The present invention relates to electronically controlled pressure systems. It finds particular application in conjunction with solenoids used for controlling pressure in pneumatically operated vehicles systems and will be described with particular reference thereto. It will be appreciated, however, that the invention is also amenable to other applications.
Solenoids are commonly used in vehicle compressed air systems for controlling flow of the compressed air from a supply air reservoir to a vehicle sub-system (e.g., a braking system) operated by the compressed air. It is not uncommon that the vehicle sub-system achieves optimal operation when the pressure of the compressed air within the vehicle sub-system is within a target range. Therefore, a solenoid is typically used in conjunction with a separate pressure limiting valve to more precisely control the amount of compressed air supplied to the vehicle sub-system.
When the pressure in the vehicle system drops below a cut-in pressure, the solenoid supplies the compressed air from the supply air reservoir to the vehicle sub-system via the pressure limiting valve. Once the pressure within the vehicle sub-system reaches a cut-out pressure, the solenoid is, for example, deenergized to prevent additional compressed air from being supplied to the vehicle sub-system. Although the cut-out pressure is designed to ensure the pressure within the vehicle sub-system is within the target range, the actual pressure supplied to the vehicle sub-system by the solenoid may overshoot the target range. In this case, the pressure limiting valve acts to exhaust any excess pressure from the vehicle air sub-system until the pressure of the compressed air within the vehicle sub-system is within the target range.
The present invention provides a new and improved apparatus and method which addresses the above-referenced problems.
In one embodiment, a solenoid valve includes a supply port that fluidly communicates with a source of compressed air, a delivery port, a bore that selectively fluidly communicates with the supply and delivery ports, an armature in the bore, a pole piece in the bore, and a coil that is selectively energized with electrical power. The coil is around the armature and pole piece. The armature and pole piece selectively sealingly engage and move as an armature/pole piece single unit as a function of the electrical power in the coil. A position of the armature/pole piece within the bore controls fluid communication between the supply port and the delivery port.
In the accompanying drawings which are incorporated in and constitute a part of the specification, embodiments of the invention are illustrated, which, together with a general description of the invention given above, and the detailed description given below, serve to exemplify the embodiments of this invention.
With reference to
A solenoid coil 26 is positioned around a solenoid armature 28 and a solenoid pole piece 30. A coil housing 32 and an endcap 34 define the bore 20. In the illustrated embodiment, the coil housing 32 includes three (3) component pieces 32a, 32b, 32c. In addition, the coil housing 32 abuts the endcap 34 to form a bore housing 32, 34. The supply aperture 22 is defined at one end of the coil housing 32, and the exhaust aperture 24 is defined at one end of the endcap 34. The solenoid armature 28 passes through the supply aperture 22. The pole piece 30 includes a pole piece passage 36. A piston 40 passes through the exhaust aperture 24 of the endcap 34. The piston 40 includes a top face 42, a bottom face 44, and a stem portion 46. The stem portion 46 is positioned within the exhaust aperture 24 while the top and bottom faces 42, 44, respectively, are positioned outside of the endcap 34. A piston channel 50 fluidly communicates with the exhaust port 16.
In the de-energized state illustrated in
With reference to
In the initially energized state, the electrical power passing through the coil 26 causes the armature 28 to move away from the supply port 12 and toward the pole piece 30. Both the armature 28 and the pole piece 30 include a metallic material causing the armature 28 and the pole piece 30 to be magnetically attracted to each other. After the coil 26 is energized, the magnetic attraction between the armature 28 and the pole piece 30 is increased so that the armature 28 and the pole piece 30 move together as a single unit. In addition, the magnetic attraction sealingly engages the armature 28 to a normally open seat 72 at an end of the pole piece passage 36. The energized coil 26 causes the single unit armature/pole piece 28, 30 to move away from the supply port 12 and maintain the seal between the piston seat 64 and the pole piece 30.
It is to be understood that in both the first and alternate embodiments, the coil 26, selectively energized with electrical power, the piston 40, and springs 52, 60, 62 act as a means for controlling the sealing cooperation between the armature 28 and the pole piece 30 and a state of delivering pressure to the delivery port 14. In addition, in the first embodiment, the armature 28 and springs 60, 62 act as a means for controlling a pressure in the delivery reservoir 66.
