Solid-body catheter including lateral distal openings

Abstract
A catheter for vascular insertion, including a catheter body defining a first lumen and a second lumen, and including a distal region. The distal region may include a first distal opening in fluid communication with the first lumen, and a second distal opening in fluid communication with the second lumen. The distal region may also include a first lateral opening defined by the catheter body and in fluid communication with the first lumen, and a second lateral opening defined by the catheter body and in fluid communication with the second lumen. One or both of the first and second lateral openings may be defined by an angle cross-cut through an outer perimeter of the catheter body.
Description
BRIEF SUMMARY

Briefly summarized, embodiments of the present invention are directed to a split-tip catheter for placement within the vasculature of a patient. The catheter is configured for use in hemodialysis treatments, though the principles of the present invention may be extended to other catheters employed in other uses in addition to hemodialysis.


In one embodiment, the split-tip catheter includes a catheter body that defines a first lumen and a second lumen. The catheter body further comprises a split distal region, including a venous segment that defines a distal portion of the first lumen and an arterial segment that defines a distal portion of the second lumen. The venous segment includes a recess extending proximally of a nose portion, and a lateral opening in fluid communication with the first lumen.


The arterial segment is separate from the venous segment in the split distal region and is removably seatable in the recess provided by the venous segment such that it “nests” therein. This nesting of the arterial segment with the venous segment provides a columnar profile for the split distal region during its advancement into and through the patient's vasculature, enabling the distal region to advance as a monolithic structure and thus easing its advancement through tortuous paths and past pathway obstacles. The segments are maintained in their nested state via a guidewire that is passed through both segments and is removable after the catheter has been suitably placed. Similar to the venous segment, the arterial segment also includes a lateral opening in fluid communication with the second lumen.


An example of a split-tip catheter that can include aspects of embodiments of the present invention is disclosed in U.S. Pat. No. 6,001,079, entitled “Multilumen Catheter, Particularly for Hemodialysis,” which is incorporated herein by reference in its entirety.


In one embodiment, the distal region of the catheter is un-split, but includes symmetrically opposed lateral openings, as well as distal openings, in communication with the first and second lumens. The lateral and distal openings of the first and second lumens in the distal region provide a functional stagger for blood flow in both forward and reverse catheter flow directions. As will be further described, the configuration of the above openings is intended to reduce the likelihood of uptake and recirculation by one lumen of the catheter of treated blood just returned to the vessel via the other lumen, thus increasing catheter efficiency.


These and other features of the present invention will become more fully apparent from the following description and appended claims, or may be learned by the practice of the invention as set forth hereinafter.





BRIEF DESCRIPTION OF THE DRAWINGS

To further clarify the above and other advantages and features of the present invention, a more particular description of the invention will be rendered by reference to specific embodiments thereof that are illustrated in the appended drawings. It is appreciated that these drawings depict only typical embodiments of the invention and are therefore not to be considered limiting of its scope. The invention will be described and explained with additional specificity and detail through the use of the accompanying drawings in which:



FIG. 1 is a perspective view of a catheter assembly including a split-tip distal region configured in accordance with one example embodiment of the present invention;



FIG. 2 is a perspective view of a catheter assembly including a split tip distal region and a pre-curved catheter body, according to one embodiment;



FIGS. 3A-3D are two perspective views, a side view, and a top view, respectively, of the distal region of the split-tip catheter of FIG. 1;



FIGS. 4A and 4B are a perspective and a side view, respectively, of the distal region of the split-tip catheter of FIG. 1, wherein a guidewire is inserted therethrough to maintain a venous segment and arterial segment in a nested configuration;



FIGS. 5A and 5B are side views of the distal region of the split-tip catheter of FIG. 1 showing the flow of blood therethrough in a “forward” direction (FIG. 5A) and a “reverse” direction (FIG. 5B) when the catheter is disposed in a vasculature of a patient;



FIG. 5C is a side view of the distal region of the split-tip catheter of FIG. 1;



FIG. 5D is a cross sectional view of the catheter of FIG. 5C taken along the line 5D-5D;



FIG. 5E is a cross sectional view of the catheter of FIG. 5C taken along the line 5E-5E;



FIG. 5F is a cross sectional view of the catheter of FIG. 5C taken along the line 5F-5F;



FIG. 5G is a cross sectional view of the catheter of FIG. 5C taken along the line 5G-5G;



FIG. 5H is a distal end view of the catheter of FIG. 5C taken along the line 5H-5H;



FIGS. 6A and 6B are a perspective and a side view, respectively, of a distal region of a split-tip catheter configured in accordance with one embodiment;



FIG. 7 is a simplified view of the split-tip catheter of FIG. 1 after insertion into a vasculature of a patient;



FIG. 8A is a perspective view of a subcutaneous tunneler configured in accordance with one example embodiment of the present invention;



FIG. 8B is a side view of the tunneler shown in FIG. 8A;



FIGS. 8C and 8D are side and top views, respectively, of the tunneler shown in FIG. 8A;



FIGS. 9A-9D show various steps of the insertion of the subcutaneous tunneler of FIG. 8A in a distal end of a split-tip catheter, such as that shown in FIG. 1;



FIGS. 10-12 are side views of barb configurations for the tunneler of FIG. 8A, according to embodiments of the present invention;



FIGS. 13A-13C are perspective, bottom, and top views, respectively, of a split-tip catheter including a distal region configured in accordance with one embodiment of the present invention;



FIGS. 14A-14C are perspective, bottom, and top views, respectively, of a split-tip catheter including a distal region configured in accordance with one embodiment;



FIGS. 15A-15C are perspective, bottom, and top views, respectively, of a split-tip catheter including a distal region configured in accordance with one embodiment;



FIGS. 16A-16C are perspective, bottom, and top views, respectively, of a split-tip catheter including a distal region configured in accordance with one embodiment;



FIGS. 17A-17C are perspective, bottom, and top views, respectively, of a split-tip catheter including a distal region configured in accordance with one embodiment;



FIGS. 18A-18D are perspective, bottom, top, and cross sectional views, respectively, of a split-tip catheter including a distal region configured in accordance with one embodiment;



FIGS. 19A-19D are perspective, bottom, top, and cross sectional views, respectively, of a split-tip catheter including a distal region configured in accordance with one embodiment;



FIGS. 20A-20C are perspective, bottom, and top views, respectively, of a split-tip catheter including a distal region configured in accordance with one embodiment;



FIGS. 21A-21C are perspective, bottom, and top views, respectively, of a split-tip catheter including a distal region configured in accordance with one embodiment of the present invention;



FIGS. 22A-22B are perspective views of a split-tip catheter including a distal region configured in accordance with one embodiment of the present invention;



FIGS. 23A-23C are perspective views of a split-tip catheter including a distal region configured in accordance with one embodiment of the present invention;



FIGS. 24A-24F are various views of the distal region of a catheter in accordance with one example embodiment;



FIGS. 25A-25C are various cross sectional views of the distal region of the catheter of FIG. 24A;



FIG. 26A is a distal end view of the catheter of FIG. 24C taken along the line 26A-26A;



FIG. 26B is a cross sectional view of the catheter of FIG. 24C taken along the line 26B-26B;



FIG. 27 is a simplified view of the catheter of FIG. 24A after insertion into a vasculature of a patient;



FIGS. 28A-28D are various views of a distal region of a catheter body, according to one example embodiment;



FIGS. 29A-29B are various views of a distal region of a catheter body, according to another example embodiment; and



FIG. 30 is a side view of a distal region of a catheter body including staggered lateral openings in accordance with one example embodiment.





