The present invention relates to a solenoid unit for a solenoid valve, comprising a magnet coil and a ferromagnetic circuit which surrounds the magnet coil and includes a stationary magnet housing and a movable magnet armature. The invention further relates to a method of manufacturing such a solenoid unit and to a method of manufacturing a magnet housing for such a solenoid unit.
Electromagnetically driven valves have a magnet coil, a magnet armature for opening and closing the valve, and a magnet housing. In the case of simple designs, the magnet housing is made up of a solid sheet metal part bent into a U-shape. These designs are preferably suitable for a direct current control. In the case of an alternating current control, these designs produce heavy eddy current losses. Bearing in mind the permissible heating, a lower amount of effective power and, hence, less magnetic force is thus available. In addition, it is known from the generic document DE 198 60 631 A1, for example, to produce the magnet housing in one piece from a sheet metal strip which is first punched out and subsequently rolled or bent. There are, however, only limited possibilities of shaping here.
Other alternating current operated solenoid valves are provided with magnet housings made of sintered ferrite material to avoid eddy currents. While these housings are also suitable for direct voltage operation, two valve configurations are fabricated for reasons of cost-saving. In contrast to an alternating current operated valve, no expensive special material such as sintered ferrite is used for the magnet housing of a direct current operated valve, but reasonably priced sheet steel.
The invention provides a solenoid unit for a solenoid valve, in which the magnet housing is assembled of a cover, a shell and a bottom in the form of multilayer transformer sheet metal parts. One advantage resides in the favorable shape of the magnet housing, because it encloses the magnet coil. Furthermore, thin sheet metal layers can be shaped for a precise fit without great effort, and the electrical resistance at the layer boundaries is already sufficient to reduce eddy current effects to an acceptable degree. Accordingly, it is no longer necessary to manufacture two valve types, for direct current and for alternating current, for cost reasons.
Transformer sheets are especially suitable because, in addition to the appropriate magnetic properties, they have a low thickness of a few tenths of a millimeter. Moreover, transformer sheets are mass-produced on an industrial scale and, hence, are available for use at low cost. In addition, they are also available with an electrically insulating coating, which is of advantage for an even greater reduction of the eddy currents.
In one embodiment, the transformer sheet metal parts are punched and, if required, bent. Since the sheet metal parts used are of a low thickness, these machining steps can be carried out simply and at low cost.
The transformer sheet metal parts have a plurality of layers, it being possible that these layers are connected to each other. This increases the stability of the transformer sheet metal parts and reduces the gap width between the individual layers. Suitable connecting methods include packing of laminations, gluing or riveting, for example.
The bottom and/or the cover may have a central opening. This allows a simple assembly of the solenoid unit, by simply axially inserting the armature, the armature antipole and/or a core guide tube.
In this embodiment, a radial slot is preferably provided in the cover and/or in the bottom, the slot being continuous from the central opening up to the outer periphery. This slot reduces an occurrence of eddy currents in the peripheral direction of the cover and the bottom.
In the assembled condition, the bottom and/or the cover may be caulked to the shell. This is a particularly reasonably priced and reliable type of attachment. Prior to connecting the sheet metal parts, the magnet coil may be introduced into the shell without problems, so that by the caulking process a preassembled unit consisting of the bottom, the cover, the shell and the magnet coil is provided in a very simple manner.
In a further embodiment, the shell of the magnet housing has at least one aperture, and the magnet coil is potted or is coated or encased by injection-molding. A liquid plastic mass is introduced through this aperture into the magnet housing, so that the magnet coil is embedded in plastic material. After the curing of the plastic mass, any gaps or cavities are closed off, and the sheet metal parts of the magnet housing and also the magnet coil are fixed in place such that any rattling noises in the operation of the valve can no longer occur.
The shell may have a thickness that is lower than that of the bottom, and the bottom may have a thickness that is greater than that of the cover. This compensates for increased magnetic reluctances, which appear primarily at the bottom due to the non-magnetic core guide tube and the air gap to the movable magnet armature, by greater sheet metal part thicknesses. Owing to the multilayer structure of the sheet metal parts, the sheet metal part thickness can be varied very easily by varying the number of layers. The stacked sheet metal parts of the cover, the shell and the bottom may differ with respect to the thickness and the characteristics of the individual metal sheets, e.g. they may or may not be insulated.
In one embodiment, the cover comprises an inner cover part and an outer cover part, the outer contour of the inner cover part being complementary to the inner contour of the outer cover part, so that the cover parts can be assembled with an interlocking fit. In this context, it is not a single transformer sheet of the cover that is referred to as a cover part, but a sheet stack built up of a plurality of transformer sheets. This structure made up of two cover parts offers the advantage that the inner cover part, which is comparatively more complicated to produce, can be identically constructed and made use of even with covers of different sizes, and the required adaptation is effected by the outer cover part, which is less complicated to produce. Because of the interlocking connection, the cover, which is composed of the inner and outer cover parts, essentially gives the impression of being a one-piece cover (although built up of a plurality of sheet metal layers), so that the magnetic flux in the plane of the cover is not impaired.
Preferably, the outer cover part is formed in the shape of a U. In this way, the protective ground conductor connection of the inner cover part, which is substantially responsible for the increased manufacturing expense of the inner cover part, is well accessible, whatever the size of the cover.
