The present invention relates to the transfer of electrical current across a moving surface in an electric current collecting device.
The invention described herein may be manufactured and used by or for the Government of the United States of America for governmental purposes without the payment of any royalties thereon or therefore.
Currently many slip-ring brushes are made from solid carbon. Metal fiber brushes are generally known for providing a large number of electrical contact points on a rotor running surface, thereby providing low contact voltage drop. However such metal fiber brushes, supported by holders to which they are attached by soldering, as disclosed for example in U.S. Pat. No. 6,628,036, to Lynch, are readily deformed by high external forces which may arise in an electrical motor type of environment because of current and magnetic field interactions. Excessive loading of such metal fiber brushes when applied to the running rotor surface results in excessive brush spreading distortion, sometimes referred to as splay. While brushes may be made stronger by using larger fibers, this would result in fewer contact points and poor following of imperfections in the rotor surface. The use of liquid metal brushes has also been proposed so as to increase surface coverage and significantly reduce losses, which however introduces other problems requiring control over atmospheric environment and fluid stability. Much of the latter referred to problems are avoided by the present invention for a more efficient electrical current collector.
Pursuant to the present invention, a physical type of container is provided for retention therein of liquefied conductive metal 23 sealingly enclosed within a housing from which porous brush components project into contact with a moving conductive slip-ring surface of electrical machinery for transfer of electrical current thereto under a light contact pressure applied to the housing. During operation of the machinery, the slip-ring surface is exposed to some of the liquefied metal at tips of the brush components in contact with the moving surface, while the slip-ring is atmospherically exposed to the liquefied metal. The quantity of liquid metal exposed to the atmosphere within the machinery is thereby limited so as to significantly increase the life of the current collector.
A more complete appreciation of the invention and many of its attendant advantages will be readily appreciated as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawing wherein:
Referring now to the drawing in detail,
A small amount of the liquid metal from the reservoir housing 18 enters the tips 14 through fibers 20 connected thereto, made of a low-melting point metallic alloy or a porous liquid containment material 22 such as aero-gel foam. The liquefied metal completely fills the chamber within the housing 18 about the fibers 20. When the brush assembly 10 is fabricated, the liquid metal is drawn into the containment material 22 by vacuum.
According to another embodiment of the present invention as shown in
Since the liquid metal 23 is well contained and sealed within the housing 18′ and within the brush tubes 24 as hereinbefore described, there is very little reaction thereof with the environmental atmosphere so as to minimize reaction of the liquid metal 23 with the atmosphere. Furthermore, the brush assembly 10 or 10′ is effective to perform transfer of current to the surface 12 under a very light pressure force 34 applied to the housing 18 or 18′ as diagrammed in
In accordance with other embodiments of the present invention, the liquefied metal containment material 22 within the housing 18 or 18′ may be formed from carbon or silica aerogel for example, within which the liquid metal 23 is retained by capillarity and vacuum. Conductive metal or non-conductive micro-tubes made of polymers for example could also be used in association with a conductive base interface in contact with the liquid metal 23. According to still other alternative embodiments, the liquid metal containment tubes 24 may be replaced by fabric strips 33 as shown in
Obviously, other modifications and variations of the present invention may be possible in light of the foregoing teachings. It is therefore to be understood that within the scope of the appended claims the invention may be practiced otherwise than as specifically described.
Number | Name | Date | Kind |
---|---|---|---|
3837229 | Stiles et al. | Sep 1974 | A |
4027183 | Hatch | May 1977 | A |
4027184 | Hurley | May 1977 | A |
4168446 | Hatch | Sep 1979 | A |
4186321 | Marshall | Jan 1980 | A |
4241273 | Hatch | Dec 1980 | A |
4266154 | Marshall | May 1981 | A |
4314171 | Hatch | Feb 1982 | A |
4358699 | Wilsdorf | Nov 1982 | A |
4415635 | Wilsdorf et al. | Nov 1983 | A |
6628036 | Lynch et al. | Sep 2003 | B1 |
6903484 | Kuhlmann-Wilsdorf | Jun 2005 | B1 |
6913476 | Yean et al. | Jul 2005 | B1 |