The present invention relates generally to a sole structure for a shoe, and more particularly, to an improvement in the sole structure for enhancing cushioning and bending properties of the heel portion of the sole.
Japanese patent application laying-open publication No. 2003-339405 shows a sole structure for a shoe to secure cushioning properties of the heel portion. In the sole structure, an upper plate and a lower plate are disposed on the upper side and the lower side, respectively, of a wavy plate that is disposed at the heel region.
In this case, a plurality of voids formed between the wavy plate and the upper and lower plate function as cushion holes to secure cushioning properties of the heel portion.
However, in the prior art structure shown in JP publication No. 2003-339405, since the upper convex portions and the lower convex portions of the wavy plate are fixedly attached to the upper plate and the lower plate, respectively, a vertical deformation of the wavy plate has been restricted at the time of striking onto the ground. Therefore, the prior art structure had the limitation on improvement in cushioning properties of the sole heel portion. Also, in the prior art structure, restriction on the deformation of the wavy plate has impeded the bending properties of the heel portion as well.
On the other hand, Japanese patent application laying-open publication No. 2003-9906 shows a sole structure for a shoe having an upper wavy sheet and a lower wavy sheet that are oppositely disposed via a void between an upper midsole and a lower midsole in the sole heel portion.
In this case, the void between the upper and lower wavy sheet functions as a cushion hole to secure the cushioning properties of the heel portion.
However, in the prior art structure shown in JP publication No. 2003-9906, since there are provided the upper midsole on the upper surface of the upper wavy sheet and the lower midsole on the lower surface of the lower wavy sheet, the upper and lower midsole restricts the vertical deformation of the wavy sheet at the time of impacting onto the ground. Therefore, the prior art structure had the limitation on improvement in cushioning properties of the sole heel portion. Also, in the prior art structure, restriction on the deformation of the wavy sheet has impeded the bending properties of the heel portion as well.
An object of the present invention is to provide a sole structure for a shoe that can improve bending properties as well as cushioning properties of the sole heel portion.
A sole structure for a shoe according to the present invention includes an upper plate disposed on the upper side of the heel region of the sole structure, a wavy lower plate disposed on the lower side of the heel region and having at least two convex portions that protrude downwardly and that form a void relative to the upper plate, and a plurality of outsole portions separated in the longitudinal direction and fitted to the lower surface of the convex portions of the lower plate.
According to the present invention, at the time of striking onto the ground, the void formed between the upper and lower midsole acts as a cushion hole to display cushioning properties of the heel portion. Moreover, in this case, since the longitudinally separated outsole portions are directly fitted to the lower surfaces of the convex portions of the wavy lower plate, deformation of the convex portions of the wavy lower plate is not restricted at the time of striking onto the ground, thereby enhancing the cushioning properties of the sole heel portion. Also, by securing the deformation of the wavy lower plate, bending properties of the sole heel portion is improved. As a result, when a shoe wearer impacts the ground on the rear end of the sole heel portion and the load transfers forwardly, a “ride feeling” can be improved.
Here,
In this impact test, a weight of 10 kg falls down from the height of 60 mm onto each of the sole structures, and thereafter, the amount of deformation of each of the sole structures is measured. The thickness of each of the sole structures before falling of the weight is 30 mm, and a hit area on each of the sole structures is 15.9 cm2.
The amount of deformation of each of the sole structures after falling of the weight is 18.02 mm for the sole structure of the present invention and 14.38 mm for the prior art sole structure. In other wards, the amount of deformation of the present invention is 125.3 in the case where the amount of deformation of the prior art structure is 100. That is, the deformation of the present invention is about 1.25 times greater than that of the prior art structure.
In addition, a shoe wearer can sense the difference in the cushioning properties if the deformation is 110 relative to 100 in the prior art structure. Therefore, if the deformation is 125.3 as in the present invention, the difference in the cushioning properties is remarkable.
The upper plate constituting the sole structure of the present invention may have a wavy shape. In this case, deformation of the wavy upper plate further improves the cushioning properties of the sole heel portion.
Also, the upper plate may have a convex portion that protrudes in the direction opposite the protruding direction of the convex portion of the lower plate and that is located at a position corresponding to the convex portion of the lower plate. In this case, a large void can be secured between the upper and lower plate to further enhance the cushioning properties of the sole heel portion. In addition, the upper plate may have a convex portion that protrudes in the same direction as the protruding direction of the convex portion of the lower plate and that is located at a position corresponding to the convex portion of the lower plate.
