Claims
- 1. A method of soldering together at least two jewelry pieces, comprising (a) heating a solder alloy composition comprising 38 to 70% by weight gold, 6 to 20% by weight palladium, 8 to 40% by weight silver, 1 to 6% by weight iron or cobalt or a mixture of the two, 0 to 10% by weight copper, 0 to 5% by weight tin, 0 to 5% by weight zinc, 0 to 5% by weight indium, 0 to 4% by weight gallium, 0 to 4% by weight germanium, 0 to 1% by weight tungsten and 0 to 1% by weight of at least one member selected from the group consisting of iridium, ruthenium and rhenium, wherein the sum of the contents of tin, zinc, indium, gallium and germanium is optionally at least 1% by weight and at most 5% by weight, to a temperature sufficient to reach the working temperature of said solder, (b) placing said solder heated to a temperature in the working temperature range in contact with at least a first gold or gold alloy jewelry piece and (c) soldering another gold or gold alloy jewelry piece to said first piece.
- 2. The method according to claim 1, wherein said solder alloy composition comprises 50 to 70% by weight gold, 8 to 20% by weight palladium, 14 to 20% by weight silver, 1 to 6% by weight iron or cobalt or a mixture of the two, 1 to 10% by weight copper, 0 to 5% by weight tin, 0 to 5% by weight zinc, 0 to 5% by weight indium, 0 to 4% by weight gallium, 0 to 4% by weight germanium, 0 to 1% by weight tungsten and 0 to 1% by weight of at least one member selected from the group consisting of iridium, ruthenium and rhenium, wherein the sum of the contents of tin, zinc, indium, gallium and germanium is between 1 and 5% by weight.
- 3. The method according to claim 1, further comprising matching the color of said solder to the color of said jewelry pieces as an initial step.
- 4. A method of soldering together at least two dental parts, comprising (a) heating a solder alloy composition comprising 38 to 70% by weight gold, 6 to 20% by weight palladium, 8 to 40% by weight silver, 1 to 6% by weight iron or cobalt or a mixture of the two, 0 to 10% by weight copper, 0 to 5% by weight tin, 0 to 5% by weight zinc, 0 to 5% by weight indium, 0 to 4% by weight gallium, 0 to 4% by weight germanium, 0 to 1% by weight tungsten and 0 to 1% by weight of at least one member selected from the group consisting of iridium, ruthenium and rhenium, wherein the sum of the contents of tin, zinc, indium, gallium and germanium is optionally at least 1% by weight and at most 5% by weight, to a temperature sufficient to reach the working temperature of said solder, (b) placing said solder heated to a temperature in the working temperature range in contact with at least a first gold or gold alloy dental piece and (c) soldering another gold or gold alloy dental piece to said first piece.
- 5. The method according to claim 4, wherein said solder alloy composition comprises 50 to 70% by weight gold, 8 to 20% by weight palladium, 14 to 20% by weight silver, 1 to 6% by weight iron or cobalt or a mixture of the two, 1 to 10% by weight copper, 0 to 5% by weight tin, 0 to 5% by weight zinc, 0 to 5% by weight indium, 0 to 4% by weight gallium, 0 to 4% by weight germanium, 0 to 1% by weight tungsten and 0 to 1% by weight of at least one member selected from the group consisting of iridium, ruthenium and rhenium, wherein the sum of the contents of tin, zinc, indium, gallium and germanium is between 1 and 5% by weight.
Priority Claims (1)
Number |
Date |
Country |
Kind |
3935813 |
Oct 1989 |
DEX |
|
Parent Case Info
This application is a division of application Ser. No. 07/602,963, filed Oct. 25, 1990, now abandoned.
US Referenced Citations (1)
Number |
Name |
Date |
Kind |
4473621 |
Drylie |
Sep 1984 |
|
Foreign Referenced Citations (4)
Number |
Date |
Country |
0234790 |
Sep 1987 |
EPX |
2828304 |
Feb 1979 |
DEX |
63-024050 |
Feb 1988 |
JPX |
683004 |
Nov 1952 |
GBX |
Divisions (1)
|
Number |
Date |
Country |
Parent |
602963 |
Oct 1990 |
|