DETAILED DESCRIPTION OF SELECTED EMBODIMENTS

Reference will now be made to figures wherein like structures will be provided with like reference designations. It is understood that the drawings are diagrammatic and schematic representations of exemplary embodiments of the invention, and are not limiting of the present invention nor are they necessarily drawn to scale.



FIGS. 1-30 depict various features of embodiments of the present invention, which are generally directed to a split-tip catheter for placement within the vasculature of a patient. The catheter is configured for use in renal replacement therapies such as hemodialysis or blood purification, though the principles of the present invention may be extended to other catheters employed in other uses in addition to these. Such catheters are typically employed in long-term or chronic placement scenarios such as a placement of 30 days or more, though the principles to be described herein can also apply to short and mid-term catheter placements as well.


In accordance with one example embodiment, the split-tip portion of the catheter includes separate venous and arterial segments that are employed for simultaneously infusing and aspirating blood from a vein or other vessel of a patient's vasculature during hemodialysis treatments. The distal ends of the venous and arterial segments can be staggered to reduce the likelihood of recirculation by the arterial segment of treated blood just returned to the vessel by the venous segment, thus increasing catheter efficiency. In addition, both the venous and arterial segments are configured with openings, including laterally disposed openings, to further increase catheter efficiency during hemodialysis.


Embodiments of the split-tip catheter to be described herein further include a nested split-tip configuration, wherein the arterial segment of the catheter seats in a correspondingly shaped recess provided by a portion of the venous segment. When seated in this manner, the arterial segment defines with the venous segment a smooth, cylindrical outer surface, thus enabling the catheter to be introduced into and advanced in the patient's vasculature while avoiding snagging or obstructions that would otherwise cause the catheter to catch or bind therewith. The nested split-tip design further provides a guidewire channel for enabling a guidewire to be passed through both the venous and arterial segments to maintain the two segments in the nested configuration during catheter insertion into the vasculature. Once the catheter is properly positioned, the guidewire may be removed and the venous and arterial segments are free to separate from one another within the vessel, thus providing desired separation therebetween. A subcutaneous tunneler is also provided herein for assistance in subcutaneously tunneling the catheter.


In one embodiment, the distal region is un-split, but includes symmetrically opposed lateral openings, as well as distal openings, in communication with the first and second lumens for providing a functional stagger for blood flow in both forward and reverse catheter flow directions. The lateral and distal openings of the first and second lumens in the distal region provide a functional stagger for blood flow in both forward and reverse catheter flow directions. As with the other embodiments described herein, the configuration of the above openings is intended to reduce the likelihood of fluid recirculation so as to increase catheter efficiency.


For clarity it is to be understood that the word “proximal” refers to a direction relatively closer to a clinician using the device to be described herein, while the word “distal” refers to a direction relatively further from the clinician. For example, the end of a catheter placed within the body of a patient is considered a distal end of the catheter, while the catheter end remaining outside the body is a proximal end of the catheter. Further, the words “including,” “has,” and “having,” as used herein, including the claims, shall have the same meaning as the word “comprising.”


Reference is first made to FIG. 1, which depicts various features of a hemodialysis split-tip catheter assembly, generally designated at 10, according to one example embodiment of the present invention. As shown, the catheter 10 includes an elongate catheter body 11 including a proximal end 11A and a distal end 11B. The elongate catheter body 11 defines a first lumen 12 and a second lumen 14 (FIG. 3B) that longitudinally extend from the proximal end 11A to the distal end 11B thereof. The lumens 12 and 14 can have one or more cross sectional shapes along their respective lengths, including round, oval, and D-cross sectional shapes. The catheter body 11 can define more than two lumens, if desired. As shown in FIG. 5B, the first and second lumens 12, 14 are split along a common septum of the catheter body 11. The catheter body 11 can be formed of a variety of suitable materials, including polyurethane, silicone, etc.


A bifurcating hub 15 is included at the catheter body proximal end 11A, providing fluid communication between the first and second lumens 12, 14 and arterial extension leg 16 and venous extension leg 18, respectively. The extension legs 16, 18 each include a luer connector 16A, 18A and a clamp 16B, 18B. So configured, the extension legs 16, 18 provide fluid communication with the first and second lumens 12 and 14 so as to enable the infusion or aspiration of fluids from a vein or other vessel or portion of a patient's vasculature. As such, fluid infusion or aspiration devices, such as a hemodialysis apparatus for example, may be connected to the catheter assembly 10 via the luer connectors 16A, 18A, thus providing intravascular access to the patient. The catheter body 11 further includes a cuff 19 for providing anchoring of the catheter body into body tissue when the catheter assembly is subcutaneously tunneled.


Reference is made to FIG. 2, which shows the catheter assembly 10, according to another example embodiment, wherein the catheter body 11 includes a pre-curved portion 18C intermediate the proximal and distal ends 11A, 11B thereof. That is, in an unstressed configuration the catheter assumes the shape shown in FIG. 2. The pre-curved portion 18C enables the exterior proximal portion of the catheter assembly 10 to extend downward against the patient's body once the distal portion of the catheter assembly has been placed in the vasculature.


Both FIGS. 1 and 2 further include a distal tip region, generally designated at 20, that is configured in accordance one example embodiment of the present invention, the details of which are given below. It should be appreciated that the distal tip region to be described below can be included with hemodialysis catheters, such as those shown in FIGS. 1 and 2, or with other catheters, such as central venous catheters, for example.


Reference is now made to FIGS. 3A-3D, which depict various details regarding the distal tip region 20 of FIG. 1 as briefly discussed above. The distal tip region 20 generally includes the split-tip distal portion of the catheter assembly 10, including a distal venous segment 22 that defines a distal portion of the first lumen 12, and a distal arterial segment 24 that defines a distal portion of the second lumen 14. As shown in FIG. 3B, the venous and arterial segments 22, 24 are split along a common septum of the catheter body 11 that separates the first lumen 12 from the second lumen 14.