Preferably, there is provided an elastic block member as a cushioning member between the upper and lower plate, and the upper plate and the lower plate are connected to each other through the elastic block member. Suitable adjustment of elasticity of the elastic block member can further improve the cushioning properties of the sole heel portion.
In the case of the wavy upper plate, the downwardly protruding convex portion of the wavy configuration of the upper plate may be coupled through the elastic block to the upwardly protruding convex portion between the adjacent convex portions of the lower plate.
The upwardly protruding convex portion of the lower plate and the downwardly protruding convex portion of the upper plate are disposed oppositely to each other in the vertical direction, or disposed offset in the longitudinal direction.
The number of convex portions of the lower plate may be varied between the medial side and the lateral side of the sole structure.
The upper plate may be flat in shape. In this case, since a flat surface is secured on the upper surface of the upper plate, a foot contact surface for a shoe wearer can be easily obtained without providing a midsole on the upper side of the upper plate.
A midsole of a soft elastic material may be provided on the upper side of the upper plate to obtain an improved favorable touch to the sole of a wearer's foot.
The longitudinally adjacent outsole portions may be connected to each other though a connection in the longitudinal direction. At this juncture, the lower surface of the connection is preferably concave shaped.
In this case, by connecting the outsole portions through the connection, the outsole portions can be integrated with each other to improve the assembly efficiency. Also, in this case, since the lower surface of the connection is formed concave, the connection does not restrict the compressive deformation of the convex portion of the lower plate.
The outsole portions may be separately disposed on the medial side and the lateral side of the heel portion. At this juncture, the outsole portions on the medial side may be connected to each other in the longitudinal direction and the outsole portions on the lateral side may be connected to each other in the longitudinal direction. Also, the lower surface of the connection on the lateral side may have a concave shape and the lower surface of the connection on the medial side may have a flat shape to contact the ground.
In this case, the deformation of the convex portion of the lower plate on the medial side of the heel region is more restricted than the deformation of the convex portion of the lower plate on the lateral side. As a result, pronation can be prevented at the time of striking onto the ground and the sole structure suitable for a running shoe can thus be achieved.
On the other hand, in the case where the outsole portions are separately disposed on the medial side and the lateral side of the heel portion, the outsole portions on the medial side may be connected to each other in the longitudinal direction and the outsole portions on the lateral side may be connected to each other in the longitudinal direction, and the lower surface of the connection on the medial side may have a concave shape and the lower surface of the connection on the lateral side may have a flat shape to contact the ground.
In this case, the deformation of the convex portion of the lower plate on the lateral side of the heel region is more restricted than the deformation of the convex portion of the lower plate on the medial side. As a result, supination can be prevented at the time of sidestepping and the sole structure suitable for an indoor shoe such as a tennis shoe or basketball shoe can thus be achieved.
A longitudinally extending rib may be integrated with the upper pate or the lower plate. Since provision of a rib increases the bending rigidity of the upper or lower plate, deformation of the upper or lower plate is restrained, and the bending and cushioning properties can be adjusted.
The rib may be formed either on the medial side or the lateral side of the upper or lower midsole. In the case where the rib is provided on the medial side of the plate, pronation at the time of impacting the ground can be prevented and the sole structure suited for a running shoe can be proposed. In the case where the rib is provided on the lateral side of the plate, supination at the time of sidestepping can be prevented and the sole structure suited for an indoor shoe such as a tennis shoe or a basketball shoe can be proposed.
The number of ribs may be different between the medial side and the lateral side of the upper or lower plate. In this case, since the bending rigidity of the plate is made greater on the side with more ribs than the other side, by increasing the number of ribs on the medial side, a sole structure suitable for a running shoe can be attained. Alternatively, by increasing the number of ribs on the lateral side, a sole structure suitable for indoor sports can be attained.
A longitudinally extending rib may be integrally formed with the lower plate and at this juncture the rib may be disposed only at the position corresponding to the outsole portion and may not be disposed at the region where no outsole portion is provided, thereby preventing the rib from excessively restricting the deformation of the wavy lower plate at the time of impacting the ground.
