The present disclosure relates generally to a solar surface steering system and a hydraulic actuator, and more particularly to a solar surface steering system using hydraulic actuators for two-dimensional steering of a solar surface and to a two dimensional steering hydraulic actuator for a solar surface.
Steering is a common technique to increase the energy yield in solar energy photovoltaic panels. Steering increases the geometric efficiency of solar surfaces. Non-steered solar surfaces are less productive compared to steered ones. Further, two-dimensional (2D) steering is more effective than single dimensional (1D) steering. There are several techniques to perform such steering using electrical drives and stepper motors. To increase accuracy, the electrical actuation is performed through various gearing systems. Another steering application is to steer solar reflectors toward a tower target. Although the steering problem must be two-dimensional, the necessary degree of accuracy is much higher compared to photovoltaic steering.
Solar surfaces, including photovoltaic panels, solar reflectors for central towers, and parabolic dishes, all need 2D steering. Maximizing total energy output requires increasing either the number of units or the size per unit (or both). The cost of steering mechanisms increases with the size of the units and/or the number of units since the power of electrical motors and the number of motors must both increase.
Hydraulic technology offers a solution where a central hydraulic drive can be shared by several or all actuators. The degree of accuracy is not limited by the step size or even micro-step size of electrical motors. In fact any step can be achieved by limiting the flow rate and proper timing of corresponding hydraulic valves.
Hydraulic actuators are available in several different types: linear actuators, continuous rotation actuators, and limited angle actuators. In the steering problem, only the linear piston actuator and limited angle rotary actuator can provide steering. Although linear pistons have been conventionally used for steering, linear pistons can be bulky and may not be suitable for dusty environments.
The limited angle rotary actuator (also referred to as a “rotary vane actuator”) contains two vanes: a fixed vane and a moving vane; see
The two cavities of the actuator are connected by a proper valve system to high and low hydraulic pressure. To reverse the motion, the pressure direction must be switched. A 4-valve system or a specialized 4-way valve can be used to perform this reversible process.
In one example of a known surface steering apparatus is disclosed in patent document U.S. Pat. No. 8,943,817 B2. In this example, a system and method are disclosed for moving an object in one axis including one or more fluid inflatable containers which are arranged to transmit fluid pressure to a plunger, such that a flexible membrane of the fluid inflatable container engages with the plunger and forms a rolling lobe in response to changes in volume. The fluid inflatable containers are enclosed within an enclosure or drum, and a shaft runs axially through the center of the enclosure. However, in this example, the object can only be steered in one rotational dimension.
Another example offers a reflective solar tracing system (U.S. Pat. No. 4,586,488A) of the type arranged to reflect light rays from the sun onto a remote solar energy collector. This system provides a two dimensional steering to compensate for altitudinal and azimuthal changes in the position of the sun using a sensor device to point at the sun and provide control signals to a drive mechanism so that the reflector is moved in response to solar movement.
Especially for solar tracking devices, systems and methods, a compact steering apparatus that can be shared among several solar devices is desired. Conventional rotary actuators suffer from rotational restrictions, complexity and size. Accordingly, it is one object of the present disclosure to describe a two-dimensional steering hydraulic actuator for a solar surface.
The foregoing “Background” description is for the purpose of generally presenting the context of the disclosure. Work of the inventors, to the extent it is described in this background section, as well as aspects of the description which may not otherwise qualify as prior art at the time of filing, are neither expressly or impliedly admitted as prior art against the present invention.
A first aspect of the present disclosure provides a solar surface steering system including: a solar surface, a base mount; and a main body having a first rotary vane actuator configured to rotate the solar surface via a first rotating joint, and a second rotary vane actuator configured to rotate the main body of the hydraulic actuator via a second rotating joint connected to the base mount, wherein the first and second rotary vane actuators are affixed to each other and positioned such that a rotational axis of the first rotary vane actuator is orthogonal to a rotational axis of the second rotary vane actuator.
A second aspect of the present disclosure provides a two dimensional steering hydraulic actuator for a solar surface including a base mount; and a main body having a first rotary vane actuator configured to rotate the solar surface via a first rotating joint, and a second rotary vane actuator configured to rotate the main body of the hydraulic actuator via a second rotating joint connected to the base mount, wherein the first and second rotary vane actuators are affixed to each other and positioned such that a rotational axis of the first rotary vane actuator is orthogonal to a rotational axis of the second rotary vane actuator.