During the initially energized state illustrated in
With reference to
In the energized state at lapped position, pressure at the delivery port 14 acts on the bottom face 44 of the piston 40 to move the piston 40 against the bias of the piston spring 62. Pressure on the bottom face 44 of the piston 40 moves the bottom face 44 away from the endcap 34 and toward the exhaust port 16. As the piston is moved away from the endcap 34, the bias of the pole piece spring 60 acts to overcome the bias of the armature spring 52 and moves the single unit armature/pole piece 28, 30 toward the exhaust aperture 24 of the to maintain the seal at the piston seat 64. As discussed above, the armature and pole piece 28, 30, respectively, move as a single unit and the normally open seat 72 of the pole piece 30 is sealed due to magnetic attraction.
As illustrated in
With reference to
Once the bottom face 44 of the piston is moved farther away from the bore housing 32, 34, the seal between the piston stem 46 and the pole piece 30 at the piston seat 64 is broken. At this point, compressed air in the delivery reservoir 66 is fluidly transmitted to the exhaust port 16, as illustrated by the line 82. Pressure in the delivery reservoir 66 decreases as the compressed air is exhausted through the exhaust port 16 via the piston channel 50. As pressure in the delivery reservoir 66 decreases, pressure pushing against the bottom face 44 of the piston 40 decreases. Decreased pressure against the bottom face 44 of the piston 40 permits the bias of the piston spring 62 to move the piston 40 back toward the pole piece 30. Once the pressure in the delivery reservoir 66 drops to within the target pressure range, the piston spring 62 pushes the piston 40 far enough so that the stem portion 46 seals against the pole piece 30 at the piston seat 64—at which point, the solenoid valve 10 returns to the energized state at lapped position illustrated in
Upon reaching equilibrium in the delivery reservoir 66, the solenoid valve 10 remains in the energized state at lapped position illustrated in
If the coil is de-energized, the solenoid valve 10 returns to the de-energized state (see
With reference to
Due to a time delay in the solenoid valve 10 transitioning to the energized state at lapped position, the pressure in the delivery reservoir 66 (see
The pressure in the delivery reservoir 66 (see
While the present invention has been illustrated by the description of embodiments thereof, and while the embodiments have been described in considerable detail, it is not the intention of the applicants to restrict or in any way limit the scope of the appended claims to such detail. Additional advantages and modifications will readily appear to those skilled in the art. Therefore, the invention, in its broader aspects, is not limited to the specific details, the representative apparatus, and illustrative examples shown and described. Accordingly, departures may be made from such details without departing from the spirit or scope of the applicant's general inventive concept.
Number | Name | Date | Kind |
---|---|---|---|
4538129 | Fisher | Aug 1985 | A |
4760694 | Gillon, Jr. | Aug 1988 | A |
4821770 | Parrott et al. | Apr 1989 | A |
4998559 | McAuliffe, Jr. | Mar 1991 | A |
5038826 | Kabai et al. | Aug 1991 | A |
5163474 | Rizk | Nov 1992 | A |
5449119 | Maley | Sep 1995 | A |
5735582 | Eith et al. | Apr 1998 | A |
5979503 | Abboud et al. | Nov 1999 | A |
6189983 | Volz et al. | Feb 2001 | B1 |
6209971 | Ho et al. | Apr 2001 | B1 |
6305759 | Ho et al. | Oct 2001 | B1 |
6325468 | Ho et al. | Dec 2001 | B1 |
6386649 | Ross | May 2002 | B1 |
6588856 | Herbst et al. | Jul 2003 | B2 |
6719265 | Kloda et al. | Apr 2004 | B2 |
7036788 | Schneider et al. | May 2006 | B1 |
7354118 | Herbst | Apr 2008 | B2 |
7415341 | Goebels et al. | Aug 2008 | B2 |
20040035472 | Teltscher et al. | Feb 2004 | A1 |
20090045671 | Ho | Feb 2009 | A1 |
Number | Date | Country |
---|---|---|
2497127 | Jun 2002 | CN |
3134613 | Mar 1983 | DE |
2560956 | Sep 1985 | FR |
Number | Date | Country | |
---|---|---|---|
20090302250 A1 | Dec 2009 | US |