bridge electrode and the edge busbar of a cascaded string can be similar to the coupling between two adjacent photovoltaic structures, which can involve a conductive paste. On the other hand, the coupling between the contact pads of the bridge electrode and the pre-laid circuit can be similar to the coupling between the bottom edge busbar of the cascaded string and the pre-laid circuit, which can involve ECA. In addition, it is also possible to not use adhesive at all, but to rely instead on the metal-to-metal contact for electrical coupling.
If a multi-tile module is being fabricated, tile spacers can be placed between adjacent tiles (operation 1012). The tile spacers can be designed in such a way that they can accommodate metallic strips running across the multiple tiles. A front encapsulant layer can then be placed on top of the cascaded string and the bridge electrode (operation 1014), and front glass covers can be placed on top of the front encapsulant layer (operation 1016). A lamination operation can be performed to encapsulate the cascaded strings along with the bridge electrodes between the front and back covers (operation 1018). A post-lamination process (e.g., trimming of overflowed encapsulant and attachment of the junction box and other roofing components) can then be performed to complete the fabrication of a PV roof tile (operation 1020). In some embodiments, a junction box can access the pre-laid circuit via a through hole located on the glass back cover. A detailed description of the junction box and the coupling between the junction box and the inter-tile electrical connection can be found in U.S. patent application Ser. No. 15/905,551, entitled “SYSTEM AND METHOD FOR COUPLING JUNCTION BOX TO SOLAR ROOF TILES,” filed Feb. 26, 2018, the disclosure of which is incorporated herein by reference in its entirety.
In addition to using relatively large through holes and specially designed attachment pads for junction-box access, in some embodiments, metal-coated vias can be used to allow for the pre-laid circuit to make electrical connections to the external junction box.
Multi-tile module 1100 can also include a junction box 1120 attached to the exterior surface of back cover 1104. To facilitate electrical coupling between wire 1122 within junction box 1120 and pre-laid circuit 1112, in some embodiments, via 1114 can be formed at a desired location on back cover 1104. More specifically, via 1114 can be formed by drilling (e.g., using a physical or chemical method) a relatively small hole (e.g., a few millimeters in diameter) at a desired location followed by filling the hole with electroplated Cu. Metal-to-metal contact can be made between via 1114 and pre-laid circuit 1112. In some embodiment, metal trace 1116 can also be formed on the exterior surface of back cover 1104. Metal trace 1116 can be coupled, simultaneously, to via 1114 and wire 1122, thus facilitating electrical coupling between wire 1122 and pre-laid circuit 1112.
Note that, in the example shown in
Each tile can include a front tile cover and a front encapsulant layer, which are transparent and are not labeled in
In the example shown in