This disclosure describes a simple, cost effective design for a solar surface steering system that is compact, is easily installable, is steady, and has a large angular range in both degrees of freedom without a need for complex, costly, or unreliable electronic mechanisms to realize 2D steering.
A more complete appreciation of the invention and many of the attendant advantages thereof will be readily obtained as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings, wherein:
In the conventional design of a limited angle rotatory actuator (i.e., rotary vane actuator) as shown in
Hereafter, an exemplary embodiment of the present invention will be described with reference to the drawings. In the drawings, the same elements are denoted by the same reference numerals, and thus redundant descriptions thereof are omitted as needed.
In the rotary vane actuator 115, a cavity 120 is divided into two sides (first side cavity 120a and second side cavity 120b) by the moving vane 130. Each side of the cavity 120a, 120b is respectively connected to a first hydraulic port 121a, 121b through which a hydraulic fluid is either input or drained. For example, with respect to
For inputting and removing hydraulic fluid to the respective rotary vane actuators 115, the first and second hydraulic ports 121a, 121b may be operably connected to a fluid mover via hoses, tubes, or the like. The fluid mover may simply move fluid from one hydraulic port to the other causing an increase in fluid volume and pressure on one side of the cavity 120 while decreasing the fluid volume and pressure on the other side of the cavity 120, thereby causing the moving vane to move. Alternatively, a fluid mover may be connected to each hydraulic port 121a, 121b and fluid may be moved between sides of the cavity 120 and, for example, one or more fluid containers external to the rotary vane actuators.
Each fluid mover is also electrically connected to a power supply and a control system for controlling the operations of the fluid movers. Some examples of the fluid mover are an external gear pump, an internal gear pump, and a piston pump; however, any conventional fluid mover suitable for a conventional rotary vane actuator 115 may be used for the semi-cylindrical rotary vane actuators of the present disclosure. Further, one or more control valves may be provided between the fluid movers and the respective rotary vane actuators and electronically actuated by the control system 200 to control the flow of hydraulic fluid to/from the respective cavities 120 of the rotary vane actuators, thereby controlling the movement of the solar surface. The control valves may be, for example, 4-way valves employed to reverse (switch) the direction of fluid flow between the first and second hydraulic ports 121a, 121b and may be components of the fluid mover itself. In a case in which a bi-directional fluid mover is used for each rotary vane actuator (i.e., two independently operating bi-directional fluid movers), such control valves may be unnecessary.
The control system 200 for controlling the fluid movers and/or the control valves may be a general purpose computer or dedicated circuitry with memory and a processor, such as a microcontroller. An example of such a computer will be described later in further detail. The control system 200 may have a set of instructions pre-stored in memory for moving the solar surface or may accept instructions from, for example, a user depending on design requirements.
In the present embodiment, as shown in
In
Further, at the second rotating joint 143 of the bottom rotary vane actuator 115, a supporting member 141 is connected at the second rotational axis 128 supporting the main body 110 and the other end of the support member is connected to a base mount 150. Similar to the holding members 140, any number of the support member 141 may be connected to either or both ends of the second rotational axis 128, and the support members 141 may be, for example, bars, shafts, spokes, plates, or the like; however, a larger number of support members 141 is generally preferable to provide greater stability. Likewise, any length of the supporting members 140 may be used; however, a shorter separation between the rotational axis 128 and the base mount 150 is preferable in terms of stability.
In addition, as can be seen in
It should be noted that hydraulic pressure generates the needed torque. However, there is a dependence on the moving vane's area, which includes both the axial and radial size of the cylinder. Therefore, the torque needed affects the overall size of the solar surface steering system 100. In other embodiments of the invention torque, rotational movement and/or moving force may be provided by any one or more of a pneumatic, electric or piezoelectric actuator in place of or in addition to the hydraulic actuator (motor).
It should be apparent from the foregoing that numerous modifications and variations of the present disclosure are possible in light of the above teachings. It is therefore to be understood that within the scope of the appended claims, the invention may be practiced otherwise than as specifically described herein.
For example, a short fixed vane 125 with a length less than that of the moving vane 130 is used in the exemplary embodiment described above in accordance with
In addition, in the exemplary embodiment the top and bottom surfaces of the main body 110 is separated from both the base mount and the solar surface; however, rollers, wheels, gears, casters, or the like may be provided therebetween for additional support and stability.