The venous segment 22 includes a nose portion 30 at the distal end thereof. In the present embodiment, the nose portion 30 generally defines a tapered, conical shape, though this shape may be varied, as will be seen further below. The tapered shape of the nose portion 30 reduces insertion forces during placement and minimizes abrasion between the nose portion surface and the walls of the vessel in which the distal region of the catheter is disposed. A venous distal opening 32A is defined on the tapered portion of the nose portion 30 and is in fluid communication with the distal portion of the first lumen 12 defined by the venous segment. A guidewire channel 32B proximally extends from a hole defined at the distal end of the nose portion 30 and is in communication with the second lumen 14 of the arterial segment 24, in the manner described below, to enable selective nesting of the arterial segment with the venous segment 22 during catheter insertion. Of course, these openings, as well as the other catheter openings to be described below, can vary in size and placement from what is explicitly described herein.


The venous segment 22 further defines a recess 36 proximal to the nose portion 30 that is sized to correspond to the shape of an outer surface of the arterial segment 24. The arterial segment 24 can thus be selectively and removably seated, or “nested” in the recess 36, thus providing a smooth, cylindrical outer surface profile for the distal tip region 20 of the catheter body 11 during advancement of the catheter assembly 10 through a subcutaneous tunnel or vasculature path.


In greater detail, and as best seen in FIG. 3C, the recess 36 defines a concavely shaped distal surface 36A that corresponds to the convex shape of a distal surface 24A of the arterial segment 24. Note that an upper portion of the curved distal surface 24A is rounded so as to reduce snagging of the arterial segment 24 during vasculature navigation.


A distal end of the arterial segment 24 includes an arterial distal end opening 34, which is defined on the curved distal surface 24A thereof. The arterial distal end opening 34 is in fluid communication with the distal portion of the arterial lumen 14 defined by the arterial segment 24. In addition, the arterial distal end opening 34 coaxially aligns with the guidewire channel 32B of the venous nose portion 30 when the arterial segment 24 is nested and seated in the recess 36 of the venous segment 22. So positioned, a guidewire 46 can be passed through the guidewire channel 32B of the venous nose portion 30, the arterial distal end opening 34, and the second lumen 14, as shown in FIGS. 4A and 4B, to maintain the arterial segment 24 in a nested configuration in the recess 36 of the venous segment 22. This nested configuration can be achieved in other ways as well, including in one embodiment a bio-dissolvable adhesive that temporarily binds the two segments together until catheter placement within the vasculature is complete, after which the adhesive dissolves to enable the segments to separate.


With the arterial segment 24 nested in the recess 36 behind the venous nose portion 30, the distal tip region 20 of the catheter assembly 10 presents as a low drag, columnar structure with a tapered nose configuration. This configuration aids in guiding the distal tip region 20 through the soft tissues and vasculature of the patient during placement or catheter exchange procedures using over-the-wire techniques for instance. Later, when the catheter assembly 10 is properly positioned, the venous segment 22 and the arterial segment 24 can separate from one another within the vessel, as shown in FIG. 3C for example, as a result of removal of a guidewire used to position the catheter. This separation of the venous and arterial segments 22 and 24 assists in reducing recirculation of treated blood during hemodialysis procedures. Note here that, in another embodiment, the nesting configuration of the distal tip region could be interchanged such that the recess is defined by the arterial lumen and the venous lumen nests therein.



FIGS. 3A-3D further depict the venous segment 22 as including along its length a venous lateral opening 42 defined proximate the nose portion 30. Similarly, the arterial segment 24 includes an arterial lateral opening 44 defined proximate the distal end of the arterial segment 24. The lateral openings 42 and 44 can take various shapes and configurations as will be shown further below, but in the present embodiment the lateral openings are defined by compound-angle cross-drilled cuts through the outer surface of the respective segment 22 or 24 to establish communication with the respective first or second lumens 12, 14. In one embodiment, such cuts are referred to as “skive” cuts.


In one embodiment, the longitudinal axis of each cross cut of the lateral openings 42, 44 defines an angle of about 35 degrees with a longitudinal axis of the respective venous or arterial segment 22, 24, though this angle can vary in one embodiment from about 20 to about 90 degrees. The longitudinal axis of each cross cut of the lateral openings 42, 44 further defines an angle in one embodiment of about 15 degrees with a plane bisecting the first lumen 12 and second lumen 14, i.e., coplanar with the septum separating the first and second lumens proximal of the distal tip region 20, though this angle can vary in one embodiment from about 0 to about 45 degrees. This angular character imparts a lateral directional component to fluid flow out of either lateral opening 42, 44, as represented by the flow arrows in FIG. 3D.


In addition, the longitudinal axes of the lateral openings 42, 44 are symmetrically opposed in direction from one another, as best shown in FIG. 3D, so as to ensure fluid entry and exit from the lateral openings occurs on opposite sides of catheter assembly 10, thus reducing recirculation of already treated blood. Furthermore, this symmetry ensures similar fluid flow characteristics to be realized even when fluid flow through the catheter assembly 10 is reversed. Moreover, the lateral openings 42, 44 extend circumferentially about a portion of the circumference of the respective venous or arterial segment 22 or 24, thus helping to prevent aspiration-related suck-up of the segment against the vessel wall. It is noted that in one embodiment the size of the lateral openings 42, 44 is such that each can accommodate the entirety of fluid flow through their respective first or second lumens 12, 14. Thus, the inclusion of the lateral openings 42, 44 with their corresponding distal openings 32A, 34 provides a redundant system such that any clotting that occurs at one opening will not significantly impact fluid throughput of the respective venous or arterial segment.


It should be appreciated that the labels “venous” and “arterial” as used above in describing the various components of the present split-tip catheter are employed for sake of convenience in describing aspects of embodiments of the present invention. Indeed, though the arterial segment is normally employed in hemodialysis procedures for aspirating blood from the blood vessel in which the catheter is disposed and the venous segment for returning already treated blood to the vessel, this can be reversed such that blood is returned via the arterial segment and aspirated by the venous segment. As such, the present invention should not be considered limited by the use of this and other descriptive terminology herein.


As can be seen in FIGS. 3D and 4B, the nose portion 30 of the venous segment 22 is configured such that it provides a “shadow” for the arterial segment 24 when the arterial segment is brought into contact with the venous segment, such as when it seats in the recess 36 of the venous segment. In other words, the outer diameter of the nose portion 30 is similar to that of the catheter body 11 proximal of the distal tip region 20 such that the arterial segment 24 is “shielded” by the nose portion when nested with the recess 36. This provides for relative ease of catheter insertion, such as when the distal tip region 20 is passed through a valved introducer during initial catheter placement, or through a subcutaneous tunnel in an over-the-guidewire catheter exchange procedure.


In one embodiment, the nose portion 30 is defined via a radiofrequency (“RF) tipping process, wherein a dual lumen catheter is split to define two lumen segments, i.e., the venous and arterial segments, in a distal tip region thereof. The distal portions of the lumen segments are bonded together via RF tipping to define the shape of the nose portion as shown in FIGS. 3A-3D. The distal tip region is then sliced to define the recess 36 and separate the arterial segment from the venous segment. Note that other forming processes may also be employed to define the distal tip region in accordance with other embodiments and as appreciated by one skilled in the art.