The foregoing descriptions of various embodiments have been presented only for purposes of illustration and description. They are not intended to be exhaustive or to limit the present system to the forms disclosed. Accordingly, many modifications and variations will be apparent to practitioners skilled in the art. Additionally, the above disclosure is not intended to limit the present system.
Number | Name | Date | Kind |
---|---|---|---|
3076861 | Samulon | Feb 1963 | A |
3369939 | Myer | Feb 1968 | A |
3461602 | Heinz | Aug 1969 | A |
4239810 | Alameddine | Dec 1980 | A |
4400577 | Spear | Aug 1983 | A |
4724011 | Turner | Feb 1988 | A |
5118540 | Hutchison | Jun 1992 | A |
5338369 | Rawlings | Aug 1994 | A |
5427961 | Takenouchi | Jun 1995 | A |
5667596 | Tsuzuki | Sep 1997 | A |
5942048 | Fujisaki | Aug 1999 | A |
6133522 | Kataoka | Oct 2000 | A |
6311436 | Mimura | Nov 2001 | B1 |
6365824 | Nakazima | Apr 2002 | B1 |
6472594 | Ichinose | Oct 2002 | B1 |
6586271 | Hanoka | Jul 2003 | B2 |
6960716 | Matsumi | Nov 2005 | B2 |
7259321 | Oswald | Aug 2007 | B2 |
7276724 | Sheats | Oct 2007 | B2 |
7506477 | Flaherty | Mar 2009 | B2 |
7534956 | Kataoka | May 2009 | B2 |
7772484 | Li | Aug 2010 | B2 |
7833808 | Xu | Nov 2010 | B2 |
7851700 | Luch | Dec 2010 | B2 |
7858874 | Ruskin | Dec 2010 | B2 |
7902451 | Shimizu | Mar 2011 | B2 |
7964440 | Salleo | Jun 2011 | B2 |
8205400 | Allen | Jun 2012 | B2 |
8206664 | Lin | Jun 2012 | B2 |
8276329 | Lenox | Oct 2012 | B2 |
8471141 | Stancel | Jun 2013 | B2 |
8664030 | Luch | Mar 2014 | B2 |
8674377 | Farquhar | Mar 2014 | B2 |
8701360 | Ressler | Apr 2014 | B2 |
8713861 | Desloover | May 2014 | B2 |
8822810 | Luch | Sep 2014 | B2 |
9038330 | Bellavia | May 2015 | B2 |
9150966 | Xu | Oct 2015 | B2 |
9206520 | Barr | Dec 2015 | B2 |
9343592 | Hunt | May 2016 | B2 |
9362527 | Takemura | Jun 2016 | B2 |
9412884 | Heng | Aug 2016 | B2 |
9525092 | Mayer | Dec 2016 | B2 |
9825582 | Fernandes | Nov 2017 | B2 |
9899554 | Yang | Feb 2018 | B2 |
9966487 | Magnusdottir | May 2018 | B2 |
20010054435 | Nagao | Dec 2001 | A1 |
20020015782 | Abys | Feb 2002 | A1 |
20030019518 | Shimizu et al. | Jan 2003 | A1 |
20030180983 | Oswald | Sep 2003 | A1 |
20040261840 | Schmit | Dec 2004 | A1 |
20050039788 | Blieske | Feb 2005 | A1 |
20050268963 | Jordan | Dec 2005 | A1 |
20060048798 | McCoy | Mar 2006 | A1 |
20060086620 | Chase | Apr 2006 | A1 |
20060204730 | Nakamura | Sep 2006 | A1 |
20080023069 | Terada | Jan 2008 | A1 |
20080053511 | Nakamura | Mar 2008 | A1 |
20080135085 | Corrales | Jun 2008 | A1 |
20080302030 | Stancel | Dec 2008 | A1 |
20090056803 | Nakai | Mar 2009 | A1 |
20090101192 | Kothari | Apr 2009 | A1 |
20090120497 | Schetty | May 2009 | A1 |
20090133739 | Shiao | May 2009 | A1 |
20090133740 | Shiao | May 2009 | A1 |
20090233083 | Inoue | Sep 2009 | A1 |
20090242021 | Petkie | Oct 2009 | A1 |
20090287446 | Wang | Nov 2009 | A1 |
20090308435 | Caiger | Dec 2009 | A1 |
20100000603 | Tsuzuki | Jan 2010 | A1 |
20100006147 | Nakashima | Jan 2010 | A1 |
20100018568 | Nakata | Jan 2010 | A1 |
20100132762 | Graham | Jun 2010 | A1 |
20100147363 | Huang | Jun 2010 | A1 |
20100180929 | Raymond | Jul 2010 | A1 |
20110011444 | Hanoka | Jan 2011 | A1 |
20110023937 | Daniel | Feb 2011 | A1 |
20110023942 | Soegding | Feb 2011 | A1 |
20110030761 | Kalkanoglu | Feb 2011 | A1 |
20110192826 | Von Moltke | Aug 2011 | A1 |
20110197953 | Pfeuffer | Aug 2011 | A1 |
20110277825 | Fu | Nov 2011 | A1 |
20120012162 | Kobayashi | Jan 2012 | A1 |
