The embodiments herein relate generally to systems and methods for mitigating waste. More particularly, the embodiments relate to an improved gasifier/reactor configuration, for implementation in a waste mitigation system, including mitigation of black water waste.
Humans generate and produce waste. The handling of waste is particularly burdensome in military situations, where military units may need to be relatively small and mobile. The personnel in these units will generate waste from both administrative activities and field feeding. This waste generally contains items such as paper, cardboard, plastics and food waste. The personnel also produce waste in the form of black and grey water. The handling and disposal of these waste streams consume significant resources, e.g., labor and energy. Accordingly, there is continued interest in the availability of a mobile, easy to operate, environmentally friendly and efficient system to process waste streams to reduce their volume and mass and to convert the waste into a useful energy source to support the military unit in the field. The advantages of an efficient waste to energy system would greatly simplify the logistics of waste disposal, decrease the consumption of nonrenewable energy required to transport and treat the waste, and supply extra power to meet site-specific needs.
To this end, the Tactical Garbage to Energy Refinery (TGER) was designed and has been iteratively improved responsive to interest and funding from the U.S. Army. The TGER was initially specifically developed as a hybrid system for the tactical disposal of military wastes, accompanied by the generation of usable electrical power. In operation, the 1 ton of waste per day capacity of the TGER was designed to be compatible with support of a force of approximately 550 personnel at remote locations, and the composition of administrative and food waste they generate. Its two main subsystems include gasification and fermentation (bio-reaction), are, separately, established technologies with applications in the treatment of various waste materials.
The TGER system was intended to be capable of converting military field wastes into usable electric power via a standard diesel generator. The TGER utilized a hybrid design of gasification to convert dry solid wastes to syngas and fermentation (i.e., bio-reaction) to process wet food wastes to hydrous ethanol. The syngas and ethanol were then blended with air and fed to the generator, gradually displacing regular diesel fuel. An exemplary implementation of the unit operations involved in the two parallel processes (THERMO for gasification and BIO for bio-reaction) of the TGER system are outlined in prior art
An exemplary bio-reaction section of
With respect to the exemplary gasification process of
Finally, the exemplary genset section of
The prior art TGER system of
In a first embodiment, a system for waste processing is described. The system includes: a feeder for receiving a waste stream of carbonaceous materials, the feeder including a first controllable auger for directing the waste stream; a reactor for receiving the directed waste stream from the feeder, the reactor including a reactor tube, second controllable auger, and a first heating element assembly for converting the carbonaceous materials to syngas and ash; and an incinerator for receiving the syngas from the reactor and for receiving black water waste from a storage tank, wherein the incinerator includes at least one burner fueled by the syngas for incinerating the received black water waste.
In a second embodiment, a modular waste processing system is described. The system includes: a first self-contained waste pre-processing system for receiving heterogeneous carbonaceous waste of varying size and composition and processing to form a homogeneous single stream of carbonaceous waste; a second self-contained waste processing system for receiving the single stream of homogenous carbonaceous waste from the first self-contained waste pre-processing system via a first conduit and for processing the single stream of homogenous carbonaceous waste to a syngas and ash; and a third self-contained waste producing system for receiving and storing black water waste therein and for providing the black water waste to the second self-contained waste processing system via a second conduit, wherein the second self-contained waste processing system incinerates the black water waste from the third self-contained waste producing system using the syngas produced therein as fuel for an incinerator.
The Summary of the Embodiments, as well as the following Detailed Description, is best understood when read in conjunction with the following exemplary figures:
The present embodiments are directed to an improved waste mitigation system referred to herein as an Xw-Box system. A generalized schematic of an Xw-Box system included within a particularized scenario is shown in
The improved Xw-Box system described and illustrated herein is intended to convert solid administrative waste such as paper documents and cardboard and plastic packaging materials, and food waste, e.g, carbonaceous materials, including those resulting from, for example, UGR-A meals (Unitized Group Rations) and MREs (Meals Ready to Eat), into syngas which powers an incinerator for destruction of human waste, e.g., black water. Some liquid content such as water, juices, and sauces are anticipated to be part of the food waste as well. Tables 1 and 2 below provide exemplary waste material composition by weight for 100 lbs. of representative waste. The waste includes whole MREs (food intact),
packaging materials such as trash bags and cardboard boxes and other related solid waste such as plastic bottles, trays and flatware all of which could be included in the single solid waste stream and processed by the Xw-Box and the gasifier/reactor.
Referring to
In the slightly altered embodiment of
The main auger 7 moves the waste material through the main reactor tube 9. The main auger speed can be adjusted independently from the feed/plug auger, allowing enough residence time through the main reactor tube 9 for optimal carbon conversion. Carbon conversion is achieved when the heater assembly 25 ramps up the temperature in the reactor tube 9 to above at least 670 degrees Celsius. In a preferred embodiment, the at least 670 degrees Celsius is achieved as quickly as possible (e.g., within approximately the first 20-30 inches of the reactor tube and by the second zone HZ2) to preclude condensates forming in the system (e.g., tar, carbon, etc.).
