The present disclosure relates generally to sole structures for articles of footwear, and more particularly to sole structures incorporating a fluid-filled chamber.
This section provides background information related to the present disclosure which is not necessarily prior art.
Articles of footwear typically include an upper and a sole structure. The upper generally forms a footwear body that extends over a portion of a foot to retain the article of footwear on the foot and may extend over an instep and toe areas of the foot, along medial and lateral sides of the foot, and/or around a heel area of the foot. The upper may be formed from one or more material elements, such as textiles, polymer sheet layers, foam layers, leather, synthetic leather, and other materials. These materials may be attached together, such as by stitching or adhesive bonding. The upper may be configured to form an interior of the footwear that comfortably and securely receives a foot. An opening of the upper may facilitate entry and removal of a foot from the interior of the upper. A closure system, such as lacing, cinches, and/or straps may allow a wearer to adjust a fit of the article of footwear by selectively tightening and loosening the upper.
The sole structure is generally attached to the upper and disposed between a foot and a ground surface. For example, a sole structure may be attached to a lower portion of the upper. The sole structure may include one or more components, including one or more of an outsole, a midsole, an insole, an insert, and a bladder or a fluid-filled chamber, such as an airbag. The sole structure may also include other components or elements, such as ground surface traction elements, depending on the intended use of the article of footwear. Regardless of the particular construction of the sole structure, the sole structure may cooperate with the upper to provide a comfortable article of footwear configured to benefit a wearer engaged in any of a variety of activities.
The drawings described herein are for illustrative purposes only of selected configurations and not all possible implementations, and are not intended to limit the scope of the present disclosure.
Corresponding reference numerals indicate corresponding parts throughout the drawings.
Example configurations will now be described more fully with reference to the accompanying drawings. Example configurations are provided so that this disclosure will be thorough, and will fully convey the scope of the disclosure to those of ordinary skill in the art. Specific details are set forth such as examples of specific components, devices, and methods, to provide a thorough understanding of configurations of the present disclosure. It will be apparent to those of ordinary skill in the art that specific details need not be employed, that example configurations may be embodied in many different forms, and that the specific details and the example configurations should not be construed to limit the scope of the disclosure.
The terminology used herein is for the purpose of describing particular exemplary configurations only and is not intended to be limiting. As used herein, the singular articles “a,” “an,” and “the” may be intended to include the plural forms as well, unless the context clearly indicates otherwise. The terms “comprises,” “comprising,” “including,” and “having,” are inclusive and therefore specify the presence of features, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, steps, operations, elements, components, and/or groups thereof. The method steps, processes, and operations described herein are not to be construed as necessarily requiring their performance in the particular order discussed or illustrated, unless specifically identified as an order of performance. Additional or alternative steps may be employed.
When an element or layer is referred to as being “on,” “engaged to,” “connected to,” “attached to,” or “coupled to” another element or layer, it may be directly on, engaged, connected, attached, or coupled to the other element or layer, or intervening elements or layers may be present. In contrast, when an element is referred to as being “directly on,” “directly engaged to,” “directly connected to,” “directly attached to,” or “directly coupled to” another element or layer, there may be no intervening elements or layers present. Other words used to describe the relationship between elements should be interpreted in a like fashion (e.g., “between” versus “directly between,” “adjacent” versus “directly adjacent,” etc.). As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
The terms first, second, third, etc. may be used herein to describe various elements, components, regions, layers and/or sections. These elements, components, regions, layers and/or sections should not be limited by these terms. These terms may be only used to distinguish one element, component, region, layer or section from another region, layer or section. Terms such as “first,” “second,” and other numerical terms do not imply a sequence or order unless clearly indicated by the context. Thus, a first element, component, region, layer or section discussed below could be termed a second element, component, region, layer or section without departing from the teachings of the example configurations.
One aspect of the disclosure provides a sole structure of an article of footwear. The sole structure includes a midsole having a plurality of projections, at least one of the plurality of projections forming a first portion of a peripheral side wall of the sole structure. The sole structure also includes a fluid-filled chamber having a central portion, a plurality of lobes extending outward from the central portion, and a plurality of channels formed between the plurality of lobes. A first lobe of the plurality of lobes is disposed between at least two of the plurality of projections such that the first lobe forms a second portion of the peripheral side wall of the sole structure.
Implementations of the disclosure may include one or more of the following optional features. In some implementations, the plurality of channels includes a first channel and a second channel. Here, the first lobe defines a first distance extending between the first channel and the second channel and a second distance extending from a bottom surface of the fluid-filled chamber to a top surface of the fluid-filled chamber, the first distance being substantially equal to the second distance.
In some examples, the midsole includes an upper surface and a lower surface opposite the upper surface, the plurality of projections being disposed within the plurality of channels from a top surface of the fluid-filled chamber to a bottom surface of the fluid-filled chamber. In this example, exposed side walls of the plurality of projections form the first portion of the peripheral side wall of the sole structure.
In some configurations, the plurality of lobes each define a distal end wall and the plurality of projections each define an exposed side wall, a plurality of the distal end walls and a plurality of the exposed side walls alternating in an inter-fitted configuration to form the peripheral side wall of the sole structure. The at least some of the distal end walls may be flush with at least some of the exposed side walls to form the peripheral side wall. The at least some of the distal end walls may be offset from at least some of the exposed side walls to form the peripheral side wall of the sole structure.