20120031470 | Dimov | Feb 2012 | A1 |
20120048349 | Metin | Mar 2012 | A1 |
20120060911 | Fu | Mar 2012 | A1 |
20120125391 | Pinarbasi | May 2012 | A1 |
20120199184 | Nie | Aug 2012 | A1 |
20120237670 | Lim | Sep 2012 | A1 |
20130048062 | Min | Feb 2013 | A1 |
20130061913 | Willham | Mar 2013 | A1 |
20130160823 | Khouri | Jun 2013 | A1 |
20130206213 | He | Aug 2013 | A1 |
20130209776 | Kim | Aug 2013 | A1 |
20130233378 | Moslehi | Sep 2013 | A1 |
20130247959 | Kwon | Sep 2013 | A1 |
20130255755 | Chich | Oct 2013 | A1 |
20130280521 | Mori | Oct 2013 | A1 |
20140120699 | Hua | May 2014 | A1 |
20140124014 | Morad | May 2014 | A1 |
20140196768 | Heng et al. | Jul 2014 | A1 |
20140313574 | Bills | Oct 2014 | A1 |
20140360582 | Cui | Dec 2014 | A1 |
20150090314 | Yang | Apr 2015 | A1 |
20150155824 | Chien | Jun 2015 | A1 |
20150194552 | Ogasahara | Jul 2015 | A1 |
20150243818 | Kim | Aug 2015 | A1 |
20150243931 | Fukuura | Aug 2015 | A1 |
20150270410 | Heng | Sep 2015 | A1 |
20150349145 | Morad | Dec 2015 | A1 |
20150349152 | Voss | Dec 2015 | A1 |
20150349703 | Morad | Dec 2015 | A1 |
20150380571 | Shin | Dec 2015 | A1 |
20160013329 | Brophy | Jan 2016 | A1 |
20160105144 | Haynes | Apr 2016 | A1 |
20160163902 | Podlowski | Jun 2016 | A1 |
20160181446 | Kalkanoglu | Jun 2016 | A1 |
20160181454 | Son | Jun 2016 | A1 |
20160225931 | Heng | Aug 2016 | A1 |
20170033250 | Ballif | Feb 2017 | A1 |
20170077343 | Morad | Mar 2017 | A1 |
20170194516 | Reddy | Jul 2017 | A1 |
20170222082 | Lin | Aug 2017 | A1 |
20180166601 | Inaba | Jun 2018 | A1 |
20200007073 | Nguyen et al. | Jan 2020 | A1 |
Number | Date | Country |
---|---|---|
102544380 | Aug 2015 | CN |
103426957 | Mar 2016 | CN |
102956730 | Jun 2016 | CN |
102007054124 | May 2009 | DE |
1058320 | Dec 2000 | EP |
2051124 | Apr 2009 | EP |
2709160 | Mar 2014 | EP |
2278618 | Dec 1994 | GB |
S57141979 | Sep 1982 | JP |
S6020586 | Feb 1985 | JP |
H06140657 | May 1994 | JP |
H06264571 | Sep 1994 | JP |
2000091610 | Mar 2000 | JP |
2000216415 | Aug 2000 | JP |
2013211385 | Oct 2013 | JP |
2008136872 | Nov 2008 | WO |
2009062106 | May 2009 | WO |
2009099418 | Aug 2009 | WO |
2010128375 | Nov 2010 | WO |
2011128757 | Oct 2011 | WO |
201359441 | Apr 2013 | WO |
2013067541 | May 2013 | WO |
2013102181 | Jul 2013 | WO |
2014178180 | Nov 2014 | WO |
2015155356 | Oct 2015 | WO |
2016090341 | Jun 2016 | WO |
Entry |
---|
Bulucani et al., “A new approach: low cost masking material and efficient copper metallization for higher efficiency silicon solar cells” 2015 IEEE. |
Fan et al., “Laser micromachined wax-covered plastic paper as both sputter deposition shadow masks and deep-ultraviolet patterning masks for polymethylmacrylate-based microfluidic systems” via google scholar, downloaded Mar. 31, 2016. |
“An inorganic/organic hybrid coating for low cost metal mounted dye-sensitized solar cells” Vyas, N. et al. |
“Recovery Act: Organic Coatings as Encapsulants for Low Cost, High Performance PV Modules” Jim Poole et al. Nov. 16, 2011. |
Pelisset: “Efficiency of Silicon Thin-Film photovoltaic Modules with a Front Coloured Glass”, Proceedings CISBAT 2011, Jan. 1, 2011, pp. 37-42, XP055049695, the Whole Document. |
Non-Final Office Action received for U.S. Appl. No. 16/023,480, dated Mar. 5, 2020, 15 pages. |
Number | Date | Country | |
---|---|---|---|
20200091857 A1 | Mar 2020 | US |