When the processed waste material reaches the reactor end 11, the products of the carbon conversion are ash and syngas. In real-time, the ash is directed to the ash collection container 12 by at last one valve and the produced gas, i.e., syngas, is sent to the incinerator 14 by a high temperature gas blower 8a. The incinerator may include multi-fuel burners for syngas and/or diesel or other fuel use. Alternately, the syngas may be directed to an incinerator toilet rather than a centralized incinerator.
The separate feed and reactor augers configuration of
In
Additional modifications to the configurations discussed herein are also contemplated in accordance with size and containment requirements and limitations. For example,
The syngas produced by the reactor is provided to an incinerator which is abutted/configured to the gasifier outlet. The syngas is fed hot to incinerator burners which incinerate black water received separately from a personal hygiene system discussed below. The direct delivery of hot syngas to the incinerator mitigates gasifier problems due to condensation of tars and carbon deposits that form during the cooling of the syngas. The present embodiments eliminate the need for heat exchangers, high temperature filters, water knockout for tars, etc.
Further to the exemplary application of the embodiments described herein to support COP and military FOB (Forwarding Operating Base) operations, the embodiments herein may be designed so as to be contained in one or more TRICON or BICON containers which are used extensively by the United States Armed Forces. The TRICON is configured so that when three of them are secured together using the SeaLock connector, the resulting package has the same footprint as a 20 foot ISO intermodal container. Similarly, a BICON container is used by the United States Armed Forces for transport and storage and can be secured together with a second BICON to meet the 20 foot ISO intermodal container dimensions. The following configurations illustrate Tricon implementations for sheltering one or more of the Xw-Box configurations described herein.
Referring to
Further to the containment scenarios of
In
In
In
And, in
The embodiments described herein are not intended to be exhaustive. One skilled in the art recognizes that there are variations, additions, deletions to the embodiments that though not explicitly recited herein would readily be contemplated by a person having ordinary skill in the art. It is submitted that such variations, additions, deletions are clearly within the scope of the embodiments. Further, though the particular application described herein is directed to a military environment, those skilled in the art recognize other applications and environments wherein the embodiments may be employed, such as at locations without large power and waste infrastructure producing similar waste streams such as amusement parks, outdoor festival/concert venues and natural disaster recovery cites.
The present application claims benefit of the filing date of U.S. provisional patent application No. 62/025,544 filed Jul. 17, 2014 entitled “Solid and Black Waste Mitigation System,” the entire contents of which is incorporated herein.
The government of the United States of America retains a non-exclusive, irrevocable, royalty-free license in one or more embodiments herein pursuant to Army Contract No. W911QY-14-C-0091.
Number | Name | Date | Kind |
---|---|---|---|
7013648 | Griffin | Mar 2006 | B2 |
7878131 | Becchetti | Feb 2011 | B2 |
8328993 | Feerer | Dec 2012 | B2 |
8533873 | West, Jr. | Sep 2013 | B2 |
20140021028 | Paganessi et al. | Jan 2014 | A1 |
Number | Date | Country |
---|---|---|
1036879 | Jul 1966 | GB |
Entry |
---|
Knowlton, L. and Pickard, D., U.S. Army Natick Soldier Research, Development and Engineering Center (NSRDEC); Diebold, J., Lasnik, L., Lilley, A., and Browne, K., Community Power Corporation, “On-Site Field-Feeding Waste to Energy Converter,” 8 pp., http://nsrdec.natick.army.mil/LIBRARY/00-09/R08-105.pdf. |
Taylor, P., “Minimizing the Footprint of Deployed Bases: Army Approaches to Waste to Energy Conversion.” U.S. Army Research, Development and Engineering Command (RDECOM), 14 pp., May 7, 2009. |
Valdes, J. J. and Warner, J., “Tactical Garbage to Energy Refinery,” Research and Technology Directorate and Defense Life Sciences, Edgewood Chemical Biological Center, U.S. Army Research, Development and Engineering Command, ECBC-TR-713, 33 pp., Oct. 2009. |
Warner, J. and Haggerson, C. M., Defense Life Sciences; Knoeller, S. L., Craig, B. D., and Fink, C. W., AMMTIAC, “Tactical Renewable Energy Production—Converting Waste and Biomass to Energy and Fuel,” The AMMTIAC Quarterly, vol. 4, No. 3, 2009, http://ammtiac.alionscience.com/quarterly. |
“Tactical Garbage to Energy Refinery (TGER) 2.0, Final Report,” Prepared by SAIC, Jan. 2013, 45 pp. |
Number | Date | Country | |
---|---|---|---|
62025544 | Jul 2014 | US |