In some implementations, the sole structure includes an outsole having an exposed surface and a non-exposed surface opposite the exposed surface, where the fluid-filled chamber engages a first portion of the non-exposed surface, and the midsole engages a second portion of the non-exposed surface of the outsole. The outsole may include a lip disposed in a mid-foot region of the sole structure and configured to inhibit movement of the fluid-filled chamber toward a forefoot region of the sole structure. The outsole may include at least one protrusion disposed within at least one of the plurality of channels. Here, the midsole may engage the at least one protrusion.
In some examples, fluid-filled chamber includes a membrane defining a fluid-filled chamber and the midsole is non-hollow. The fluid-filled chamber may be tapered between a posterior end and an anterior end of the sole structure.
Another aspect of the disclosure provides a sole structure for an article of footwear. The sole structure includes a fluid-filled chamber having a central portion and a plurality of lobes extending outward from the central portion. The plurality of lobes form a first portion of a peripheral side wall of the sole structure. The sole structure also includes a midsole having a plurality of projections inter-fitted with the plurality of lobes and forming a second portion of the peripheral side wall of the sole structure.
Implementations of this aspect of the disclosure may include one or more of the following optional features. In some configurations, the plurality of lobes define a first channel and a second channel, a first lobe of the plurality of lobes defining a first distance extending between the first channel and the second channel and a second distance extending from a bottom surface of the fluid-filled chamber to a top surface of the fluid-filled chamber, the first distance being substantially equal to the second distance. The midsole may include an upper surface and a lower surface opposite the upper surface. Here, at least one of the plurality of projections may be disposed between two lobes of the plurality of lobes from the top surface to the bottom surface and exposed side walls of the plurality of projections may form the first portion of the peripheral side wall of the sole structure.
In some implementations, the plurality of lobes each define a distal end wall and the plurality of projections each define an exposed side wall, a plurality of the distal end walls and a plurality of the exposed side walls alternating in an inter-fitted configuration to form the peripheral side wall of the sole structure. The at least some of the distal end walls may be flush with at least some of the exposed side walls to form the peripheral side wall. The at least some of the distal end walls may be offset from at least some of the exposed side walls to form the peripheral side wall of the sole structure.
In some examples, the sole structure may include an outsole having an exposed surface and a non-exposed surface opposite the exposed surface, where the fluid-filled chamber engages a first portion of the non-exposed surface, and the midsole engages a second portion of the non-exposed surface of the outsole. The outsole may include a lip disposed in a mid-foot region of the sole structure and configured to inhibit movement of the fluid-filled chamber toward a forefoot region of the sole structure. Optionally, the outsole may include at least one protrusion disposed between at least two of the plurality of lobes. When the outsole includes at least one protrusion disposed between at least two of the plurality of lobes, the midsole may engage the at least one protrusion.
In some configurations, the fluid-filled chamber includes a membrane defining a fluid-filled chamber and the midsole is non-hollow. The fluid-filled chamber may also be tapered between a posterior end and an anterior end of the sole structure.
Another aspect of the disclosure provides a sole structure for an article of footwear, the sole structure including a midsole having a plurality of projections, at least one of the plurality of projections forming a first portion of a peripheral side wall of the sole structure. The sole structure further includes a fluid-filled chamber having a central portion, a plurality of lobes extending outward from the central portion and between respective projections of the plurality of projections to form a second portion of the peripheral side wall of the sole structure, a plurality of tunnels fluidly coupling respective lobes of the plurality of lobes to the central portion, and a plurality of channels defined by adjacent lobes of the plurality of lobes and adjacent tunnels of the plurality of tunnels, at least one channel of the plurality of channels having a different shape than an adjacent channel of the plurality of channels.
Implementations of this aspect of the disclosure may include one or more of the following optional features. In some configurations, the fluid-filled chamber may be asymmetric about a central, longitudinal axis of the fluid-filled chamber. Additionally or alternatively, the fluid-filled chamber may be asymmetric about a central axis extending between a medial side of the fluid-filled chamber and a lateral side of the fluid-filled chamber and substantially perpendicular to the longitudinal axis.
In one configuration, the plurality of lobes may include a first lobe, a second lobe, a third lobe, and a fourth lobe, at least two of the first lobe, the second lobe, the third lobe, and the fourth lobe including the same shape. In this configuration, the other two of the first lobe, the second lobe, the third lobe, and the fourth lobe (i) may include a different shape than the at least two of the first lobe, the second lobe, the third lobe, and the fourth lobe and (ii) may have the same shape as one another. The at least two of the first lobe, the second lobe, the third lobe, and the fourth lobe may be disposed on opposite sides of the fluid-filled chamber. Additionally or alternatively, the first lobe, the second lobe, the third lobe, and the fourth lobe may extend around a heel region of the sole structure.
Each tunnel of the plurality of tunnels may include approximately the same size and shape. An article of footwear may incorporate the sole structure described above.
Another aspect of the disclosure provides a sole structure for an article of footwear, the sole structure including a midsole having a plurality of projections, at least one of the plurality of projections forming a first portion of a peripheral side wall of the sole structure. The sole structure further includes a fluid-filled chamber having a central portion, a plurality of lobes extending outward from the central portion and between respective projections of the plurality of projections to form a second portion of the peripheral side wall of the sole structure, a plurality of tunnels fluidly coupling respective lobes of the plurality of lobes to the central portion, and a plurality of channels defined by adjacent lobes of the plurality of lobes and adjacent tunnels of the plurality of tunnels, the fluid-filled chamber being asymmetric about a central, longitudinal axis of the fluid-filled chamber.
