The present invention relates to a solar thermal power generation system that utilizes solar heat to generate power.
Heretofore, a storage-type solar thermal power generation plant is known in which sunlight is used in the daytime to generate steam, a part of heat of the steam is stored in a heat storage device, the heat stored in the heat storage device during night or cloudy weather is released to generate steam from water, and a steam turbine is turned with the steam to generate power.
For example, Patent Document 1 describes the configuration of a storage-type solar thermal power generation system, in which heat of steam from a second heat collector (also referred to as a superheater or a high-temperature heat collection device) 1108 is stored in a heat storage system 912, and is then phase-changed into water, the water is pressurized by a pump 1112 and a pump 1110, and the pressurized water is returned to a circulation line including a first heat collector (also referred to as an evaporator or a low-temperature heat collection device) 1102 (see
This will be described in greater detail with reference to figures.
As illustrated in
However, the water-steam two phase flow is known to have heat transfer fluidization property that is more complex than that of a single phase flow, hence, there is a problem in that designing the heat storage device (heat storage system) becomes more difficult due to the need to predict the behavior of the water-steam two phase flow.
Furthermore, in the solar thermal power generation system described in Patent Document 1, since the high-temperature heat storage device and the low-temperature heat storage device are connected in series, an heat storage amount has to be dependent on a flow rate of a steam from the second heat collector (superheater), hence, there is a problem in that the heat storage amount of the high-temperature heat storage device and the heat storage amount of the low-temperature heat storage device cannot be adjusted individually.
Therefore, an object of the present invention is to provide a solar thermal power generation system that can prevent the flow of a fluid flowing through a high-temperature heat storage device and a low-temperature heat storage device from becoming a water-steam two phase flow and can individually adjust a heat storage amount of the high-temperature heat storage device and a heat storage amount of the low-temperature heat storage device.
In order to solve the problems described above, a solar thermal power generation system according to an aspect of the present invention includes: a low-temperature heat collection device configured to heat water with heat of sunlight thereby generating water-steam two phase fluid; a steam separator configured to separate the water-steam two phase fluid, which has been generated by the low-temperature heat collection device, into water and steam; a first hot water line configured to connect the steam separator to the low-temperature heat collection device, and feed the water separated by the steam separator to the low-temperature heat collection device; a low-temperature heat storage device provided in the first hot water line, and configured to store heat acquired through heat exchange with the water separated by the steam separator; a high-temperature heat collection device configured to heat the steam separated by the steam separator with heat of sunlight thereby generating superheated steam; a steam turbine; a first main steam line configured to connect the high-temperature heat collection device to the steam turbine, and feed the superheated steam generated by the high-temperature heat collection device to the steam turbine; a second main steam line branching from the first main steam line and joining with the first main steam line; a high-temperature heat storage device provided in the second main steam line, and configured to store heat acquired through heat exchange with the superheated steam generated by the high-temperature heat collection device; a low-temperature bypass line configured to bypass the low-temperature heat collection device, and connect an outlet-side of the low-temperature heat storage device to a water-steam two phase fluid inlet-side of the steam separator; and a high-temperature bypass line configured to bypass the high-temperature heat collection device, and connect a steam outlet-side of the steam separator to an inlet-side of the high-temperature heat storage device.
The solar thermal power generation system according to the present invention can prevent the fluid flowing through a high-temperature heat storage device and a low-temperature heat storage device from becoming a water-steam two phase flow, and can individually adjust the heat storage amount of the high-temperature heat storage device and the heat storage amount of the low-temperature heat storage device. Objects, configurations, and effects other than those described above will be apparent from the description of the embodiments described below.
Embodiments of the present invention will be described below with reference to figures.
The configuration of a system including a low-temperature heat collection device and a high-temperature heat collection device as heat collection devices (heating devices) for heating an internal fluid with heat of sunlight will be described below. Note that the low-temperature heat collection device corresponds to an evaporator in a boiler, and serves to heat water with heat of sunlight to generate a water-steam two phase fluid. The high-temperature heat collection device corresponds to a superheater in the boiler, and serves to heat, by heat of sunlight, steam separated by a steam separator 2 described below, to generate superheated steam.