According to the present invention, since the upper plate and the wavy lower plate are disposed in the sole heel portion with the void formed therebetween and a plurality of longitudinally separated outsole portions are attached on the lower surface of the convex portions of the lower plate, the deformation of the convex portions of the wavy lower plate is not restricted at the time of striking onto the ground, thereby improving the cushioning and bending properties.
For a more complete understanding of the invention, reference should be made to the embodiments illustrated in greater detail in the accompanying drawings and described below by way of examples of the invention. In the drawings, which are not to scale:
Referring now to the drawings,
The upper plate 2 has wavy configurations that progress longitudinally in the heel portion H and that have two convex portions 20, 21 each protruding upwardly. The lower plate 3 has wavy configurations that progress longitudinally in the heel portion H similar to the upper plate 2 and that have two convex portions 30, 31 each protruding downwardly. The corresponding convex portions 20, 30 and 21, 31 of the upper and lower plate 2, 3 in the heel portion H are oppositely disposed in the vertical direction. In other words, the convex portions 20, 30 protrude in the opposite directions. Similarly, the convex portions 21, 31 protrude in the opposite directions. Between the corresponding convex portions 20 and 30 is formed a void C and also between the corresponding convex portions 21 and 31 is formed a void C. Additionally, in the forefoot portion F as well, a void C′ is formed between the upper plate 2 and the lower plate 3.
As shown in
Turing back to
An elastic block member 6 is disposed between the upper plate 2 and the lower plate 3 at the position where the upper and lower plate 2, 3 are most close to each other in the heel portion H. The upper plate 2 is coupled to the lower plate 3 through the elastic block 6. In other words, the downwardly convex portion 25 formed between the adjacent upwardly convex portions 20 and 21 of the upper plate 2 and the upwardly convex portion 35 formed between the adjacent downwardly convex portions 30 and 31 of the upper plate 3 are disposed opposite each other in the vertical direction, and these oppositely disposed portions are connected to each other through the elastic block 6.
The elastic block 6 is, in this embodiment, formed of a pair of members disposed on opposite side ends of the heel portion H (see
The upper and lower plate 2, 3 is preferably formed of a hard plastic resin in order to prevent loss of elasticity due to repetitive deformation to maintain the shape of the void C to some degree between the plates 2 and 3. For example, the upper and lower plate 2, 3 may be formed of thermoplastic resin such as thermoplastic polyurethane (TPU), polyamide elastomer (PAE), ABS resin or the like. Alternatively, the upper and lower plate 2, 3 may be formed of thermosetting resin such as epoxy resin, unsaturated polyester resin or the like. Also, the upper and lower plate 2, 3 may be formed of fiber reinforced plastics including carbon fibers or metal fibers.
The midsole 4 is preferably formed of the soft elastic material to contact and support the sole of a shoe wearer. For example, foamed thermoplastic resin such as ethylene-vinyl acetate copolymer (EVA), foamed thermosetting resin such as polyurethane (PU), and foamed rubber such as butadiene rubber or chloroprene rubber may be used.
As shown in
In the forefoot portion F and the midfoot portion M, the upper plate 2 and the lower plate 3 are coupled to each other through the elastic block 7, as shown in
According to the above-mentioned sole structure, at the time of striking onto the ground, the void C formed between the upper plate 2 and the lower plate 3 acts as a cushion hole to display cushioning properties of the heel portion H. Moreover, in this case, since the longitudinally separated outsole portions 51-55 are directly attached to the lower surfaces of the downwardly convex portions 30, 31 of the wavy lower plate 3, compressive deformation of the downwardly convex portions 30, 31 of the wavy lower plate 3 is not restricted at the time of impacting the ground and the cushioning properties of the sole heel portion can thus be improved. Also, in this case, by securing the deformation of the wavy lower plate 3, bending properties of the sole heel portion can be enhanced. Thereby, a “ride feeling” can be improved when the shoe wearer impacts the ground on the rear end of the sole heel portion and the load travels in the forward direction.