Implementations of this aspect of the disclosure may include one or more of the following optional features. In some configurations, at least one channel of the plurality of channels may have a different shape than an adjacent channel of the plurality of channels.
In one configuration, the fluid-filled chamber may be asymmetric about a central axis extending between a medial side of the fluid-filled chamber and a lateral side of the fluid-filled chamber and substantially perpendicular to the longitudinal axis.
The plurality of lobes may include a first lobe, a second lobe, a third lobe, and a fourth lobe, at least two of the first lobe, the second lobe, the third lobe, and the fourth lobe including the same shape. In this configuration, the other two of the first lobe, the second lobe, the third lobe, and the fourth lobe (i) may include a different shape than the at least two of the first lobe, the second lobe, the third lobe, and the fourth lobe and (ii) may have the same shape as one another. The at least two of the first lobe, the second lobe, the third lobe, and the fourth lobe may be disposed on opposite sides of the fluid-filled chamber. Additionally or alternatively, the first lobe, the second lobe, the third lobe, and the fourth lobe may extend around a heel region of the sole structure.
Each tunnel of the plurality of tunnels may include approximately the same size and shape. An article of footwear may incorporate the sole structure described above.
Referring to
The upper 100 includes interior surfaces that define an interior void 102 operable to receive and secure a foot for support on the sole structure 200. The upper 100 may be formed from one or more materials that are stitched or adhesively bonded together to form the interior void 102. Suitable materials of the upper 100 may include, but are not limited to, mesh, textiles, foam, leather, and synthetic leather. The materials may be selected and located to impart properties of durability, air-permeability, wear-resistance, flexibility, and comfort.
With reference to
In some examples, one or more fasteners 110 extend along the upper 100 to adjust a fit of the interior void 102 around the foot and to accommodate entry and removal of the foot therefrom. The upper 100 may include apertures, such as eyelets and/or other engagement features such as fabric or mesh loops that receive the fasteners 110. The fasteners 110 may include laces, straps, cords, hook-and-loop, or any other suitable type of fastener. The upper 100 may include a tongue portion 114 that extends between the interior void 102 and the fasteners.
The sole structure 200 may include a midsole component 202, a fluid-filled chamber component 204, and an outsole component 206. The sole structure 200 may be secured to a lower surface of upper 100, such as by stitching or adhesive bonding. The fluid-filled chamber component 204 may be attached to the midsole component 202, such as by adhesive bonding, and the outsole component 206 may be secured to the midsole component 202 or the fluid-filled chamber component 204, such as by adhesive bonding. Those skilled in the art will appreciate alternative materials for, and methods suitable for attaching, the upper 100, the midsole component 202, the fluid-filled chamber component 204, and the outsole component 206.
The sole structure 200 generally operates to attenuate impact and other ground reaction forces and absorb energy as, for example, the sole structure 200 contacts a ground surface during active use. As shown in
In some implementations, as discussed below, the midsole component 202 and the fluid-filled chamber component 204 inter-fit with the outsole component 206 to form an assembled sole structure 200, as shown in
The midsole component 202 may include at least one midsole component or element. As shown in
With reference to
Example resilient polymeric materials for the midsole component 202 may include those based on foaming or molding one or more polymers, such as one or more elastomers (e.g., thermoplastic elastomers (TPE)). The one or more polymers may include aliphatic polymers, aromatic polymers, or mixtures of both; and may include homopolymers, copolymers (including terpolymers), or mixtures of both.
In some aspects, the one or more polymers may include olefinic homopolymers, olefinic copolymers, or blends thereof. Examples of olefinic polymers include polyethylene, polypropylene, and combinations thereof. In other aspects, the one or more polymers may include one or more ethylene copolymers, such as, ethylene-vinyl acetate (EVA) copolymers, EVOH copolymers, ethylene-ethyl acrylate copolymers, ethylene-unsaturated mono-fatty acid copolymers, and combinations thereof.
In further aspects, the one or more polymers may include one or more polyacrylates, such as polyacrylic acid, esters of polyacrylic acid, polyacrylonitrile, polyacrylic acetate, polymethyl acrylate, polyethyl acrylate, polybutyl acrylate, polymethyl methacrylate, and polyvinyl acetate; including derivatives thereof, copolymers thereof, and any combinations thereof.
In yet further aspects, the one or more polymers may include one or more ionomeric polymers. In these aspects, the ionomeric polymers may include polymers with carboxylic acid functional groups, sulfonic acid functional groups, salts thereof (e.g., sodium, magnesium, potassium, etc.), and/or anhydrides thereof. For instance, the ionomeric polymer(s) may include one or more fatty acid-modified ionomeric polymers, polystyrene sulfonate, ethylene-methacrylic acid copolymers, and combinations thereof.
In further aspects, the one or more polymers may include one or more styrenic block copolymers, such as acrylonitrile butadiene styrene block copolymers, styrene acrylonitrile block copolymers, styrene ethylene butylene styrene block copolymers, styrene ethylene butadiene styrene block copolymers, styrene ethylene propylene styrene block copolymers, styrene butadiene styrene block copolymers, and combinations thereof.
In further aspects, the one or more polymers may include one or more polyamide copolymers (e.g., polyamide-polyether copolymers) and/or one or more polyurethanes (e.g., cross-linked polyurethanes and/or thermoplastic polyurethanes). Alternatively, the one or more polymers may include one or more natural and/or synthetic rubbers, such as butadiene and isoprene.