Reference is now made to FIGS. 5A and 5B in describing flow characteristics with respect to the split-tip configuration of the distal tip region 20 of the present catheter assembly 10. FIGS. 5A and 5B shows the distal tip region 20 with the arterial segment 24 in its unseated state with respect to the venous segment 22 after the catheter assembly 10 has properly positioned within a vessel of a patient. Arrow 48 shows the direction of bloodflow past the distal tip region 20 within the patient's vessel.


In greater detail, FIG. 5A shows fluid flow through the distal tip region 20 in a “forward” direction, wherein blood is aspirated by the second lumen 14, or “uptake” lumen, for removal from the body and treatment by a hemodialysis apparatus or for some other suitable purpose. Aspirated blood enters the second lumen 14 via both the arterial distal end opening 34 and the arterial lateral opening 44 of the arterial segment 24. However, because the second lumen 14 is under negative pressure during aspiration, the majority of blood aspirated by the second lumen is removed via the arterial lateral opening 44 due to its relatively more proximal position with respect to the pressure differential in the proximate vessel region.


Similarly, blood is infused, or returned, to the vessel by the first lumen 12, or “return” lumen, after treatment by a hemodialysis apparatus or some other suitable purpose. Infused blood exits the first lumen 12 from both the venous distal opening 32A and the venous lateral opening 42 of the venous segment 22. However, because the second lumen 12 is under positive pressure during infusion, the majority of blood returned to the bloodstream by the first lumen exits via the venous distal opening 32A due to its relatively more distal position with respect to the pressure differential in the proximate vessel region. Note that this arrangement produces an effective stagger distance F in the “forward” direction between the primary aspiration site, i.e., the arterial lateral opening 44, and the primary infusion site, i.e., the venous distal opening 32A. This effective stagger distance, together with the lateral orientation of the lateral openings 42, 44 provides for low recirculation of already-treated blood within the vessel, recirculation being defined as already-treated blood that is returned to the bloodstream via the venous lumen being immediately aspirated by the arterial lumen to be re-treated. Such recirculation is undesirable as it results in lower treatment efficiency and longer treatment time.


During hemodialysis procedures, it is sometimes necessary to reverse the blood flow through the catheter assembly 10. FIG. 5B shows fluid flow through the distal tip region 20 during such a “reverse” flow situation. In contrast to the forward flow conditions of FIG. 5A, the second lumen 14 in FIG. 5B is employed to infuse blood into the vessel via the arterial lumen 24, while the first lumen 12 aspirates blood from the vessel via the venous lumen 22. In this configuration, the majority of infused blood enters the vessel via the arterial distal opening 34 of the arterial segment 24, while the majority of aspirated blood is removed via the venous lateral opening 42 of the venous segment 22. This arrangement produces an effective stagger distance R in the “reverse” direction between the primary aspiration site, i.e., the venous lateral opening 42, and the primary infusion site, i.e., the arterial distal opening 34. Thus, it is seen that a desired stagger between the primary infusion and aspiration points is achieved regardless of the direction in which the catheter is operating.


Reference is now made to FIGS. 5C-5H. In one embodiment, the proximal portions of the first and second lumens 12, 14 of the catheter body 11 define a “D”-shaped cross sectional shape, as seen in FIGS. 5D and 5E. The first and second lumens 12, 14 each include a loft, or transition region 45, wherein the cross sectional shape of each lumen changes from a “D” shape to an oval shape, which oval shape continues toward the distal end of the distal tip region 20, as seen in FIGS. 5F and 5G. Definition of the transition region 45 and the oval shape of the distal portions of the first and second lumens 12, 14 can be accomplished by one of several suitable methods, including heat forming, molding, extrusion, etc.


Note that the oval shape of the first and second lumens 12, 14 is provided in the region proximate the lateral openings 42, 44. This provides additional stiffness and strength to the catheter body 11 in this region while also maintaining an acceptable inter-luminal thickness for the central septa of the venous and arterial segments 22, 24. In other embodiments, other cross sectional shapes can be defined by the catheter body. Or, in another embodiment the “D”-shaped cross sectional lumens continue distally to the distal end of the catheter body. In yet another embodiment, the first and second lumens define oval cross sectional shapes along most or all of the catheter body length. FIG. 5H shows an end view of the catheter body depicted in FIG. 5C.


Note that the configuration of the distal tip region 20 can vary according to need or design. FIGS. 6A and 6B show one such variation, wherein a nose portion 31 of the venous segment 22 includes the venous distal opening 32A at the distal end of the nose portion and not along the tapered surface, as in the configuration in FIG. 1. Further, a guidewire channel 33 extends from just inside the venous distal opening 32A and through the nose portion 31 so as to establish communication with the arterial distal opening 34 of the arterial segment 24 when the arterial and venous segment 22 are nested. Thus, these and other variations in the distal tip region are contemplated as falling within the principles of the present invention.


Reference is now made to FIGS. 8A-8D in describing various aspects of a subcutaneous tunneling device (“tunneler”), generally designated at 60, for use in subcutaneously tunneling a portion of the catheter assembly 10 in the body of the patient. FIG. 7 depicts such a tunneled state of the catheter assembly 10, wherein a tunneled region 52 intermediate the proximal and distal ends of the catheter body 11 is disposed underneath the skin of the patient 50. As shown, the proximal portion of the catheter assembly 10, including the hub 15 and extension legs 16 and 18, is exposed proximal the tunneled region 52. Correspondingly, a distal portion of the catheter assembly 10 is shown distal of the tunneled region 52 and inserted through an incision site 54 into the patient's vasculature such that the distal tip region 20 is positioned in a desired location, such as in a lower region of the superior vena cave (“SVC”). The cuff 19 (FIG. 1) is included in the tunneled region 52 of the catheter assembly 10 such that tissue ingrowth into the cuff may be achieved to subcutaneously anchor the catheter to the patient's body and prevent unintended movement of the catheter. The process by which the tunneling configuration shown in FIG. 7 is achieved is referred to as antegrade tunneling.


As shown in FIGS. 8A-8D, the tunneler 60 generally includes shaft 62, a sleeve 64 slidably mounted on the shaft, and a catheter connector 66. Composed of materials including malleable stainless steel or other suitable material, the shaft 62 is used during the tunneling procedure to define the tunnel through which the catheter will be pulled. The shaft 62 tapers down to a first end 62A and includes a second end 62B at which end the catheter connector 64 is attached. The shaft includes a bend 62C, which acts as a slide stop for the sleeve 64.


The sleeve 64 is composed of materials including flexible plastic e.g., polyethylene for instance, and includes a hollow inner bore 74 (FIG. 9D) that slidably receives the shaft 62 therethrough. The inner bore 74 of the sleeve 64 extends between a tapered down first end 64A and a second end 64B that is sized to selectively slide over the catheter connector 66. Thus, the sleeve 64 is selectively slidable from a retracted position, in which the tapered first end 64A stops against the shaft bend 62C, and an extended position, in which the sleeve covers the entirety of the catheter connector 66.