Furthermore, in this case, since the corresponding convex portions 20, 30 between the upper and lower plate 2, 3 protrude in the opposite direction and the corresponding convex portions 21, 31 between the upper and lower plate 2, 3 protrude in the opposite direction, a large void C can be secured between the upper and lower plate 2, 3 and the cushioning properties of the sole heel portion can be further improved. Also, since the upper plate 2 is in the shape of a wavy corrugation, deformation of the upper plate 2 also helps improve the cushioning properties of the sole heel portion.
The corresponding convex portions 20, 30 between the upper and lower plate 2, 3 may protrude in the same direction and the corresponding convex portions 21, 31 between the upper and lower plate 2, 3 may protrude in the same direction. At this juncture, in order to secure a void C between the upper plate 2 and the lower plate 3, the radius of curvature of the convex portions 20 is preferably different from the radius of curvature of the convex portions 30 and/or the radius of curvature of the convex portions 21 is preferably different from the radius of curvature of the convex portions 31. In the alternative, the corresponding convex portions between the upper plate 2 and the lower plate 3 may be offset in the longitudinal direction.
In the above-mentioned first embodiment, an example in which the lower plate 3 has two convex portions 30, 31 was shown, but the application of the present invention is not limited to such example. The lower plate 3 may have more than three convex portions. Also, in the above-mentioned first embodiment, an example in which the number of convex portions (i.e. two) on the medial side of the upper and lower plate 2, 3 is the same as the number of convex portions (i.e. two) on the lateral side of the upper and lower plate 2, 3, but the application of the present invention is not limited to such example. The number of convex portions on the medial side may be different from that on the lateral side: e.g. two convex portions on the medial side and three convex portions on the lateral side.
Also, the first embodiment showed the upper plate 2 having a wavy corrugation in the heel portion H, but in the application of the present invention, the upper plate 2 may be flat in the heel portion H. In this case, since a flat surface is secured on the upper surface of the upper plate 2, a foot contact surface for the shoe wearer can be easily obtained without providing a midsole on the upper side of the upper plate 2.
In above-mentioned first embodiment, the elastic block may be omitted. In this case, the upper and lower plate 2, 3 need not to be coupled to each other at the position where the elastic block was provided. A clearance may be formed between the upper plate 2 and the lower plate 3. In the case where the upper plate 2 and the lower plate 3 are coupled to each other, the upper and lower plate 2, 3 can be integrally formed, thereby simplifying the manufacturing process and the assembly process.
In the above-mentioned first embodiment, the upwardly convex portion 35 between the adjacent downwardly convex portions 30, 31 of the lower plate 3 is positioned against the downwardly convex portion 25 between the adjacent upwardly convex portions 20, 21 of the upper plate 2, whereas in the second embodiment, these convex portions 25, 35 are disposed offset in the longitudinal direction. Preferably, as shown in
In this case, at the time of striking onto the ground, the elastic block 6 shear-deforms as well as bending-deforms downwardly. At this juncture, the placement of the convex portion 25 of the upper plate 2 in front of the convex portion 35 of the lower plate 3 facilitates the downward deformation of the upper plate 2, thereby further improving the cushioning properties of the sole heel portion.
Additionally, in the second embodiment, the upper plate 2 does not extend to the forefoot portion F, but it is disposed mainly at the heel portion H and its front end portion is fixedly attached to the lower plate 3 at the midfoot portion M.
This third embodiment differs from the second embodiment in that the upper and lower plate 2, 3 has a third convex portion 22, 32, respectively. The convex portions 22, 32 protruding in the opposite directions are contraposed in the vertical direction, and a third void C is formed between the convex portions 22, 32. The upwardly convex portion between the adjacent downwardly convex portions 31, 32 of the lower plate 3 is disposed opposite the downwardly convex portion between the adjacent upwardly convex portions 21, 22 of the upper plate 2. These oppositely disposed portions are connected to each other through the elastic block 61.
In this case, by forming the void C at the heel rear end portion, when impacting the ground on the heel rear end portion, downward deformation of the upper plate 2 becomes much easier, thereby further improving the cushioning properties of the sole heel portion.
As shown in
In this case, since the outsole portions 50-55 are connected to each other via the connections 50, 50′ in the longitudinal direction, the outsole portions can be integrated with each other. Thereby, during assembly, the outsole portions 50-55 can be bonded to the bottom surface of the lower plate 3 at one time. As a result, mis-bonding can be prevented and the assembly accuracy can be improved. Also, in this case, since the connections 50, 50′ have concave bottom surfaces 50a, 50′a, the connections 50, 50′ does not restrict the compressive deformation of the convex portions 30, 31 of the lower plate 3. Therefore, in this embodiment as well, cushioning and bending properties of the sole heel portion can be improved similarly to the first embodiment.
