Conventional articles of footwear generally include an upper and a sole structure. The upper provides a covering for the foot and securely positions the foot relative to the sole structure. The sole structure is secured to a lower portion of the upper and is configured so as to be positioned between the foot and the ground when a wearer is standing, walking, or running. The sole structure may include one or more cushioning elements. Those cushioning elements may help to attenuate and dissipate forces on a wearer foot that may result from ground impact during walking or running.
Conventionally, sole structures have been designed based on a particular condition or set of conditions, and/or based on a particular set of preferences and/or characteristics of a targeted shoe wearer. For example, cushioning elements may be sized and located based on expected movements of a shoe wearer associated with a particular type of sport. In many cases, the choice of cushioning elements may be a compromise among numerous possible alternatives. Because of variations among different individuals who might wear a particular shoe, however, some individuals may find a particular compromise to be less than satisfactory. A sole structure that allows adjustment of cushioning characteristics is thus desirable. There is an ongoing need for improved sole structures in which firmness can be modified based on individual wearer preference and/or in response to changing conditions.
This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the invention.
In at least some embodiments, an article of footwear may comprise an upper and a sole structure coupled to the upper. The sole structure may include an electrically controllable damping pad positioned in a plantar region of the sole structure. The damping pad may include a chamber, a foam element located within the chamber, an electrorheological fluid located within the chamber and at least partially permeating the foam element, and a set of electrodes positioned to create, in response to a voltage across the electrodes, an electrical field in at least a portion of the electrorheological fluid.
In at least some embodiments, a sole structure may comprise an outsole and a midsole coupled to the outsole. The midsole may include an electrically controllable damping pad positioned in a plantar region of the sole structure. The damping pad may include a chamber, a foam element located within the chamber, an electrorheological fluid located within the chamber and at least partially permeating the foam element, and a set of electrodes positioned to create, in response to a voltage across the electrodes, an electrical field in at least a portion of the electrorheological fluid.
Additional embodiments are described herein.
Some embodiments are illustrated by way of example, and not by way of limitation, in the figures of the accompanying drawings and in which like reference numerals refer to similar elements.
In various types of activities, it may be advantageous to change characteristics of a sole structure. For example, some individuals may prefer a sole structure that is firmer in certain regions, while other individuals may prefer a sole structure that is firmer in different regions. In footwear according to some embodiments, one or more electrically controllable damping pads within a sole structure may be activated to selectively increase firmness in one or more regions of the damping pads. This increased firmness increases firmness of the sole structure in areas corresponding to those one or more regions of increased firmness.
In some embodiments, a damping pad may utilize an electrorheological (ER) fluid. ER fluids typically comprise a non-conducting oil or other fluid medium in which very small particles are suspended. In some types of ER fluid, the particles may have diameters of 5 microns or less and may be formed from polystyrene, polyurethane, or another polymer having a dipolar molecule. When an electric field is imposed across the ER fluid, the viscosity of the ER fluid increases as the strength of that field increases.
In some such embodiments, a damping pad may include a chamber that contains a foam element at least partially permeated with ER fluid. In a non-activated state, there is no electric field sufficient to raise ER fluid viscosity. In that non-activated state, ER fluid can flow in and out of cavities in the foam element, and the foam element is generally compressible in response to forces of magnitudes that may result from the weight of a shoe wearer during walking, running, or other activities. In an activated state, a sufficiently strong electric field is created in a portion of the foam element. This causes the viscosity of the ER fluid in that foam element portion to increase. That increased viscosity slows or prevents flow of the ER fluid in and out of cavities within that foam element portion subjected to the electrical field. As a result, the foam element portion subjected to the electric field becomes less compressible.
To assist and clarify subsequent description of various embodiments, various terms are defined herein. Unless context indicates otherwise, the following definitions apply throughout this specification (including the claims). “Shoe” and “article of footwear” are used interchangeably to refer to an article intended for wear on a human foot. A shoe may or may not enclose the entire foot of a wearer. For example, a shoe could include a sandal-like upper that exposes large portions of a wearing foot. The “interior” of a shoe refers to space that is occupied by a wearer's foot when the shoe is worn. An interior side, surface, face, or other aspect of a shoe component refers to a side, surface, face or other aspect of that component that is (or will be) oriented toward the shoe interior in a completed shoe. An exterior side, surface, face or other aspect of a component refers to a side, surface, face or other aspect of that component that is (or will be) oriented away from the shoe interior in the completed shoe. In some cases, the interior side, surface, face or other aspect of a component may have other elements between that interior side, surface, face or other aspect and the interior in the completed shoe. Similarly, an exterior side, surface, face or other aspect of a component may have other elements between that exterior side, surface, face or other aspect and the space external to the completed shoe.