The solar thermal power generation system illustrated in
A water outlet of the steam separator 2 is connected to an inlet of the low-temperature heat collection device 1 by a first hot water line L2, and a circulation pump 15, a low-temperature heat storage device 4, and a pump 16 are provided in this first hot water line L2. Further, a steam inlet of the steam separator 2 is connected to an outlet of the low-temperature heat collection device 1 by a water-steam line L4. There are further provided: a second hot water line L3 that branches from the first hot water line L2 at a position of the three-way valve 21 located between an outlet of the circulation pump 15 and an inlet of the low-temperature heat storage device 4 in, and bypasses the low-temperature heat storage device 4 to feed the water separated by the steam separator 2 directly to the low-temperature heat collection device 1 via the three-way valve 23; and a low-temperature bypass line L5 that bypasses the low-temperature heat collection device 1 to connect the three-way valve 22 located on an outlet-side of the low-temperature heat storage device 4 to a three-way valve 24 located on a water-steam two phase fluid inlet-side of the steam separator 2.
A steam outlet of the steam separator 2 is connected to an inlet of the high-temperature heat collection device 3 by a saturated steam line L6, and an outlet of the high-temperature heat collection device 3 is connected to the steam turbine 6 by a first main steam line L7. The high-temperature heat storage device 5 is provided in a second main steam line L8 that branches from the first main steam line L7 at the three-way valve 26 provided in the first main steam line L7, and joins with the first main steam line L7 again at the three-way valve 29 provided in the first main steam line L7. There are further provided a high-temperature bypass line L9 that bypasses the high-temperature heat collection device 3 to connect the three-way valve 25 located on the steam outlet-side of the steam separator 2 to the three-way valve 27 located on an inlet-side of the high-temperature heat storage device 5.
There is further provided a steam extraction line L11 that connects a steam extraction side of the steam turbine 6 to the feed water heater 8, and a first steam return line L12 that connects the three-way valve 28 located on an outlet-side of the high-temperature heat storage device 5 to the three-way valve 30 provided in the steam extraction line L11.
Note that the three-way valves 21 to 30 are connected to a controller 50 via electrical wiring (not illustrated), and operation in a heat storage operation mode or operation in a heat release operation mode described below is performed according to a command from the controller 50. A configuration, in which switching between the heat storage operation mode and the heat release operation mode is performed by manual operation through the switching switch 51 provided on the controller 50, may be employed. Of course, a configuration, in which the operation mode is automatically switched based on an output signal from a temperature sensor, a pressure sensor, or the like (not illustrated), may be employed.
Here, in the present embodiment, if an example of the low-temperature heat collection device 1 and the high-temperature heat collection device 3 is given, the low-temperature heat collection device 1 may be a trough heat exchanger configured such that a heat transfer tube is disposed above a curved inner peripheral surface of a condensing mirror extending in a trough shape and sunlight is concentrated on the heat transfer tube by the condensing mirror, thereby heating water that circulates in the heat transfer tube and generating a water-steam two phase fluid, or a Fresnel heat exchanger configured such that a large number of substantially planar condensing mirrors are arranged, a heat transfer tube is disposed above the group of condensing mirrors, and sunlight is concentrated on the heat transfer tube by the group of condensing mirrors, thereby heating water that circulates in the heat transfer tube and generating a water-steam two phase fluid.
The high-temperature heat collection device 3 is, for example, a tower-type heat exchanger configured such that a heat transfer tube panel is installed on a tower having a predetermined height, a large number of condensing mirrors are mounted on the ground, and sunlight is concentrated on the heat transfer tube panel on the tower by using a group of condensing mirrors, thereby heating steam that circulates in the heat transfer tube and generating superheated steam.
In addition, in the present embodiment, a heat storage medium used in the low-temperature heat storage device 4 and the high-temperature heat storage device 5 is preferably a nitrate-based molten salt such as potassium nitrate or sodium nitrate. However, the heat storage medium may be a solid such as concrete or the like, and may be any type of heat storage medium that is compatible temperatures appropriate for usage.