When the resilient polymeric material is a foamed polymeric material, the foamed material may be foamed using a physical blowing agent which phase transitions to a gas based on a change in temperature and/or pressure, or a chemical blowing agent which forms a gas when heated above its activation temperature. For example, the chemical blowing agent may be an azo compound such as adodicarbonamide, sodium bicarbonate, and/or an isocyanate.
In some implementations, the foamed polymeric material is a crosslinked foamed material. In these implementations, a peroxide-based crosslinking agent such as dicumyl peroxide may be used. Furthermore, the foamed polymeric material may include one or more fillers such as pigments, modified or natural clays, modified or unmodified synthetic clays, talc glass fiber, powdered glass, modified or natural silica, calcium carbonate, mica, paper, wood chips, and the like.
The resilient polymeric material may be formed using a molding process. In one example, when the resilient polymeric material is a molded elastomer, the uncured elastomer (e.g., rubber) may be mixed in a Banbury mixer with an optional filler and a curing package such as a sulfur-based or peroxide-based curing package, calendared, formed into shape, placed in a mold, and vulcanized.
In another example, when the resilient polymeric material is a foamed material, the material may be foamed during a molding process, such as an injection molding process. A thermoplastic polymeric material may be melted in the barrel of an injection molding system and combined with a physical or chemical blowing agent and optionally a crosslinking agent, and then injected into a mold under conditions which activate the blowing agent, forming a molded foam.
Optionally, when the resilient polymeric material is a foamed material, the foamed material may be a compression molded foam. Compression molding may be used to alter the physical properties (e.g., density, stiffness and/or durometer) of a foam, or to alter the physical appearance of the foam (e.g., to fuse two or more pieces of foam, to shape the foam, etc.), or both.
The compression molding process desirably starts by forming one or more foam preforms, such as by injection molding and foaming a polymeric material, by forming foamed particles or beads, by cutting foamed sheet stock, and the like. The compression molded foam may then be made by placing the one or more preforms formed of foamed polymeric material(s) in a compression mold, and applying sufficient pressure to the one or more preforms to compress the one or more preforms in a closed mold. Once the mold is closed, sufficient heat and/or pressure is applied to the one or more preforms in the closed mold for a sufficient duration of time to alter the preform(s) by forming a skin on the outer surface of the compression molded foam, fuse individual foam particles to each other, permanently increase the density of the foam(s), or any combination thereof. Following the heating and/or application of pressure, the mold is opened and the molded foam article is removed from the mold.
As shown in
The fluid-filled chamber component 204 may be manufactured using a variety of techniques. For example, the fluid-filled chamber component 204 may be made by blow molding, thermoforming, rotational molding, or other molding processes. As shown in
The fluid-filled chamber component 204 may include one or more fluid-filled chamber components or elements. In some implementations, multiple fluid-filled chamber components or elements having different characteristics, e.g., having different sizes, configurations, volumes, fluids, pressures, or other compression or performance characteristics, are provided in respective impact zones of the article of footwear 10. Alternatively, there may be a single fluid-filled chamber component or element. Such configurations may enable customization of compression characteristics of the fluid-filled chamber component(s) and associated performance characteristics of the sole structure 200 and the article of footwear 10.
As shown in
With reference to
As illustrated in
In some implementations, the fluid-filled chamber component 204 includes a plurality of tunnels 280 extending between the central portion 224 and the plurality of lobes 226. The tunnels 280 may provide lateral and sagittal shear stability to the fluid-filled chamber component 204, provide structure to the peripheral side surface of the sole structure 200 in the assembled configuration, and reduce excessive displacement and collapse. In some implementations, the plurality of tunnels 280 include a rear medial tunnel 282 extending from the central portion 224 to the rear medial lobe 228 and a rear lateral tunnel 284 extending from the central portion 224 to the rear lateral lobe 230.
With reference to
The fluid-filled chamber component 204 may further include a plurality of channels 238. In some implementations, the channels 238 include a rear channel 240, a front channel 242, a medial channel 244, and a lateral channel 246. Each channel 240, 242, 244, 246 may be disposed between two different adjacent lobes of the plurality of lobes 228, 230, 232, 234. In this regard, any two of the lobes 228, 230, 232, 234 of the plurality of lobes 226 may define one of the channels 240, 242, 244, 246 of the plurality of channels 238. For example, the rear medial lobe 228 and the rear lateral lobe 230 may define the rear channel 240, the front medial lobe 232 and the front lateral lobe 234 may define the front channel 242, the rear medial lobe 228 and the front medial lobe 232 may define the medial channel 244, and the rear lateral lobe 230 and the front lateral lobe 234 may define the lateral channel 246. As previously described, in some implementations, the rear longitudinal axis 276 and the front longitudinal axis 278 are defined by portions of the peripheral side surface of the lobes 228, 230, 232, 234 such that the rear longitudinal axis 276 is substantially parallel to the front longitudinal axis 278. In this regard, as illustrated in
With reference to
The fluid-filled chamber component 204 may include a wedge portion 248 disposed between the front medial lobe 232 and the front lateral lobe 234. For example, the wedge portion 248 may be formed as a component of the front medial lobe 232 and the front lateral lobe 234. Alternatively, the wedge portion 248 may be a component separate from the front medial lobe 232 and the front lateral lobe 234. The wedge portion 248 may taper outward from the central portion 224. For example, as illustrated in
The fluid-filled chamber component 204 may include a top surface 250 and the bottom surface 252. The top surface 250 may generally face the bottom surface 222 of the midsole component 202, and the bottom surface 252 may generally face a top surface 258 of the outsole component 206. At least a portion of the top surface 250 may be concave. In an assembled configuration, as shown in
With reference to
In some implementations, the membrane 254 is produced (e.g., thermoformed or blow molded) from a monolayer film (e.g., a single layer). In other implementations, the membrane 254 is produced (e.g., thermoformed or blow molded) from a multilayer film (e.g., multiple sublayers). In either aspect, the membrane 254 can have a film thickness ranging from about 0.2 micrometers to about be about 1 millimeter. In further implementations, the film thickness for the membrane 254 can range from about 0.5 micrometers to about 500 micrometers. In yet further implementations, the film thickness for the membrane 254 can range from about 1 micrometer to about 100 micrometers.
