The invention relates to a solenoid valve, in particular for motor vehicle brake systems with slip control.
DE 197 39 886 A1 has already disclosed a solenoid valve of the specified type, the valve housing of which, for fixing in a valve seating bore, comprises a thick-walled tubular body, which is connected to a thin-walled sleeve, for which purpose the sleeve is pressed into an aperture in the tubular body. This measure requires the adherence to small production tolerances of the parts that have to be joined together. On the other hand, owing to the press-fit connection, the possibility cannot be excluded that an unwanted deformation and/or leak, occasioned by the radial force acting on the thin-walled sleeve, will lead to a functional impairment as a result of a deteriorating radial frictional connection.
The object of the present invention, therefore, is to design a solenoid valve of the specified type having a compact construction, which is inexpensive to produce by the simplest functional means, and to improve it in such a way that the aforementioned disadvantages are eliminated.
According to the invention this object is achieved for the solenoid valve of the specified type by placing a circumferential flange of a thin-walled sleeve on an internal step in a tubular body with an axial recess in an axial end face at a radial distance from the internal step, where the radial distance is dimensioned to leave a plastically deformable stay collar between the internal step and the recess on the tubular body, and the stay collar connects the tubular body to the sleeve. Also proposed for the achievement of the stated object is an especially advantageous method for connecting the thin-walled sleeve to a thick-walled tubular body.
Further features and advantages of the invention are set forth below in the description of two exemplary embodiments.
In the drawings,
The solenoid valve is closed in the electromagnetically unexcited position, for which purpose the return spring 16 arranged above the magnet armature 14 presses the valve closing member 13, connected to the magnet armature 14, on to the valve seat 12, so that the valve passage 18 in the valve seat 12 is closed.
In this exemplary embodiment the magnetic core 15 is pressed as plug into an austenitic housing portion 19, which as thin-walled sleeve part is welded to the tubular body 4. Other design embodiments of the upper housing portion 19 are obviously also possible, but these are not essential for the invention.
For secure fixing in a valve seating bore 11, the valve housing comprises a thick-walled, rigid tubular body 4, which is connected to a thin-walled sleeve 1, with the particular feature that the thin-walled sleeve 1 comprises a radially circumferential flange 2, which is in axial contact with an internal shoulder 3 in the tubular body 4, with the further particular feature, essential for the invention, that the tubular body 4 comprises a recess 5 at a radial distance from the internal shoulder 3, the radial distance being selected in such a way that a plastically deformable stay collar 6, which according to
It can also be seen from
The sleeve 1, to be exact, has the contour of a housing cup, preferably deep-drawn from thin sheet metal, the cup base of which is formed as valve seat 12 with the valve passage 18, which for smooth and wear-free functioning of the valve should always be situated as precisely as possible in the alignment of the valve closing member 13, which simply as a fixed component of the magnet armature 14 is aligned coaxially with the valve seat 12 by the most precise possible guiding of the magnet armature 14 inside the valve housing. At the same time the radially outward offset edge of the housing cup assumes the function of the flange 2, which is likewise produced by deep-drawing.
The sleeve 1 is composed of a hardened, ferritic material, in order to be able to make the valve seat 12, produced by the deep-drawing method, as wear-free as possible. The valve passage 18 located in the valve seat 12 and the passage 17 located in the wall of the sleeve 1 can be inexpensively produced by the punching or stamping method.
The contour of the tubular body 4, on the other hand, is produced by cold upsetting or cold extrusion from a steel blank, which like the sleeve 1 has a ferritic material grain structure for optimization of the magnetic circuit. The tubular body 4 moreover comprises a retaining collar 20, which extends on a level with the stay collar 6 along the outer circumference of the tubular body 4, so that a fixed and tight connection is established between the tubular body 4 and the valve seating bore 11 by means of an external caulking of the housing material in the area of the valve seating bore 11. Furthermore, in addition to the cold upsetting or cold extrusion of the steel blank, the internal shoulder 3, the recess 5 and the stay collar 6 are produced exactly on the tubular body 4 by metal-cutting workpiece machining.
The production of the multipart valve housing is based on a method for connecting a thick-walled tubular body 4 to a thin-walled sleeve 1, according to the following steps:
As will have become apparent from the preceding description of the solenoid valve, predominantly ferritic components are used for the valve housing, the virtually complete exclusion of austenitic components serving to increase the efficiency of the magnetic circuit considerably. In the past this has had the unwanted consequence that without suitable precautions the so-called sticking of the magnet armature 14 to the magnetic core 15 on termination of the electromagnetic excitation could be exacerbated, for which reason the return spring 16 is now designed in such a way that even in the currentless, closed state of the valve its spring force is slightly increased in comparison to previous designs and in the electromagnetically opened state is increased in such a way that on cessation of the electromagnetic excitation the magnet armature 14 can be immediately released from the magnetic core 15 due to the intensified action of the return spring 16, for undelayed closure of the valve. The thereby somewhat stiffer design of the return spring 15 constitutes a simple, inexpensive measure, instead of the additional use of a “non-stick disk” between the magnet armature 14 and the magnetic core 15.
The foregoing description of various embodiments of the invention has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise embodiments disclosed. Numerous modifications or variations are possible in light of the above teachings. The embodiments discussed were chosen and described to provide the best illustration of the principles of the invention and its practical application to thereby enable one of ordinary skill in the art to utilize the invention in various embodiments and with various modifications as are suited to the particular use contemplated. All such modifications and variations are within the scope of the invention as determined by the appended claims when interpreted in accordance with the breadth to which they are fairly, legally, and equitably entitled.
Number | Date | Country | Kind |
---|---|---|---|
10 2008 056 854 | Nov 2008 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2009/064338 | 10/30/2009 | WO | 00 | 4/26/2011 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2010/054938 | 5/20/2010 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5542755 | Staib et al. | Aug 1996 | A |
6427972 | Kirschner | Aug 2002 | B1 |
6644623 | Voss et al. | Nov 2003 | B1 |
6705589 | Hofmann et al. | Mar 2004 | B2 |
6851659 | Zutt et al. | Feb 2005 | B2 |
7198334 | Katayama | Apr 2007 | B2 |
20070045581 | Yoshikawa et al. | Mar 2007 | A1 |
Number | Date | Country |
---|---|---|
19739886 | Mar 1999 | DE |
19842334 | Dec 1999 | DE |
102004001564 | Aug 2005 | DE |
102006009362 | May 2007 | DE |
102006004286 | Aug 2007 | DE |
102007001645 | Jul 2008 | DE |
2008106783 | May 2008 | JP |
WO9944872 | Sep 1999 | WO |
WO0235125 | May 2002 | WO |
WO2008110436 | Sep 2008 | WO |
Number | Date | Country | |
---|---|---|---|
20110215271 A1 | Sep 2011 | US |