Next, the operation modes of the solar thermal power generation system according to the present embodiment will be described. In the present embodiment, the heat storage operation mode and the heat release operation mode are provided.
Heat Storage Operation Mode
As illustrated in
In the low-temperature heat collection device 1, water is heated by solar heat to generate a water-steam two phase fluid. The generated water-steam two phase fluid flows through the water-steam line L4 and is introduced into the steam separator 2, and then, is separated into water and saturated steam by the steam separator 2. Saturated steam separated by the steam separator 2 is introduced into the high-temperature heat collection device 3 via the saturated steam line L6. On the other hand, the water separated by the steam separator 2 increases water temperature in the steam separator 2. Heat acquired by this increase in water temperature is stored in the low-temperature heat storage device 4. That is, water circulates through the steam separator 2, the low-temperature heat storage device 4, the low-temperature heat collection device 1, and the steam separator 2 in this order, and as a result heat of the water heated by the low-temperature heat collection device 1 is stored in the low-temperature heat storage device 4.
The saturated steam sent from the steam separator 2 to the high-temperature heat collection device 3 is further heated with solar heat to become superheated steam. The superheated steam generated by the high-temperature heat collection device 3 flows through the first main steam line L7 and is fed to the steam turbine 6, whereby the steam turbine 6 is driven. As the steam turbine 6 is driven, a generator not illustrated generates power.
Further, a portion of the superheated steam generated by the high-temperature heat collection device 3 is sent to the high-temperature heat storage device 5, and exchanges heat with heat that is stored in the heat storage medium in the high-temperature heat storage device 5, hence, the heat is stored in the high-temperature heat storage device 5. The superheated steam after heat exchange in the high-temperature heat storage device 5 passes through the second main steam line L8 and then the first steam return line L12, and joins with the steam extraction line 11, and thereafter, is introduced into the feed water heater 8. In the feed water heater 8, the water that has flowed through the condensation line L10 exchanges heat with the extracted steam that has flowed through the steam extraction line L11, thereby heating water to be fed to the feed water pump 17.
Heat Release Operation Mode
As illustrated in
The saturated steam separated by the steam separator 2 is sent to the high-temperature heat storage device 5 via the high-temperature bypass line L9. The saturated steam fed to the high-temperature heat storage device 5 is heated by the heat storage medium in the high-temperature heat storage device 5 to become superheated steam, and is fed to the steam turbine 6 via the second main steam line L8. Note that the flow downstream of the steam turbine 6 is the same as that in the heat storage operation mode, and thus descriptions thereof will be omitted.
Next, the fluid temperatures of the low-temperature heat storage device 4 and the high-temperature heat storage device 5 in the heat storage operation mode will be described.
As illustrated in
On the other hand, as illustrated in
As described above, according to the solar thermal power generation system according to the present embodiment, heat of the superheated steam generated by the high-temperature heat collection device 3 is stored only by the high-temperature heat storage device 5, and heat of the hot water separated by the steam separator 2 is stored only by the low-temperature heat storage device 4. Therefore, the fluid flowing through each of the high-temperature heat storage device 5 and the low-temperature heat storage device 4 can be prevented from becoming a water-steam two phase flow. For this reason, when designing the high-temperature heat storage device 5 and the low-temperature heat storage device 4, it is no longer necessary to take into account the water-steam two phase fluid, whereby device designing can be simplified. In addition, according to the present embodiment, since a configuration is provided, in which the high-temperature heat storage device 5 and the low-temperature heat storage device 4 are not arranged in series, the heat storage amount of the high-temperature heat storage device 5 and the heat storage amount of the low-temperature heat storage device 4 can be individually adjusted.
Here, as described above, in the prior art illustrated in
Next, the operation mode of the solar thermal power generation plant according to the second embodiment will be described. However, the heat release operation mode is the same as that of the first embodiment and thus, only the heat storage operation mode will be described below.