Composed of materials including biocompatible plastic for instance, the catheter connector 66 includes a body defining a gripping portion 68 for enabling a clinician to grasp the tunneler 60, and a stepped end 68A at the point of attachment of the catheter connector with the second end 62B of the shaft 62. A nose stop 70 is included on the catheter connector 66 and is shaped as to correspond with the distal portion of the catheter to which the catheter connector will attach. As will be seen, this enables a clinician to know when the catheter connector has fully engaged the catheter prior to tunneling.


A barbed extension 72 including one or more barbs 72A extends from the catheter connector nose stop 70 and is configured to extend into a lumen of the catheter to which the tunneler 60 will connect so as to provide a retention force therebetween. Note that the barbed extension 72 is offset from a central longitudinal axis of the catheter connector 66, though this configuration may be modified according to the design of the catheter to which the catheter connector is to connect.


Reference is now made to FIGS. 9A-9D in describing the manner of attachment between the tunneler 60 and a distal end of a catheter, such as the catheter assembly 10 shown in FIG. 1. Particularly, FIG. 9A shows the alignment between a distal end of the catheter assembly 10 and the tunneler 60, wherein the barbed extension 72 is axially aligned with the venous distal opening 32A of the venous segment 22 prior to insertion of the barbed extension into the catheter.



FIG. 9B shows the barbed extension 72 fully inserted into the venous distal opening 32A, thus connecting the tunneler 60 with the catheter assembly 10. In this position, the nose portion 30 of the venous segment 22 engages the nose stop 70 of the catheter connector 66, thus enabling the clinician to determine when the connector is fully engaged with the catheter assembly 10. Note that the barb 72A of the barbed extension 72 engages the first lumen 12 via the venous distal opening 32A such that the outer surface of the segment is extended outward in the immediate vicinity of the barb.


As shown in FIG. 9C, once the catheter connector 66 of the tunneler 60 is fully connected to the distal end of the catheter assembly 10, the sleeve 64 is slid forward to cover the entirety of the catheter connector and its engagement with the catheter. As shown in FIG. 9D, the sleeve is slid forward until a shoulder 76 defined in the inner bore 74 abuts the stepped end 68A of the catheter connector. Note that the sleeve inner bore 74 is sized so as to compress the distal portion of the catheter proximate its engagement with the catheter connector 66, thus increasing engagement of the barb 72A with the first lumen 12.


So attached, the tunneler 60 can then be used to define a subcutaneous tunnel in the patient and pull the catheter assembly 10 through the tunnel until properly positioned therein, as shown in FIG. 7. Once the catheter assembly 10 is properly positioned, the sleeve 64 can be slid back to expose the catheter connector 66. The catheter connector 66 can then be pulled so as to remove the barbed extension 72 from the first lumen 12 of the venous segment 22, thus disconnecting the tunneler 60 from the catheter assembly 10.


Note that the catheter connector 66 and its barbed extension 72 are configured to provide a retention force sufficient to enable the catheter assembly 10 to be pulled by the tunneler through the subcutaneous tunnel, but low enough to prevent damaging tensile loads from being imposed on the distal end of the catheter. As such, the catheter connector 66 is configured such that it can pulled out from the engagement with the catheter assembly 10 at a predetermined tensile load that is below the maximum tensile strength of the catheter distal end. Note also that engagement of the tunneler 60 with the catheter assembly 10 as depicted herein is merely exemplary, and it is appreciated that the present tunneler can be employed with catheters having a variety of configurations.


It should be further appreciated that the tunneler configuration can be varied according to need or design. FIGS. 10-12 give examples of alternative barbed extensions 78, 80, and 82, each having a different configuration of barb(s) 78A, 80A, and 82A, respectively. These and other modifications to the tunneler 60 are therefore contemplated as falling within the principles of the present invention. In addition, it is noted that the catheter assembly may be employed in both tunneled and untunneled implementations, if desired.


Reference is now generally made to FIGS. 13A-21C in depicting varying configurations of a split-tip catheter assembly in accordance with additional example embodiments of the present invention. As the embodiments to be described below include elements similar to those described in connection with the catheter assemblies described above in connection with FIGS. 1-5B, only selected elements of the following embodiments will be discussed below.



FIGS. 13A-13C depict a distal tip region 120 of a split-tip catheter assembly including a venous segment 122 and an arterial segment 124 that selectively seats, or nests, in a recess defined by the venous segment. A nose portion 130 of the venous segment 122 includes a venous distal opening 132A in fluid communication with a first lumen of the catheter body 11 and a guidewire channel 132B. The arterial segment 124 includes an arterial distal opening 134 in fluid communication with a second lumen of the catheter body 11. The arterial segment 124 is further in communication with the guidewire channel 132B when the arterial segment is nested with the venous segment 122.


The venous segment 122 includes a venous lateral opening 142 proximate the nose portion 130, while the arterial segment 124 includes an arterial lateral opening 144 proximate the distal end thereof. The lateral openings 142 and 144 are cross-cut, or skived in a manner similar to the embodiment shown in FIG. 1 and are in fluid communication with the first and second lumens, respectively, of the catheter body 11. Note that the nose portion 130 of the present embodiment has a rounded shape, in contrast to the tapered nose portion 30 of FIG. 1, though it is appreciated that various nose portion shape configurations are possible.



FIGS. 14A-14C depict a distal tip region 220 of a split-tip catheter assembly including a venous segment 222 and an arterial segment 224 that selectively seats, or nests, in a recess defined by the venous segment. A nose portion 230 of the venous segment 222 includes a nose portion opening 232 that serves as a guidewire channel by virtue of its alignment with an arterial distal opening 234 of the arterial segment 224 when the latter is nested with the venous segment 222. The arterial distal opening 234 is further in fluid communication with a second lumen of the catheter body 11. As such, a guidewire passing through the second lumen, the arterial distal opening 234 and the guidewire channel of the nose portion opening 232 enables the venous and arterial segments 222, 224 to be maintained in a nested configuration during catheter insertion.


The venous segment 222 includes a venous lateral opening 242 proximate the nose portion 230, while the arterial segment 224 includes an arterial opening 248 proximate the distal end thereof. The lateral opening 242 is cross-cut, or skived in a manner similar to the embodiment shown in FIG. 1, while the arterial opening 248 defines a triangular opening. The openings 242, 248 are in fluid communication with the first and second lumens, respectively, of the catheter body 11. The nose portion 230 of the present embodiment has a rounded shape, in contrast to the tapered nose portion 30 of FIG. 1, though it is appreciated that various nose portion shape configurations are possible. Also, it is appreciated that the openings can each define one of a variety of configurations.



FIGS. 15A-15C depict a distal tip region 320 of a split-tip catheter assembly including a venous segment 322 and an arterial segment 324 that together define a nose portion 330. The venous segment 322 includes a venous distal opening 332A in fluid communication with a first lumen of the catheter body 11. The arterial segment 324 includes an arterial distal opening 334 in fluid communication with a second lumen of the catheter body 11.