Shoe elements can be described based on regions and/or anatomical structures of a human foot wearing that shoe, and by assuming that the interior of the shoe generally conforms to and is otherwise properly sized for the wearing foot. A forefoot region of a foot includes the heads and bodies of the metatarsals, as well as the phalanges. A forefoot element of a shoe is an element having one or more portions located under, over, to the lateral and/or medial side of, and/or in front of a wearer's forefoot (or portion thereof) when the shoe is worn. A midfoot region of a foot includes the cuboid, navicular, and cuneiforms, as well as the bases of the metatarsals. A midfoot element of a shoe is an element having one or more portions located under, over, and/or to the lateral and/or medial side of a wearer's midfoot (or portion thereof) when the shoe is worn. A heel region of a foot includes the talus and the calcaneus. A heel element of a shoe is an element having one or more portions located under, to the lateral and/or medial side of, and/or behind a wearer's heel (or portion thereof) when the shoe is worn. The forefoot region may overlap with the midfoot region, as may the midfoot and heel regions.
Unless indicated otherwise, a longitudinal axis refers to a horizontal heel-toe axis along the center of the foot that is roughly parallel to a line along the second metatarsal and second phalanges. A transverse axis refers to a horizontal axis across the foot that is generally perpendicular to a longitudinal axis. A longitudinal direction is generally parallel to a longitudinal axis. A transverse direction is generally parallel to a transverse axis.
Shoe 10 includes an upper 11 attached to a sole structure 12. Upper 11 may be a conventional upper formed from any of various types or materials and have any of a variety of different constructions. Upper 11 includes an ankle opening 13 through which a wearer foot may be inserted into an interior void defined by the upper. Laces, straps, and/or other types of tightening elements may be included to cinch upper 11 about a wearer foot. To avoid obscuring the drawing with unnecessary detail, tightening elements and other features of upper 11 are omitted from
Sole structure 12 may include an outsole 16 attached to a midsole 17. Outsole 16 may include lugs, a tread pattern, and/or or other surface features, not shown, to enhance traction. Outsole 16 may be formed from natural and/or synthetic rubber, and/or other elastomer(s) and/or other conventional outsole materials.
Midsole 17 includes one or more cushioning elements. Such cushioning elements may include one or more pieces of compressed EVA (ethylene vinyl acetate) and/or other type of polymer foam. Cushioning elements may also or alternatively include one or more fluid-filled bladders filled with a gas or a liquid and that are compressible in response to applied force from the weight of a shoe wearer. Examples of fluid-filled bladders that may be included in sole structures according to some embodiments include, without limitation, bladders such as those described in U.S. Pat. Nos. 8,479,412, 8,381,418, 7,131,218, 8,813,389, US patent application publication number 2012/0102783, and US patent application publication number 2012/0102782. All of said patents and patent application publications are incorporated by reference herein. In addition to reducing impact on a wearer foot during walking, running, and other activities, the cushioning elements within midsole 17 may be contoured to provide support for a wearer foot.
As shown in
In the embodiment of
Damping pad 20 includes a chamber 28 having top and bottom walls that are joined around a peripheral edge to form a fluid-tight internal volume. An outer surface 30 of a top wall 29 of chamber 28 is shown in
As mentioned above, damping pad 20 includes electrodes that are positioned to create electrical fields in zones of damping pad 20. Locations of those electrodes and of corresponding zones are indicated with even broken lines in
In some embodiments, some or all of electrodes 35, 37, 39, 41, 43, 45, 47, and 49 may be cut from a piece of a stretchable conductive fabric. Such fabrics are commercially available and may, e.g., be knit fabrics that comprise silver-coated Nylon thread. An electrode formed from stretchable conductive fabric may be bonded to inner surface 44 or inner surface 46 using a hot-melt adhesive or in another manner.
Although not shown in the drawings, electrical wires connect electrodes 35, 37, 39, and 41 and electrodes 43, 45, 47, and 49 to a controller. That controller, described below, selectively applies high voltage across pairs of electrodes corresponding to one or more zones. Connections between those wires and the electrodes can be formed in various manners. In some embodiments, for example, each of the electrodes may be connected to a separate wire that penetrates chamber 28 in a location within the boundary of that electrode. Those penetrations may be sealed to prevent escape of ER within chamber 28.