As illustrated in
The membrane 254 can be transparent, translucent, and/or opaque. As used herein, the term “transparent” for a membrane and/or a fluid-filled chamber means that light passes through the membrane in substantially straight lines and a viewer can see through the membrane. In comparison, for an opaque membrane, light does not pass through the membrane and one cannot see clearly through the membrane at all. A translucent membrane falls between a transparent membrane and an opaque membrane, in that light passes through a translucent layer but some of the light is scattered so that a viewer cannot see clearly through the layer.
The membrane 254 can be produced from an elastomeric material that includes one or more thermoplastic polymers and/or one or more cross-linkable polymers. In an aspect, the elastomeric material can include one or more thermoplastic elastomeric materials, such as one or more thermoplastic polyurethane (TPU) copolymers, one or more ethylene-vinyl alcohol (EVOH) copolymers, and the like.
As used herein, “polyurethane” refers to a copolymer (including oligomers) that contains a urethane group (—N(C═O)O—). These polyurethanes can contain additional groups such as ester, ether, urea, allophanate, biuret, carbodiimide, oxazolidinyl, isocynaurate, uretdione, carbonate, and the like, in addition to urethane groups. In an aspect, one or more of the polyurethanes can be produced by polymerizing one or more isocyanates with one or more polyols to produce copolymer chains having (—N(C═O)O—) linkages.
Examples of suitable isocyanates for producing the polyurethane copolymer chains include diisocyanates, such as aromatic diisocyanates, aliphatic diisocyanates, and combinations thereof. Examples of suitable aromatic diisocyanates include toluene diisocyanate (TDI), TDI adducts with trimethyloylpropane (TMP), methylene diphenyl diisocyanate (MDI), xylene diisocyanate (XDI), tetramethylxylylene diisocyanate (TMXDI), hydrogenated xylene diisocyanate (HXDI), naphthalene 1,5-diisocyanate (NDI), 1,5-tetrahydronaphthalene diisocyanate, para-phenylene diisocyanate (PPDI), 3,3′-dimethyldiphenyl-4, 4′-diisocyanate (DDDI), 4,4′-dibenzyl diisocyanate (DBDI), 4-chloro-1,3-phenylene diisocyanate, and combinations thereof. In some implementations, the copolymer chains are substantially free of aromatic groups.
In particular aspects, the polyurethane polymer chains are produced from diisocynates including HMDI, TDI, MDI, H12 aliphatics, and combinations thereof. In an aspect, the thermoplastic TPU can include polyester-based TPU, polyether-based TPU, polycaprolactone-based TPU, polycarbonate-based TPU, polysiloxane-based TPU, or combinations thereof.
In another aspect, the polymeric layer can be formed of one or more of the following: EVOH copolymers, poly(vinyl chloride), polyvinylidene polymers and copolymers (e.g., polyvinylidene chloride), polyamides (e.g., amorphous polyamides), amide-based copolymers, acrylonitrile polymers (e.g., acrylonitrile-methyl acrylate copolymers), polyethylene terephthalate, polyether imides, polyacrylic imides, and other polymeric materials known to have relatively low gas transmission rates. Blends of these materials as well as with the TPU copolymers described herein and optionally including combinations of polyimides and crystalline polymers, are also suitable.
The chamber 256 can be produced using any suitable technique, such as thermoforming (e.g. vacuum thermoforming), blow molding, extrusion, injection molding, vacuum molding, rotary molding, transfer molding, pressure forming, heat sealing, casting, low-pressure casting, spin casting, reaction injection molding, radio frequency (RF) welding, and the like. In an aspect, the membrane 254 can be produced by co-extrusion followed by vacuum thermoforming to produce the chamber 256, which can be inflatable and which can optionally include one or more valves (e.g., one way valves) that allows chamber 256 to be filled with the fluid (e.g., gas).
The chamber 256 can be provided in a fluid-filled or in an unfilled state. The chamber 256 can be filled to include any suitable fluid, such as a gas or liquid. In an aspect, the gas can include air, nitrogen (N2), or any other suitable gas. In other aspects, chamber 256 can alternatively include other media, such as pellets, beads, ground recycled material, and the like (e.g., foamed beads and/or rubber beads). The fluid provided to the chamber 256 can result in the chamber 256 being pressurized. Alternatively, the fluid provided to the chamber 256 can be at atmospheric pressure such that the chamber 256 is not pressurized but, rather, simply contains a volume of fluid at atmospheric pressure.
The chamber 256 desirably has a low gas transmission rate to preserve its retained gas pressure. In some implementations, the chamber 256 has a gas transmission rate for nitrogen gas that is at least about ten (10) times lower than a nitrogen gas transmission rate for a butyl rubber layer of substantially the same dimensions. In an aspect, the chamber 256 has a nitrogen gas transmission rate of 15 cubic-centimeter/square-meter·atmosphere·day (cm3/m2·atm·day) or less for an average film thickness of 500 micrometers (based on thicknesses of the membrane 254). In further aspects, the transmission rate is 10 cm3/m2·atm·day or less, 5 cm3/m2·atm·day or less, or 1 cm3/m2·atm·day or less.