The venous segment 322 includes a venous lateral opening 342 proximate the nose portion 330, while the arterial segment 324 includes an arterial lateral opening 344 proximate the distal end thereof. The lateral openings 342, 344 are cross-cut, or skived in a manner similar to the embodiment shown in FIG. 1. The lateral openings 342, 344 are in fluid communication with the first and second lumens, respectively, of the catheter body 11. The distal ends of the venous segment 322 and arterial segment 324 are un-staggered with respect to one another so as to enable both lateral openings to be placed in a single desired location within the patient's vasculature, such as in the SVC for instance.


The nose portion 330 of the present embodiment has a rounded shape, in contrast to the tapered nose portion 30 of FIG. 1, though it is appreciated that various nose portion shape configurations are possible. Also, it is appreciated that the lateral openings can each define one of a variety of configurations.



FIGS. 16A-16C depict a distal tip region 420 of a split-tip catheter assembly including a venous segment 422 and an arterial segment 424 that selectively seats, or nests, in a recess defined by the venous segment. A nose portion 430 of the venous segment 422 includes a nose portion opening 432 that serves as a guidewire channel by virtue of its alignment with an arterial distal opening 434 of the arterial segment 424 when the latter is nested with the venous segment 422. The arterial distal opening 434 is further in fluid communication with a second lumen of the catheter body 11. As such, a guidewire passing through the second lumen, the arterial distal opening 434 and the guidewire channel of the nose portion opening 432 enables the venous and arterial segments 422, 424 to be maintained in a nested configuration during catheter insertion.


The venous segment 422 includes a venous lateral opening 442 proximate the nose portion 430, while the arterial segment 424 includes an arterial lateral opening 444 proximate the distal end thereof. The lateral openings 442, 444 are cross-cut, or skived in a manner similar to the embodiment shown in FIG. 1. The lateral openings 442, 444 are in fluid communication with the first and second lumens, respectively, of the catheter body 11. The nose portion 430 of the present embodiment has a rounded shape, in contrast to the tapered nose portion 30 of FIG. 1, though it is appreciated that various nose portion shape configurations are possible. Also, it is appreciated that the lateral openings can each define one of a variety of configurations.



FIGS. 17A-17C depict a distal tip region 520 of a split-tip catheter assembly including a venous segment 522 and an arterial segment 524 that selectively seats, or nests, in a recess defined by the venous segment. A nose portion 530 of the venous segment 522 includes a nose portion opening 532 that serves as a guidewire channel by virtue of its alignment with an arterial distal opening 534 of the arterial segment 524 when the latter is nested with the venous segment 522. The arterial distal opening 534 is further in fluid communication with a second lumen of the catheter body 11. As such, a guidewire passing through the second lumen, the arterial distal opening 534 and the guidewire channel of the nose portion opening 532 enables the venous and arterial segments 522, 524 to be maintained in a nested configuration during catheter insertion.


The venous segment 522 includes a venous lateral opening 542 proximate the nose portion 430, while the arterial segment 524 includes an arterial lateral opening 544 proximate the distal end thereof. The lateral openings 542, 544 are semi-circular in shape, as best seen in FIGS. 17B and 17C. The lateral openings 542, 544 are in fluid communication with the first and second lumens, respectively, of the catheter body 11 and are sized and configured so as to assist in fanning out fluid exiting therefrom. The nose portion 530 of the present embodiment has a rounded shape, in contrast to the tapered nose portion 30 of FIG. 1, though it is appreciated that various nose portion shape configurations are possible. Also, it is appreciated that the lateral openings can each define one of a variety of configurations.



FIGS. 18A-18D depict a distal tip region 620 of a split-tip catheter assembly including a venous segment 622 and an arterial segment 624 that together define a nose portion 630. The venous segment 622 includes a venous distal opening 632A in fluid communication with a first lumen of the catheter body 11. The arterial segment 624 includes a distal opening as part of a guidewire channel 632B. As best seen in FIG. 18D, the guidewire channel 632B is in fluid communication with a second lumen of the catheter body 11, but is angled so as to also communicate with the first lumen defined by the venous segment 622. Thus, the guidewire channel is defined by both the arterial segment 624 and venous segment 622. So configured, a guidewire extending distally from a proximal portion of the first lumen and passing through the portion of the first lumen defined by the venous segment 622, then through the guidewire channel 632B to exit its corresponding opening on the distal end of the arterial segment 624 enables the venous and arterial segments to be maintained in a joined configuration during catheter insertion.


The venous segment 622 includes a venous lateral opening 642 proximate the nose portion 630, while the arterial segment 624 includes an arterial lateral opening 644 proximate the distal end thereof. The lateral openings 642, 644 define a triangular shape and are in fluid communication with the first and second lumens, respectively, of the catheter body 11. The nose portion 630 of the present embodiment has a rounded shape, in contrast to the tapered nose portion 30 of FIG. 1, though it is appreciated that various nose portion shape configurations are possible. Also, it is appreciated that the lateral openings can each define one of a variety of configurations.



FIGS. 19A-19D depict a distal tip region 720 of a split-tip catheter assembly including a venous segment 722 and an arterial segment 724 that together define a nose portion 730. The venous segment 722 includes a venous distal opening 732A in fluid communication with a first lumen of the catheter body 11. The arterial segment 724 includes a distal opening as part of a guidewire channel 732B. As best seen in FIG. 19D, the guidewire channel 732B is in fluid communication with a second lumen of the catheter body 11, but is angled so as to also communicate with the first lumen defined by the venous segment 722. Thus, the guidewire channel is defined by both the arterial segment 724 and venous segment 722. So configured, a guidewire extending distally from a proximal portion of the first lumen and passing through the portion of the first lumen defined by the venous segment 722, then through the guidewire channel 732B to exit its corresponding opening on the distal end of the arterial segment 724 enables the venous and arterial segments to be maintained in a joined configuration during catheter insertion.


The venous segment 722 includes a venous lateral opening 742 proximate the nose portion 730, while the arterial segment 724 includes an arterial lateral opening 744 proximate the distal end thereof. The lateral openings 742, 744 define a triangular shape and are in fluid communication with the first and second lumens, respectively, of the catheter body 11. The nose portion 730 of the present embodiment has a rounded shape, in contrast to the tapered nose portion 30 of FIG. 1, though it is appreciated that various nose portion shape configurations are possible. Also, it is appreciated that the lateral openings can each define one of a variety of configurations.



FIGS. 20A-20C depict a distal tip region 820 of a split-tip catheter assembly including a venous segment 822 and an arterial segment 824. The venous segment 822 includes a venous opening 848 in fluid communication with a first lumen of the catheter body 11. Similarly, the arterial segment 824 includes an arterial opening 846 in fluid communication with a second lumen of the catheter body 11. The openings 846, 848 are disposed at i.e., coincident with, distal ends of the respective venous and arterial segments 822, 824 and extend proximally therefrom in an angled direction so as to define a triangular opening. Moreover, the venous opening 848 is oppositely disposed as a mirror image of the arterial opening 846 such that each can direct fluid away from the other opening during fluid infusion into the vessel, thus decreasing recirculation and increasing catheter efficiency. Moreover, the openings 846, 848 are sized so as to assist in fanning out fluid exiting therefrom. In addition, the split tip configuration of the distal tip region 820 further separates the venous opening 848 from the arterial opening 846, further improving catheter efficiency. Of course, it is appreciated that the venous and arterial openings of the present embodiment can each define one of a variety of configurations.