Furthermore, the cover may have a covering part which covers the cover parts in the assembled condition. In the case of larger covers, by means of this covering part, firstly the sheet metal part thickness of the stack of sheets is increased and secondly the base area of the cover is not separated across its entire thickness by a joint between the inner and outer cover parts. Both factors contribute to a reduction in the magnetic reluctance.
The invention further comprises a method of manufacturing a magnet housing of a solenoid unit for a solenoid valve, comprising the following steps:
This method results in a simple and reasonably priced manufacture of a magnet housing for a solenoid unit which is suitable both for direct current control and alternating current control.
In some embodiments, the cover is assembled from an inner cover part and an outer cover part before assembling the magnet housing, the outer contour of the inner cover part being complementary to the inner contour of the outer cover part. Preferably, the cover parts are then connected with an interlocking fit and/or with a frictional fit. The interlocking connection, but also a possible frictional engagement perpendicular to the plane of the cover provide for an unimpeded magnetic flux in the cover plane and are simple to produce. The cover parts having the complementary contours are preferably punched; the frictional connection may be obtained by means of a press fit between the cover parts, for example. When the U-shaped cover part is connected to the inner cover part with an interlocking fit, its legs may be slightly pressed apart and deformed, so that, when the connecting process is completed, the legs clamp the inner cover part in place and prevent a relative movement between the cover parts perpendicularly to the cover plane.
Subsequent to assembling the inner and outer cover parts, a covering part may additionally be mounted to the inner and/or to the outer cover part. As the surface area of the cover increases, the thickness of the cover may also be adjusted, i.e. enlarged, very easily by means of such a covering part which, just like the inner and outer cover parts, is composed of transformer sheets. The covering part is caulked to the inner and/or to the outer cover part, for example.
In addition, the invention comprises a method of manufacturing a solenoid unit for a solenoid valve, which includes the following steps:
In one variant of the method, the assembling of the magnet housing starts already prior to inserting the magnet coil into the shell by already producing an interlocking connection between the bottom and the shell or between the cover and the shell. Accordingly, this partial step is omitted in step E.
By means of this method, the magnet housing and the magnet coil are produced as a preassembled unit right away, with the magnet coil being located protected in the interior of the preassembled unit. After fitting a fixed armature antipole and a core guide tube having a movable magnet armature, the solenoid unit is complete.
Subsequent to assembling the magnet housing, a liquid plastic mass is preferably introduced into the assembled magnet housing through an aperture provided in the magnet housing, for embedding the magnet coil. The aperture is produced e.g. by punching before or after the stacking of the metal sheets. After the plastic mass has been introduced and has cured, the sheet metal parts of the magnet housing and the magnet coil are fixed in place, so that no rattling noises can occur.
Further features and advantages of the invention will be apparent from the description below of a preferred embodiment with reference to the drawings, in which:
When the magnet coil 10 is in the de-energized condition, the magnet armature 14 generally is biased by a spring (not shown) such that the solenoid valve is in a desired position (opened or closed). When a current is fed to the magnet coil 10, an axially oriented magnetic field develops inside the magnet coil. The magnet armature 14, the armature antipole 16 and the magnet housing (to be more precise, the cover 18, the bottom 20 and the shell 22) form a ferromagnetic circuit which is decisive for the force exerted on the magnet armature 14. An axial air gap 28 exists between the magnet armature 14 and the armature antipole 16, so that the magnet armature 14 is attracted towards the armature antipole 16. The axial extent of the air gap 28 is equivalent to a driving lift of the solenoid valve.
In the present embodiment, the individual layers consist of transformer sheet metal which has a thickness of about 1 mm and may be coated with an electrically insulating coating. As a rule, however, a mere lamination of non-insulated transformer sheets is sufficient to largely eliminate the eddy currents as a result of the increased electrical resistance at the layer boundaries.
The thickness of the sheet metal parts of the magnet housing may be appropriately selected very easily by varying the number of layers. As a rule, the bottom 20, for example, includes more layers than the cover 18 or the shell 22, in order to at least partly compensate for the increased magnetic reluctance in the region of the bottom 20 caused by the non-magnetic core guide tube 24 and the air gap between the core guide tube 24 and the movable magnet armature 14.
Tabs 32 on the shell 22 may be inserted into recesses 30 provided in the cover 18 and the bottom 20. The cover 18 and the bottom 20 are each connected with the shell 22 by assembling the parts and by caulking the tabs 32. The magnet coil 10 may be inserted axially without problems prior to the assembly of the magnet housing and is enclosed inside the magnet housing after caulking of the tabs 32. According to another embodiment, the cover 18 and/or the bottom 20 are welded or screwed to the shell 22.
The cover 18 and the bottom 20 each have a central opening for insertion of the core guide tube 24 with the magnet armature 14 or of the armature antipole 16. Furthermore, the cover 18 and the bottom 20 each have a radial slot 34 which is continuous from the central opening as far as to the outer periphery, the slot reducing formation of eddy currents in the peripheral direction of the cover 18 and the bottom 20.
Depending on the respective production series of the solenoid valve, the individual sheet metal parts of the magnet housing may exhibit special features. For example, in
The method of manufacturing the multi-piece cover 18 will now be explained with reference to
Number | Date | Country | Kind |
---|---|---|---|
20 2005 006 296.0 | Apr 2005 | DE | national |
10 2006 006 031.8 | Feb 2006 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2006/003447 | 4/13/2006 | WO | 00 | 12/12/2008 |