With reference to
A rear medial lobe 228a may have a different shape than the rear medial lobe 228. Similarly, a front medial lobe 232a may have a different shape than the front medial lobe 232, a medial channel 244a may have a different shape than the medial channel 244, and a rear medial tunnel 282a may have a different shape than the rear medial tunnel 282. In some implementations, the first distance D1 (
As shown in
With reference to
The outsole component 206 may be disposed below the midsole component 202 and the fluid-filled chamber component 204/204a, and may be formed of an abrasion resistant material suitable for contact with a ground surface. For example, the outsole component 206 may be disposed below the midsole component 202 and the fluid-filled chamber component 204/204a in the heel region 24 to protect these components from abrasive contact with a ground surface in the heel region 24 during heel-strike events, for example. Similarly, the outsole component 206 may be disposed below the midsole component 202 and/or the fluid-filled chamber component 204/204a in the forefoot region 20 to protect these components from abrasive contact with a ground surface during pivoting movements, for example.
As shown in
Similarly, the outsole component 206 may include a rear flange 264, a medial protrusion 266 and a lateral protrusion 268. The rear flange 264 may extend from the top surface 258 toward the midsole component 202, and the rear flange 264 may prohibit the fluid-filled chamber component 204/204a from moving beyond the anterior end 12. The medial protrusion 266 may engage the medial channel 244 of the fluid-filled chamber component 204/204a and the lateral protrusion 268 may engage the lateral channel 246 of the fluid-filled chamber component 204/204a. The medial protrusion 266 and the lateral protrusion 268 may prohibit movement of the fluid-filled chamber component 204/204a relative to the outsole component 206.
In an assembled configuration, as shown in
As set forth above, the sole structure 200, including the midsole component 202, the fluid-filled chamber component 204/204a, and the outsole component 206 may provide inflation and performance characteristics suitable for attenuating impact and ground reaction forces associated with a heel region of article of footwear 10, such as a heel strike portion of a running stride.
The following Clauses provide an exemplary configuration for a sole structure for an article of footwear described above.
Clause 1: A sole structure for an article of footwear, the sole structure comprising a midsole having a plurality of projections, at least one of the plurality of projections forming a first portion of a peripheral side wall of the sole structure and a fluid-filled chamber having a central portion, a plurality of lobes extending outward from the central portion, and a plurality of channels formed between the plurality of lobes, a first lobe of the plurality of lobes disposed between at least two of the plurality of projections such that the first lobe forms a second portion of the peripheral side wall of the sole structure.
Clause 2: The sole structure according to Clause 1, wherein the plurality of channels includes a first channel and a second channel, the first lobe defining a first distance extending between the first channel and the second channel and a second distance extending from a bottom surface of the fluid-filled chamber to a top surface of the fluid-filled chamber, the first distance being substantially equal to the second distance.
Clause 3: The sole structure according to Clause 1, wherein the midsole includes an upper surface and a lower surface opposite the upper surface, the plurality of projections disposed within the plurality of channels from a top surface of the fluid-filled chamber to a bottom surface of the fluid-filled chamber, and wherein exposed side walls of the plurality of projections form the first portion of the peripheral side wall of the sole structure.
Clause 4: The sole structure according to Clause 1, wherein the plurality of lobes each define a distal end wall and the plurality of projections each define an exposed side wall, a plurality of the distal end walls and a plurality of the exposed side walls alternating in an inter-fitted configuration to form the peripheral side wall of the sole structure.
Clause 5: The sole structure according to Clause 4, wherein the at least some of the distal end walls are flush with at least some of the exposed side walls to form the peripheral side wall.
Clause 6: The sole structure according to Clause 4, wherein the at least some of the distal end walls are offset from at least some of the exposed side walls to form the peripheral side wall of the sole structure.
Clause 7: The sole structure according to Clause 1, further comprising an outsole having an exposed surface and a non-exposed surface opposite the exposed surface, wherein the fluid-filled chamber engages a first portion of the non-exposed surface, and the midsole engages a second portion of the non-exposed surface of the outsole.
Clause 8: The sole structure according to Clause 7, wherein the outsole includes a lip disposed in a mid-foot region of the sole structure and configured to inhibit movement of the fluid-filled chamber toward a forefoot region of the sole structure.
Clause 9: The sole structure according to Clause 7, wherein the outsole includes at least one protrusion disposed within at least one of the plurality of channels.
Clause 10: The sole structure according to Clause 9, wherein the midsole engages the at least one protrusion.
Clause 11: The sole structure according to Clause 1, wherein the fluid-filled chamber includes a membrane defining a fluid-filled chamber and the midsole is non-hollow.
Clause 12: The sole structure according to Clause 1, wherein the fluid-filled chamber is tapered between a posterior end and an anterior end of the sole structure.
Clause 13: A sole structure for an article of footwear, the sole structure comprising a fluid-filled chamber having a central portion and a plurality of lobes extending outward from the central portion, the plurality of lobes forming a first portion of a peripheral side wall of the sole structure and a midsole having a plurality of projections inter-fitted with the plurality of lobes and forming a second portion of the peripheral side wall of the sole structure.
Clause 14: The sole structure according to Clause 13, wherein the plurality of lobes define a first channel and a second channel, a first lobe of the plurality of lobes defining a first distance extending between the first channel and the second channel and a second distance extending from a bottom surface of the fluid-filled chamber to a top surface of the fluid-filled chamber, the first distance being substantially equal to the second distance.