Guidewire holes 850 are included on an inward-pointing distal surface of both the venous segment 822 and arterial segment 824 so as to enable the guidewire 46 to be passed therethrough to maintain the two segments in a joined, or contact, configuration during catheter insertion procedures.



FIGS. 21A-21C depict a distal tip region 920 of a split-tip catheter assembly comprising many elements similar to the embodiment discussed above in connection with FIGS. 20A-20C, including a venous segment 922 defining a venous opening 948, an arterial segment 924 defining an arterial opening 946, and guidewire holes 950. In contrast to the previous embodiment, however, the arterial segment 924 is shortened so as to be staggered proximally with respect to the venous segment 922 to provide further opening separation.



FIGS. 22A-22B depict a distal tip region 1020 of a split-tip catheter assembly according to one embodiment, including a venous segment 1022 and an arterial segment 1024 that selectively seats, or nests, in a recess defined by the venous segment. A nose portion 1030 of the venous segment 1022 includes a venous distal opening 1032A in fluid communication with a first lumen 12 of the catheter body 11 and a guidewire channel 1032B. The arterial segment 1024 includes an arterial distal opening 1034 in fluid communication with a second lumen 14 of the catheter body 11. As shown, a spacing S exists between a proximal end of the nose portion 1030A and a distal end of the arterial segment 1024 whereon is defined the arterial distal opening 1034. Thus, though seated in the recess of the venous segment 1022, the arterial segment 1024 does not occupy the entirety of the recess. A guidewire can span the spacing S between the nose portion 1030 and the arterial distal opening 1034 to maintain the arterial segment 1024 seated in the recess of the venous segment 1022.


The venous segment 1022 includes a plurality of venous lateral openings 1042 proximal to the nose portion 1030, while the arterial segment 1024 also includes a plurality of arterial lateral openings 1044 proximal to the distal end thereof. The lateral openings 1042 and 1044 are in fluid communication with the first and second lumens 12, 14, respectively, of the catheter body 11 and are spaced apart to preclude or lessen vessel wall suck-up.



FIGS. 23A-23C depict a distal tip region 1120 of a split-tip catheter assembly including a venous segment 1122 and an arterial segment 1124 that together define a nose portion 1130. The venous segment 1122 includes a venous distal opening 1132A in fluid communication with a first lumen of the catheter body 11. The arterial segment 1124 includes an arterial distal opening 1134 in fluid communication with a second lumen of the catheter body 11. The distal ends of the venous and arterial segments 1122, 1124 are angled so as to define the nose portion 1130 with a tapered shape.


The venous segment 1122 includes a plurality of venous outer lateral openings 1142A and venous inner lateral openings 1142B proximal to the nose portion 1130. Likewise, the arterial segment 1124 includes a plurality of arterial outer lateral openings 1144A and arterial inner lateral openings 1144B proximal to the nose portion 1130. The lateral openings 1142A, B and 1144A, B are in fluid communication with the first and second lumens, respectively, of the catheter body 11 and are spaced apart to preclude or lessen vessel wall suck-up.


The distal ends of the venous segment 1122 and arterial segment 1124 are un-staggered with respect to one another so as to enable both lateral opening sets 1142A, B and 1144 A, B to be placed in a single desired location within the patient's vasculature, such as in the SVC for instance. The venous segment 1122 and arterial segment 1124 can be maintained in a contact configuration via the use of a guidewire that extends through the inner lateral openings 1142B, 1144B, for instance.



FIGS. 24A-30 describe distal tip regions of the catheter body 11 configured according to other example embodiments. It should be appreciated that the distal tip regions to be described below can be included with hemodialysis catheters or with other catheters, such as central venous catheters, for example.


Reference is now made to FIGS. 24A-24F, which depict various details regarding a distal tip region, generally designated at 1220, according to one embodiment. The distal tip region 1220 generally includes the distal portion of the catheter assembly 10, including terminal distal portions of the first lumen 12 and second lumen 14. In the discussion below, it is understood that in one embodiment the first lumen 12 is considered a venous lumen for returning treated blood to the vessel and the second lumen 14 is considered the arterial lumen for uptake of blood from the vessel. As already mentioned, however, these duties of the first and second lumens may be reversed. Thus, these designations are merely used herein for purposes of convenience.


The distal portion 1220 includes a nose portion 1230 at the distal end thereof. In the present embodiment, the nose portion 1230 generally defines a tapered, generally conical shape, though it is appreciated that the nose portion may define other circumferentially convergent shapes, including hemispherical or bullet-shapes, frustoconical, and other smooth and/or contoured shapes that converge toward the distal end. The nose portion 1230 is therefore atraumatic, reducing insertion forces during placement and minimizing abrasion between the nose portion surface and the walls of the vessel in which the distal region of the catheter is disposed, thus reducing vascular injury. In contrast to previous embodiments, the distal portion 1220 does not include separate split tip portions, but is a unitary, or solid-body, structure, defining distal portions of the first and second lumens 12, 14 (FIGS. 25A, 25B).


The catheter body 11 defines a venous distal opening 1232A on the tapered surface of the nose portion 1230 so as to be in fluid communication with the distal portion of the first lumen 12. The catheter body 11 further defines an arterial distal opening 1232B at the distal end of the nose portion 1230 so as to be in fluid communication with the second lumen 14. The openings of both the venous and arterial distal openings 1232A, 1232B face in the distal direction for fluid flow purposes as will be described. The second lumen 14 and corresponding arterial distal opening 1232B in the current embodiment can receive a guidewire therethrough for enabling over-the-wire placement of the catheter 10. The first lumen 12 and corresponding venous distal opening 1232A can also be used for receiving a guidewire therethrough, if desired. Of course, the venous and arterial distal opening, as well as the other catheter openings to be described below, can vary in size and placement from what is explicitly described herein.



FIGS. 24A-24F further depict the distal portion 1220 as including along its length a venous lateral opening 1242 and an arterial lateral opening 1244 defined by the catheter body 11 proximate the nose portion 1230. The lateral openings 1242 and 1244 can take various shapes and configurations, but in the present embodiment the lateral openings are defined by compound-angle cross-drilled cuts through the outer surface of the catheter body 11 to establish fluid communication with the respective first or second lumens 12, 14. In one embodiment, such cuts are referred to as “skive” cuts.


