The present invention relates to a solenoid valve for a coolant circuit, with a valve body that has an inlet and at least one outlet for the coolant, and a valve member that can be displaced in the interior of the valve body between two positions that respectively correspond to the different switching positions of the solenoid valve.
Such a solenoid valve is used to control the coolant flow in the coolant circuit or, in cases where the solenoid valve is designed as a directional path valve with several outlets, to switch a coolant flow to one or the other of at least two evaporators of the coolant circuit.
A solenoid valve of the type described above is known from DE 37 18 94 A1.
The object of the invention is to provide a solenoid valve of the type specified above that allows simpler, faster and therefore more economically-priced construction of a coolant circuit compared with solenoid valves known so far.
The present invention includes at least one outlet of the solenoid valve according to the invention is formed by a capillary tube, the solenoid valve thus can at the same time fulfill the task of a pressure-relieving element for the coolant which is supplied at high pressure. This reduces the number of parts which must be joined together during the manufacture of a coolant circuit and the number of connection points between them. This results in savings in production time and costs without the need to accept cutbacks in the quality of the coolant circuit. On the contrary, the reduced number of joints reduces the risk of leakages in the coolant circuit.
So that the capillary tube forming the outlet of the solenoid valve can also fulfill the task of a press-relieving element for the coolant under high pressure, it is desirable that the pressure drop between the beginning and end of the capillary tube is a multiple of the pressure drop between the inlet of the solenoid valve and the beginning of the capillary tube. In other words, the pressure drop at the valve seat of the solenoid valve is largely negligible compared with that in the capillary tube.
The solenoid valve preferably has two outlets which are each formed by a capillary tube. Such a solenoid valve allows the selective operation of two connected evaporators, e.g. a cooling area and a freezing area of a combined refrigerating device.
Each outlet is more appropriately arranged at a longitudinal end of a valve body and the inlet is arranged centrally on the valve body, and a coil is provided for generating a magnetic field in the longitudinal direction of the valve body. This allows the valve member to be simply controlled with the aid of a single magnetic field by means of linear forward and backward movement.
In order to supply the magnetic field in the valve body, the valve body is preferably arranged outside the interior of the coil and the coil has two pole pieces in contact with the valve body. With such an arrangement it is also possible to repair or change the coil after the coolant circuit has been fully installed without the need to break the coolant circuit for this purpose.
A further simplification of the structure of the coolant circuit and reduction in the number of parts is obtained if the inlet of the solenoid valve is formed by an outlet pipe section of a coolant drier joined to the valve body, which is usually provided in the coolant circuit of a refrigerating device.
Further features and advantages of the invention are obtained from the following description of an embodiment with reference to the drawings, wherein:
An inlet pipe 6 coming from a drier 9, having a diameter larger than that of the capillary tube 5, is soldered onto an inlet 7 of the valve body 1, which opens centrally into the chamber 2.
A valve member 8 in the form of a cylindrical body 116 made of ferromagnetic material is displaceable in the chamber 2 between two end positions at the valve seats 3 in which it respectively closes one of the two outlets 4.
Two opposite walls 122, 124 of the main body 13 each have a U-shaped cut-out 16 which runs in a semicircular fashion in its lower region. The size of the cut-out 16 is such that the valve body 1 can be inserted therein with a small amount of play.
To the right of a line X-X in
Two iron castings 22 shown by dashed lines in
The two cover sections 14, 15 are constructed such that after attachment of the valve body 1, they can be clipped shut and located, as shown in
Moulded onto the large cover section 14 complementary to the cut-outs 16 of the main body 13 are semi-circularly cut-out cross-pieces 28 which together with the cut-outs 16 encompass the valve body 1 when the cover is closed. By this means and by the inlet pipe 6 being held in the circular hole 128 formed by the two cover sections 14, 15, the valve body 1 is completely fixed in the housing 12.
At least one of the cover sections 14, 15 has a projection 26 directed into the interior of the housing 12 when the cover is closed, which holds a permanent magnet 27. In each case the size of the projection 26 is such that the permanent magnet 27 comes to lie approximately at the height of the axis of the valve body 1 which connects the two capillary tubes 5 when the cover is closed. In this case, one pole of the permanent magnet 27 is facing the valve body 1; if two magnets are used, like poles of these magnets respectively face one another on either side of the valve body 1. The permanent magnet 27 generates a substantially axially oriented magnetic field in the chamber 2, which holds the valve member 8 respectively in contact with that valve seat 3 in whose vicinity it is located. If a current surge of suitable polarity is applied to the coil 17, this generates in the chamber 2 a magnetic field in the opposite direction to the induced magnetisation of the valve member 8, which moves the valve member 8 to the opposite valve seat 3. Thus, the valve 100 can be switched by applying pulses of alternating polarity to the coil 17.
The valve 100 according to the invention simplifies the structure of a coolant circuit (not illustrated) since the number of parts is reduced by directly joining the valve body 1 to the capillary tubes 5 which are used as a pressure-relieving element for the coolant. As a result of the valve 100 being joined directly to the drier 9, these two elements can be installed jointly as a compact unit. This also helps to simplify the structure of the coolant circuit (not illustrated).
Number | Date | Country | Kind |
---|---|---|---|
100 62 665.3 | Dec 2000 | DE | national |
This application is a continuation of U.S. application Ser. No. 10/460,441, filed Jun. 12, 2003, which claims priority to International Application No. PCT/EP01/14718, filed Dec. 13, 2001, which designated the United States and claims priority to German patent application No. 100 62 665.3, filed Dec. 15, 2000; the prior applications are herewith incorporated by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
Parent | 10460441 | Jun 2003 | US |
Child | 11440630 | May 2006 | US |
Parent | PCT/EP01/14718 | Dec 2001 | US |
Child | 10460441 | Jun 2003 | US |