Clause 15: The sole structure according to Clause 14, wherein the midsole includes an upper surface and a lower surface opposite the upper surface, at least one of the plurality of projections disposed between two lobes of the plurality of lobes from the top surface to the bottom surface, and wherein exposed side walls of the plurality of projections form the first portion of the peripheral side wall of the sole structure.
Clause 16: The sole structure according to Clause 13, wherein the plurality of lobes each define a distal end wall and the plurality of projections each define an exposed side wall, a plurality of the distal end walls and a plurality of the exposed side walls alternating in an inter-fitted configuration to form the peripheral side wall of the sole structure.
Clause 17: The sole structure according to Clause 16, wherein the at least some of the distal end walls are flush with at least some of the exposed side walls to form the peripheral side wall.
Clause 18: The sole structure according to Clause 16, wherein the at least some of the distal end walls are offset from at least some of the exposed side walls to form the peripheral side wall of the sole structure.
Clause 19: The sole structure according to Clause 13, further comprising an outsole having an exposed surface and a non-exposed surface opposite the exposed surface, wherein the fluid-filled chamber engages a first portion of the non-exposed surface, and the midsole engages a second portion of the non-exposed surface of the outsole.
Clause 20: The sole structure according to Clause 19, wherein the outsole includes a lip disposed in a mid-foot region of the sole structure and configured to inhibit movement of the fluid-filled chamber toward a forefoot region of the sole structure.
Clause 21: The sole structure according to Clause 19, wherein the outsole includes at least one protrusion disposed between at least two of the plurality of lobes.
Clause 22: The sole structure according to Clause 21, wherein the midsole engages the at least one protrusion.
Clause 23: The sole structure according to Clause 13, wherein the fluid-filled chamber includes a membrane defining a fluid-filled chamber and the midsole is non-hollow.
Clause 24: The sole structure according to Clause 13, wherein the fluid-filled chamber is tapered between a posterior end and an anterior end of the sole structure.
The foregoing description has been provided for purposes of illustration and description. It is not intended to be exhaustive or to limit the disclosure. Individual elements or features of a particular configuration are generally not limited to that particular configuration, but, where applicable, are interchangeable and can be used in a selected configuration, even if not specifically shown or described. The same may also be varied in many ways. Such variations are not to be regarded as a departure from the disclosure, and all such modifications are intended to be included within the scope of the disclosure.
This application claims priority to U.S. Provisional Application Ser. No. 62/825,339, filed Mar. 28, 2019, the disclosure of which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
2080469 | Gilbert | May 1937 | A |
2645865 | Town | Jul 1953 | A |
4670995 | Huang | Jun 1987 | A |
5005299 | Whatley | Apr 1991 | A |
5014449 | Richard | May 1991 | A |
5046267 | Kilgore | Sep 1991 | A |
5185943 | Tong | Feb 1993 | A |
5337492 | Anderie | Aug 1994 | A |
5367791 | Gross | Nov 1994 | A |
5425184 | Lyden | Jun 1995 | A |
5625964 | Lyden | May 1997 | A |
5669161 | Huang | Sep 1997 | A |
5692322 | Lombardino | Dec 1997 | A |
5718063 | Yamashita | Feb 1998 | A |
D391751 | Santos | Mar 1998 | S |
5753061 | Rudy | May 1998 | A |
5771606 | Litchfield | Jun 1998 | A |
5794359 | Jenkins | Aug 1998 | A |
5901467 | Peterson | May 1999 | A |
5930918 | Healy | Aug 1999 | A |
5979078 | McLaughlin | Nov 1999 | A |
6009637 | Pavone | Jan 2000 | A |
6026593 | Harmon-Weiss | Feb 2000 | A |
6158149 | Rudy | Dec 2000 | A |
6266897 | Seydel | Jul 2001 | B1 |
6374514 | Swigart | Apr 2002 | B1 |
6385864 | Sell, Jr. | May 2002 | B1 |
6402879 | Tawney | Jun 2002 | B1 |
6430843 | Potter | Aug 2002 | B1 |
6568102 | Healy | May 2003 | B1 |
6571490 | Tawney | Jun 2003 | B2 |
6582786 | Bonk | Jun 2003 | B1 |
6931764 | Swigart | Aug 2005 | B2 |
6962008 | Manz | Nov 2005 | B2 |
7076891 | Goodwin | Jul 2006 | B2 |
7080467 | Marvin | Jul 2006 | B2 |
7086179 | Dojan | Aug 2006 | B2 |
7132032 | Tawney | Nov 2006 | B2 |
7331124 | Meschan | Feb 2008 | B2 |
7353625 | Ellis | Apr 2008 | B2 |
7401419 | Lucas | Jul 2008 | B2 |