Top wall 29 and bottom wall 31 are joined at an outer peripheral seam 51 to form a sealed chamber 28. Located within a fluid-tight internal volume of chamber 28 is a foam element 52 that extends throughout that internal volume. Foam element 52 is an open cell polymer foam having numerous interconnected small cavities 53. Foam element 52 is represented schematically in
The internal volume of chamber 28 also includes an ER fluid 55. In
A zone of damping pad 20 is activated when an activation voltage Vact is applied across the upper and lower electrodes corresponding to that zone. When a zone is activated, the compressibility of foam element 52 in that activated zone is reduced. A compressibility reduction may be full or partial. When compressibility is fully reduced in a zone, that zone of damping pad 20 may not noticeably compress under loads resulting from weight of a shoe 10 wearer during walking or running. When compressibility is partially reduced in a zone, that zone of damping pad 20 may still be noticeably compressible under loads resulting from weight of a shoe 10 wearer during walking or running, but the time to compress under a given load is increased (and the zone thus feels more firm) because of higher viscosity of ER fluid 55 within that zone. Higher magnitudes of activation voltage Vact result in greater compressibility reduction. One example of an activation voltage Vact to achieve full or nearly full reduction of compressibility is a voltage sufficient to create an electric field having a field strength of between 1 kilovolts per millimeter (kV/mm) and 4 kV/mm in a zone. In some embodiments, one or more zones may activatable at one of multiple levels, with each activation level corresponding to a different amount of compressibility reduction.
None, some or all of zones 36, 38, 40, and 42 can be activated.
In
In some embodiments, a damping pad may have more or less zones, and/or the zones may be configured differently from the way in which zones 36, 38, 40, and 42 are configured. For example,
In some embodiments, a sole structure may include more than one damping pad. For example,
In some embodiments, damping pads may be stacked within a sole structure. For example,
The arrangements of multiple damping pads within a sole structure described above merely represent some example embodiments. In other embodiments, for example, more than two damping pads may be stacked. As another example, stacked damping pads may also or alternatively be located in forefoot and/or midfoot regions. Stacked damping pads need not be precisely aligned in the vertical direction and/or need not have the same shape.
The shapes and arrangements of zones within damping pads described above also merely represent some example embodiments. In some other embodiments, for example, damping pad zones need not be divided by a generally centered longitudinal axis or by straight transverse axes. The zones in a first damping pad need not have the same configuration as zones in a second damping pad over which that first damping pad is stacked.
In some embodiments, a controller may include electronics that selectively apply voltages to electrodes within one or more damping pads so as to activate one or more zones. A controller may include one or more printed circuit boards and one or more DC to high voltage DC converters and may be located in a midsole.
Controller 147 includes components that may be located on a single PCB or that may be packaged in some other manner. Controller 147 includes a processor 110, a memory 111, an inertial measurement unit (IMU) 113, and a low energy wireless communication module 112 (e.g., a BLUETOOTH communication module). Memory 111 stores instructions that may be executed by processor 110 and may store other data. Processor 110 executes instructions stored by memory 111 and/or stored in processor 110, which execution results in controller 147 performing operations such as are described herein. As used herein, instructions may include hard-coded instructions and/or programmable instructions.
Data stored in memory 111 and/or processor 110 may include one or more look-up tables that define levels of activation voltage Vact for each of multiple levels of compressibility reduction in each of multiple zones of one or more damping pads. That data may also include configuration profiles, each of which corresponds to a different combination of zone activations. Upon receiving user input (e.g., via USB port 104 or wireless communication module 112) selecting one of those profiles, processor 110 may activate zones as defined by that selected profile.
IMU 113 may include a gyroscope and an accelerometer and/or a magnetometer. Data output by IMU 113 may be used by processor 110 to detect changes in orientation and motion of a shoe containing controller 147, and thus of a foot wearing that shoe. Processor 110 may use such information to determine when to activate or deactivate particular zones. For example, controller 110 may determine that a foot is on the ground and rolling from the lateral to the medial side as the wearer progresses through the step portion of the gait cycle. In some embodiments, controller 110 may activate one or more forefoot region zones to provide increased firmness when the shoe wearer foot reaches the toe-off portion of the gait cycle. Wireless communication module 112 may include an ASIC (application specific integrated circuit) and be used to communicate programming and other instructions to processor 110, as well as to download data that may be stored by memory 111 or processor 110.