Furthermore, the cavity 120 may include flexible bags to be filled with hydraulic fluid, air, water, or the like through the hydraulic ports 121. These bags are able to reduce requirements of tight sealing between the vanes and the touching boundaries.
It should be noted that the hydraulic ports 121 shown in
In addition, while the holding member 140 and the supporting member 141 are similar, it is not necessary for them to be the same in size, shape, type, or number and may be selected appropriately in accordance with preference or design specification.
The solar surface as shown in the figures is a flat plate; however, the solar surface is not particularly limited to such a shape and may be, for example, circular, rectangular, or polygonal, and may be flat, concave, convex, etc. as needed depending on the desired purpose of the solar surface.
Also, the base mount 150 is depicted in the figures as a flat plate; however, the base mount 150 should not be considered as limited to this and may simply be the ends of the supporting members acting as feet which support the main body 110.
Pressure sensors may be included within the rotary vane actuators to measure the exact pressure on opposing sides of the cavity 120, and these pressure sensors may be connected to the control system 200 in order to more precisely control the steering of the solar surface 151.
The exemplary circuit elements described in the context of the present disclosure may be replaced with other elements and structured differently than the examples provided herein. Moreover, circuitry configured to perform features described herein may be implemented in multiple circuit units (e.g., chips), or the features may be combined in circuitry on a single chipset, as shown on
In
For example,
Referring again to
The PCI devices may include, for example, Ethernet adapters, add-in cards, and PC cards for notebook computers. The Hard disk drive 260 and CD-ROM 266 can use, for example, an integrated drive electronics (IDE) or serial advanced technology attachment (SATA) interface. In one implementation the I/O bus can include a super I/O (SIO) device.
Further, the hard disk drive (HDD) 260 and optical drive 266 can also be coupled to the SB/ICH 220 through a system bus. In one implementation, a keyboard 270, a mouse 272, a parallel port 278, and a serial port 276 can be connected to the system bust through the I/O bus. Other peripherals and devices that can be connected to the SB/ICH 220 using a mass storage controller such as SATA or PATA, an Ethernet port, an ISA bus, a LPC bridge, SMBus, a DMA controller, and an Audio Codec.
Moreover, the present disclosure is not limited to the specific circuit elements described herein, nor is the present disclosure limited to the specific sizing and classification of these elements. For example, the skilled artisan will appreciate that the circuitry described herein may be adapted based on changes on battery sizing and chemistry, or based on the requirements of the intended back-up load to be powered.
Thus, the foregoing discussion discloses and describes merely exemplary embodiments of the present invention. As will be understood by those skilled in the art, the present invention may be embodied in other specific forms without departing from the spirit or essential characteristics thereof. Accordingly, the disclosure of the present invention is intended to be illustrative, but not limiting of the scope of the invention, as well as other claims. The disclosure, including any readily discernible variants of the teachings herein, defines, in part, the scope of the foregoing claim terminology such that no inventive subject matter is dedicated to the public.
Number | Name | Date | Kind |
---|---|---|---|
1569429 | Lippert | Jan 1926 | A |
2564206 | Johnson | Aug 1951 | A |
2802458 | McDonnell | Aug 1957 | A |
2913583 | Regnier | Nov 1959 | A |
3102454 | Pinkston | Sep 1963 | A |
3276332 | Jaffe | Oct 1966 | A |
3613519 | Southall | Oct 1971 | A |
3731599 | Allen | May 1973 | A |
4365617 | Bugash | Dec 1982 | A |
4376372 | English, Jr. | Mar 1983 | A |
4586488 | Noto | May 1986 | A |
4890599 | Eiden | Jan 1990 | A |
8104465 | Kribus | Jan 2012 | B2 |
8609977 | Jones | Dec 2013 | B2 |
8943817 | Blitz et al. | Feb 2015 | B2 |
9140403 | Blitz | Sep 2015 | B2 |
9231222 | Sung | Jan 2016 | B2 |
10330345 | Sanchez Vega | Jun 2019 | B1 |
20050281698 | Satanovskiy | Dec 2005 | A1 |
20110122606 | Ku | May 2011 | A1 |
20120318325 | Liu | Dec 2012 | A1 |
20140069483 | Wolter et al. | Mar 2014 | A1 |
Number | Date | Country |
---|---|---|
102298393 | Dec 2011 | CN |
102008023549 | Nov 2009 | DE |
Number | Date | Country | |
---|---|---|---|
20200300509 A1 | Sep 2020 | US |