7421805 | Geer | Sep 2008 | B2 |
7451556 | Harmon-Weiss | Nov 2008 | B2 |
7464489 | Ho | Dec 2008 | B2 |
7565754 | Acheson | Jul 2009 | B1 |
7707744 | Schindler | May 2010 | B2 |
8225533 | Meschan | Jul 2012 | B2 |
8535390 | Lecomte | Sep 2013 | B1 |
8732984 | Ha | May 2014 | B2 |
8782924 | Peyton | Jul 2014 | B2 |
8839531 | Sullivan | Sep 2014 | B2 |
8844165 | Gishifu | Sep 2014 | B2 |
8914998 | Gheorghian | Dec 2014 | B2 |
9119439 | Brandt | Sep 2015 | B2 |
9271543 | Sills | Mar 2016 | B2 |
9510646 | Holt | Dec 2016 | B2 |
9687044 | Schindler | Jun 2017 | B2 |
9867427 | Fujita | Jan 2018 | B2 |
10070691 | Greene | Sep 2018 | B2 |
11793271 | Case | Oct 2023 | B2 |
20010042321 | Tawney | Nov 2001 | A1 |
20020121031 | Smith | Sep 2002 | A1 |
20030056400 | Potter | Mar 2003 | A1 |
20030208929 | Lucas | Nov 2003 | A1 |
20050011085 | Swigart | Jan 2005 | A1 |
20050028403 | Swigart | Feb 2005 | A1 |
20060041321 | Christensen | Feb 2006 | A1 |
20060117604 | Fusco | Jun 2006 | A1 |
20060137221 | Dojan | Jun 2006 | A1 |
20060277794 | Schindler | Dec 2006 | A1 |
20070119075 | Schindler | May 2007 | A1 |
20070169376 | Hatfield | Jul 2007 | A1 |
20070220778 | Fusco | Sep 2007 | A1 |
20080184595 | Schindler | Aug 2008 | A1 |
20090013558 | Hazenberg | Jan 2009 | A1 |
20090090025 | Cassiday | Apr 2009 | A1 |
20090151093 | Schindler | Jun 2009 | A1 |
20090151196 | Schindler | Jun 2009 | A1 |
20090178300 | Parker | Jul 2009 | A1 |
20100170109 | Schindler | Jul 2010 | A1 |
20100192409 | Schindler | Aug 2010 | A1 |
20100236096 | Pauk | Sep 2010 | A1 |
20100269376 | Flannery | Oct 2010 | A1 |
20110185590 | Nishiwaki | Aug 2011 | A1 |
20110197469 | Nishiwaki | Aug 2011 | A1 |
20110232130 | Boudreau | Sep 2011 | A1 |
20120102783 | Swigart | May 2012 | A1 |
20120233885 | Shaffer | Sep 2012 | A1 |
20130239443 | Lin | Sep 2013 | A1 |
20140150298 | Crowley | Jun 2014 | A1 |
20140202031 | Seo | Jul 2014 | A1 |
20140259769 | Bjornson | Sep 2014 | A1 |
20140259789 | Dojan | Sep 2014 | A1 |
20140276500 | Scott | Sep 2014 | A1 |
20140331517 | Seo | Nov 2014 | A1 |
20150230549 | Bernhard | Aug 2015 | A1 |
20160021974 | Schindler | Jan 2016 | A1 |
20160192737 | Campos, II | Jul 2016 | A1 |
20160331558 | Kampas | Nov 2016 | A1 |
20170020228 | Scofield | Jan 2017 | A1 |
20170095034 | Dupre | Apr 2017 | A1 |
20170150778 | Youngs | Jun 2017 | A1 |
20170273402 | Dupre | Sep 2017 | A1 |
Number | Date | Country |
---|---|---|
1213672 | Aug 2005 | CN |
100407955 | Aug 2008 | CN |
101547620 | Sep 2009 | CN |
102258234 | Nov 2011 | CN |
104273791 | Jan 2015 | CN |
106793847 | May 2017 | CN |
I549618 | Sep 2016 | TW |
201642772 | Dec 2016 | TW |
Entry |
---|
European Patent Office as ISA, International Search Report and Written Opinion for PCT Application No. PCT/2020/025238, mailed Jun. 26, 2020. |
International Searching Authority, International Search Report and Written Opinion for PCT Application No. PCT/US2015/041489, mailed Oct. 15, 2015. |
Taiwan Intellectual Property Office, Official Letter and Search Report for Application No. 105119165, mailed Mar. 3, 2017. |
State Intellectual Property Office (PRC), Office Action for CN Application No. 201580046215.X, mailed Mar. 30, 2018. |
Taiwan Intellectual Property Office, Office Action for TW Application No. 106134938, mailed Aug. 10, 2018. |
State Intellectual Property Office (PRC), Second Office Action for CN Application No. 201580046215.X, mailed Dec. 25, 2018. |
European Patent Office, Communication pursuant to Article 94(3) EPC for Application No. 15744838.2, mailed Feb. 22, 2019. |
State Intellectual Property Office (PRC), Third Office Action for CN Application No. 201580046215.X, mailed May 15, 2019. |
United States Patent and Trademark Office, Office Action for U.S. Appl. No. 15/622,397, mailed Jan. 29, 2019. |
United States Patent and Trademark Office, Office Action for U.S. Appl. No. 15/622,397, mailed Jun. 6, 2019. |
United States Patent and Trademark Office, Office Action for U.S. Appl. No. 14/340,374, mailed Aug. 5, 2016. |
United States Patent and Trademark Office, Office Action for U.S. Appl. No. 14/340,374, mailed Jan. 29, 2016. |
Taiwan Intellectual Property Office, Office Action for Application No. 109110672 , mailed Apr. 30, 2021. |
European Patent Office, First Office Action for EP Application No. 20721018.8 mailed Jun. 21, 2022. |
State Intellectual Property Office (PRC), First Office Action for CN App. No. 202080037167.9, mailed Oct. 25, 2022. |
Number | Date | Country | |
---|---|---|---|
20200305549 A1 | Oct 2020 | US |
Number | Date | Country | |
---|---|---|---|
62825339 | Mar 2019 | US |