Controller 147 may include a low-dropout voltage regulator (LDO) 114 and a boost regulator/converter 116. LDO 114 receives power from battery pack 115 and outputs a constant voltage to processor 110, memory 111, wireless communication module 112, and IMU 113. Boost regulator/converter 116 boosts a voltage from battery pack 115 to a level (e.g., 5 volts) that provides an acceptable input voltage to DC to HV DC converter(s) 145. Converter(s) 145 then increase(s) that voltage to a much higher level (e.g., 5000 volts). Processor 110 then controls application of the high voltage DC output from converter(s) 145 to electrodes of one or more zones in one or more damping pads by sending control signals to a switch array 146. Boost regulator/converter 116 and converter(s) 145 are also enabled and disabled by signals from processor 110.
Controller 147 may also receive signals from one or more force sensitive resistors (FSR) and/or other sensors located within the sole structure that includes controller 147. Those signals may indicate forces in regions where the FSRs and/or other sensors are located and be used as additional data by processor 110 to determine, e.g., when a foot is no longer stepping on the ground.
The above-described individual elements of controller 147 may be conventional and commercially available components that are combined and used in the novel and inventive ways described herein. Moreover, controller 147 may be physically configured, by instructions stored in memory 111 and/or processor 110, to perform the herein described novel and inventive operations.
In embodiments described above, a damping pad is located within a sole structure that includes additional cushioning elements above and below the damping pad. In some embodiments, a sole structure may lack additional cushioning elements above and/or below a damping pad. For example, a damping pad may be in direct contact with an outsole or with a strobel or other lasting element. In some embodiments, some or all portions of a sole structure may lack other cushioning elements in some or all regions in which one or more damping pads are located.
The foregoing description of embodiments has been presented for purposes of illustration and description. The foregoing description is not intended to be exhaustive or to limit embodiments of the present invention to the precise form disclosed, and modifications and variations are possible in light of the above teachings or may be acquired from practice of various embodiments. The embodiments discussed herein were chosen and described in order to explain the principles and the nature of various embodiments and their practical application to enable one skilled in the art to utilize the present invention in various embodiments and with various modifications as are suited to the particular use contemplated. Any and all combinations, subcombinations and permutations of features from herein-described embodiments are the within the scope of the invention. In the claims, a reference to a potential or intended wearer or a user of a component does not require actual wearing or using of the component or the presence of the wearer or user as part of the claimed invention.
This application is a continuation of U.S. patent application Ser. No. 14/724,693 filed May 28, 2015. The present application claims priority to and the benefit of the above-identified application, which is incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
5813142 | Demon | Sep 1998 | A |
6378558 | Pohl et al. | Apr 2002 | B1 |
7007412 | Munster | Mar 2006 | B2 |
7200956 | Kotha | Apr 2007 | B1 |
7219449 | Hoffberg et al. | May 2007 | B1 |
7254908 | Ungari | Aug 2007 | B2 |
8141276 | Ellis | Mar 2012 | B2 |
8561323 | Ellis | Oct 2013 | B2 |
8567095 | Ellis | Oct 2013 | B2 |
8922355 | Kusuura | Dec 2014 | B2 |
8959804 | Ellis | Feb 2015 | B2 |
9271538 | Ellis | Mar 2016 | B2 |
9743712 | Orand et al. | Aug 2017 | B2 |
20030120353 | Christensen | Jun 2003 | A1 |
20040002665 | Parihar et al. | Jan 2004 | A1 |
20060248749 | Ellis | Nov 2006 | A1 |
20060248750 | Rosenberg | Nov 2006 | A1 |
20100199524 | Grun et al. | Aug 2010 | A1 |
20120174434 | Ellis | Jul 2012 | A1 |
20120256135 | Green | Oct 2012 | A1 |
20130278436 | Ellis | Oct 2013 | A1 |
20140250726 | Meschter | Sep 2014 | A1 |
Number | Date | Country |
---|---|---|
103384481 | Nov 2013 | CN |
Entry |
---|
Demon, Ronald, “Black History in America” Internet Archive Wayback Machine, http://www.myblackhistor.net/Ronald_Demon.htm, pp. 1-2. |
Jan. 7, 2019—(EP) Supp. ESR—App. No. 16800514.8. |
Number | Date | Country | |
---|---|---|---|
20190000182 A1 | Jan 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14724693 | May 2015 | US |
Child | 16127090 | US |