As illustrated in
In the low-temperature heat collection device 1, water is heated with solar heat to produce a water-steam two phase fluid. The generated water-steam two phase fluid flows through the water-steam line L4 and is introduced into the steam separator 2, and the water-steam two phase fluid is separated into water and saturated steam by the steam separator 2. Saturated steam separated by the steam separator 2 is introduced into the high-temperature heat collection device 3 via the saturated steam line L6. On the other hand, water separated by the steam separator 2 increases the water temperature in the steam separator 2. Heat used for this increase in water temperature is stored in the low-temperature heat storage device 4. That is, water circulates through the steam separator 2, the low-temperature heat storage device 4, the first heat exchanger 40, the low-temperature heat collection device 1, and the steam separator 2 in this order, and as a result heat of the water heated by the low-temperature heat collection device 1 is stored in the low-temperature heat storage device 4.
The saturated steam sent from the steam separator 2 to the high-temperature heat collection device 3 is further heated with solar heat to become superheated steam. The superheated steam generated by the high-temperature heat collection device 3 flows through the first main steam line L7 and is fed to the steam turbine 6, whereby the steam turbine 6 is driven. As the steam turbine 6 is driven, a generator not illustrated generates power.
Further, a portion of the superheated steam generated by the high-temperature heat collection device 3 is sent to the high-temperature heat storage device 5, and exchanges heat with heat that is stored in the heat storage medium in the high-temperature heat storage device 5, hence, the heat is stored in the high-temperature heat storage device 5. The superheated steam after heat exchange in the high-temperature heat storage device 5 flows through the second steam return line L13 and is introduced into the first heat exchanger 40, and the water flowing through the low-temperature heat storage device 4 is heated in the first heat exchanger 40. At this time, the superheated steam is returned into water in the first heat exchanger 40 and pressurized by the pressurization pump 18, and then fed to the low-temperature heat collection device 1.
The change in the fluid temperatures of the low-temperature heat storage device 4 and the high-temperature heat storage device 5 in the second embodiment is the same as that of the first embodiment, and the fluid in each of the heat storage devices is a single phase flow. Therefore, the second embodiment also elicits similar effects to those of the first embodiment.
Next, the operation mode of the solar thermal power generation plant according to the third embodiment will be described. However, the operation mode in this embodiment is the substantially same as the operation of the second embodiment and thus, only the operations different from those of the second embodiment in the heat storage operation mode will be described below.
As illustrated in
The change in the fluid temperatures of the low-temperature heat storage device 4 and the high-temperature heat storage device 5 in the third embodiment is the same as that of the first embodiment, and the fluid in each of the heat storage devices is a single phase flow. Therefore, the third embodiment also elicits similar effects to those of the first embodiment.
Next, the operation mode of the solar thermal power generation plant according to the fourth embodiment will be described. However, the operation mode in this embodiment is the substantially same as that of the second embodiment and thus, only the operations different from those of the second embodiment in the heat storage operation mode will be described below.
As illustrated in
Next, the fluid temperatures of the low-temperature heat storage device 4 and the high-temperature heat storage device 5 in the heat storage operation mode will be described.
As illustrated in
On the other hand, as illustrated in
Therefore, in the fourth embodiment as well, since the fluid flowing in the piping of the low-temperature heat storage device 4 and the high-temperature heat storage device 5 can be prevented from becoming a water-steam two phase flow, the same effects as those of the first embodiment can be elicited. In addition, in the fourth embodiment, a higher temperature can be stored in the low-temperature heat storage device 4 than in the first to third embodiments, in proportion to an amount of heating water by the second heat exchanger 41. That is, the temperature range of heat that can be stored in the low-temperature heat storage device 4 can be advantageously enlarged.
Note that the present invention is not limited to the embodiments described above, and include various modifications. For example, the embodiments described above are described in detail for the purpose of clearly describing the present invention, and are not necessarily limited to those provided with all the above-mentioned components.
Number | Date | Country | Kind |
---|---|---|---|
2017-211240 | Oct 2017 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2018/036937 | 10/2/2018 | WO | 00 |