In the above-mentioned fourth embodiment, both of the connections 50, 50′ have concave bottom surfaces 50a, 50′a, but the present invention is not limited to such an example.
In this fifth embodiment, only the bottom surface 50′a of the connection 50′ disposed on the lateral side is concave in shape as with the fourth embodiment, whereas the bottom surface 50a of the connection 50 disposed on the medial side is flat in shape so as to be in contact with the ground surface S (see
In this case, the deformation of the convex portions 30, 31 of the lower plate 3 on the medial side in the sole heel portion is more restrained than the deformation of the convex portions 30, 31 of the lower plate 3 on the lateral side in the sole heel portion. Thereby, pronation can be prevented and a sole structure suitable for a running shoe can thus be achieved.
In contrast to the fifth embodiment, according to a sixth embodiment, only the bottom surface 50a of the connection 50 disposed on the medial side is concave in shape as with the fourth embodiment, whereas the bottom surface 50′a of the connection 50′ disposed on the lateral side is flat in shape so as to be in contact with the ground surface S (see
In this case, the deformation of the convex portions 30, 31 of the lower plate 3 on the lateral side in the sole heel portion is more restrained than the deformation of the convex portions 30, 31 of the lower plate 3 on the medial side in the sole heel portion. Thereby, supination can be prevented and a sole structure suitable for an indoor shoe such as a tennis shoe or a basketball shoe can thus be achieved.
The ribs 8 are provided on the medial side of the sole heel portion and the ribs 9 are provided on the lateral side of the sole heel portion. Also, the ribs 9 are disposed at the positions corresponding to the outsole portions 51, 52, respectively. The ribs 8 are disposed at the positions corresponding to the outsole portions 53, 54, respectively. There are no ribs provided between the longitudinally adjacent outsole portions 51, 52 and between the longitudinally adjacent outsole portions 54, 55.
In this case, the bending rigidity of the lower plate 3 is made higher at the portions where the ribs 8, 9 are provided than at the portions where the ribs 8, 9 are not provided. Thereby, the deformation of the lower plate 3 is more restricted at the portions where the ribs 8, 9 are provided than at the portions where the ribs 8, 9 are not provided. As a result, the bending and cushioning properties of the lower plate 3 can be adjusted. Also, in this case, the ribs 8, 9 are not provided between the outsole portions 51, 52 and between the outsole portions 54, 55, thereby preventing the deformation of the wavy lower plate 3 from being excessively restricted at the time of impacting the ground and preventing the cushioning and bending properties of the sole heel portion from being hindered.
Also, the number of ribs 8, 9 may be different between the medial side and the lateral side of the lower plate 3. Alternatively, a rib may be provided on either the medial side or the lateral side of the lower plate 3.
In the case where a rib is provided only on the medial side of the lower plate 3, or the number of the ribs 8 on the medial side is made larger than the number of the ribs 9 on the lateral side, pronation can be prevented at the time of impacting the ground and a sole structure suited for a running shoe can be attained. On the other hand, in the case where a rib is provided only on the lateral side of the lower plate 3, or the number of the ribs 9 on the lateral side is made larger than the number of the ribs 8 on the medial side, supination can be prevented at the time of sidestepping and a sole structure suited for an indoor shoe such as a tennis shoe, basketball shoe or the like can be attained. Additionally, the seventh embodiment showed the example in which the ribs are provided on the lower plate 3, but in the application of the present invention, the ribs maybe provided on the upper plate 2.
Those skilled in the art to which the invention pertains may make modifications and other embodiments employing the principles of this invention without departing from its spirit or essential characteristics particularly upon considering the foregoing teachings. The described embodiments and examples are to be considered in all respects only as illustrative and not restrictive. The scope of the invention is, therefore, indicated by the appended claims rather than by the foregoing description. Consequently, while the invention has been described with reference to particular embodiments and examples, modifications of structure, sequence, materials and the like would be apparent to those skilled in the art, yet fall within the scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
2005-156635 | May 2005 | JP | national |