In one embodiment and as best seen in FIG. 24F, the longitudinal axis of each cross cut of the lateral openings 1242, 1244 defines an angle θ1 of about 35 degrees with a longitudinal axis 1246 of the catheter body 11 in the perspective shown in FIG. 24F, though this angle can vary in one embodiment from about 20 to about 90 degrees. In another embodiment, for example the angle θ1 can be defined at 30 degrees. The longitudinal axis of each cross cut of the lateral openings 1242, 1244 further defines an angle θ2 in one embodiment of about 15 degrees with the longitudinal axis 1246 in the perspective shown in FIG. 25A. In the perspective shown in FIG. 25A, the angle θ2 can also be defined with respect to a plane coincident with the longitudinal axis 1246 that bisects the first lumen 12 and second lumen 14, i.e., coplanar with the septum separating the first and second lumens, though this angle can vary in one embodiment from about 0 to about 45 degrees. In another embodiment, for example, angle θ2 is defined at 25 degrees.


This angular character imparts both a lateral, or radial, directional component, as well as a longitudinal directional component to fluid flow out of either lateral opening 1242, 1244, as represented by the flow arrows in FIG. 24F. So configured, the lateral openings 1242, 1244 make it such that fluid exiting the catheter from the venous lateral opening 1242 is imparted a flow direction that is substantially opposite in a radial direction and substantially similar in a longitudinal direction to fluid that would exit the catheter from the arterial lateral opening 1244. This aspect assists in reducing blood recirculation via the catheter 10.


Note that, in one embodiment, the angle defined by each lateral opening can be different. In another embodiment, non-compound-angle cross cuts may be used to define the lateral openings. It should be appreciated that the particular angular configuration of the lateral openings can vary from what is described herein while still residing within the scope of embodiments of the present invention.


In the present embodiment, the cross cut that defines the lateral openings 1242, 1244 is achieved via use of a cylindrical drill bit or coring tool having a size sufficient to define the lateral opening having the compound angle described above. For instance, in one embodiment a drill bit is used to diagonally cross cut the venous and arterial lateral openings 1242, 1244 through the catheter body. Note that the catheter body size in one embodiment can vary from 7-16 Fr., though other French sizes are also possible. Note here that, though identically sized and shaped in the present embodiment, the first and second openings could include respectively differing dimensions if desired or needed for a particular application. Of course, other methods for defining the lateral openings, including molding, cutting, heat forming, etc., may also be used.


As a result of defining the cross cuts as just described, the elongate venous and arterial openings 1242, 1244 are defined by perimeters shaped in the present embodiment as a figure-eight shape, or analemma, when viewed in a two-dimensional perspective and an elongate saddle shape when viewed in a three-dimensional perspective. “Elongate” and “elongated” are understood herein as including a long or extended shape, or including more length than width. Again, this enables the lateral openings 1242, 1244 to partially extend longitudinally and circumferentially about the outer perimeter of the catheter body 11. This helps to prevent undesired suctioning of the distal tip region 1220 to the vessel wall when one of the openings is removing blood from the vessel as the negative flow pressure of the opening is distributed about a portion of the catheter body circumference. If vessel suck-up does occur, the lateral openings 1242, 1244 are shaped so as to nonetheless provide acceptable fluid flow in and out of the catheter assembly 10. The relatively large size of the lateral openings 1242, 1244 also assists in the prevention of occlusion or sheath formation and provides a fanned-out or wide distribution of fluid flowing out therefrom. Recirculation efficiency rates are improved as a result.


In addition, the longitudinal axes of the lateral openings 1242, 1244 are symmetrically opposed in direction from one another, as best shown in FIG. 24D, to produce a “criss-cross” relationship between the lateral openings. This ensures that fluid entry and exit from the lateral openings occurs on opposite sides of the catheter body 11, thus further reducing recirculation of already treated blood. Furthermore, this symmetry ensures similar fluid flow characteristics to be realized even when fluid flow through the catheter assembly 10 is reversed.


It is noted that in one embodiment the size of the lateral openings 1242, 1244 is such that each can accommodate the entirety of fluid flow through their respective first or second lumens 12, 14. Thus, the inclusion of the lateral openings 1242, 1244 with their corresponding distal openings 1232A, 1232B provides a redundant system such that any clotting that occurs at one opening will not significantly impact fluid throughput of the respective lumen. In addition, the lateral opening configuration described herein minimizes radical redirection of the fluid upon exiting the catheter body 11 via either of the lateral openings 1242 and 1244, which in turn prevents fluid turbulence and possible clotting or hemolysis.



FIGS. 24A-24F show that in the present embodiment the venous and arterial lateral openings 1242 and 1244 are substantially un-staggered, i.e., equally placed with respect to one another along the longitudinal length of the catheter body 11 such that each is substantially disposed an equal distance from the distal catheter end 11B. Such un-staggered disposal of the lateral openings 1242 and 1244 enables both openings to be placed proximate a desired anatomical location within the vasculature and ensures that the recirculation rate of already treated blood through the catheter assembly 10 is held relatively constant regardless the respective directions of blood travel in/out of the lateral openings. This feature is useful should reversal of blood flow directions through the catheter be necessary. In one embodiment, the recirculation rate in either direction is less than or equal to about five percent. In another embodiment, the position of the venous and lateral openings can be staggered.


It should be appreciated that the labels “venous” and “arterial” as used above in describing the various components of the present catheter are employed for sake of convenience in describing aspects of embodiments of the present invention. Indeed, though the second (arterial) lumen 14 is normally employed in hemodialysis procedures for aspirating blood from the blood vessel in which the catheter is disposed and the first (venous) segment 12 for returning already treated blood to the vessel, this can be reversed such that blood is returned via the arterial segment and aspirated by the venous segment. As such, the present invention should not be considered limited by the use of this and other descriptive terminology herein.


In one embodiment, the nose portion 1230 is defined via a radiofrequency (“RF”) tipping process, but other forming processes may also be employed to define the distal tip region in accordance with other embodiments and as appreciated by one skilled in the art.


Reference is now made to FIGS. 25A and 25B in describing flow characteristics with respect to the configuration of the distal tip region 1220 of the present catheter assembly 10. FIGS. 25A and 25B show the distal tip region 1220 as in position after the catheter assembly 10 has properly positioned within a vessel of a patient. Arrow 1248 shows the direction of blood flow past the distal tip region 1220 within the patient's vessel.


In greater detail, FIG. 25A shows fluid flow through the distal tip region 1220 in a “forward” direction, or first staggered flow configuration, wherein blood is aspirated by the second lumen 14, or “uptake” lumen, for removal from the body and treatment by a hemodialysis apparatus or for some other suitable purpose. Aspirated blood enters the second lumen 14 via both the arterial distal end opening 1232B and the arterial lateral opening 1244. However, because the second lumen 14 is under negative pressure during aspiration, the majority of blood aspirated by the second lumen is removed via the arterial lateral opening 1244 due to its relatively more proximal position with respect to the pressure differential in the proximate vessel region.


Simultaneously, blood is infused, or returned, to the vessel by the first lumen 12, or “return” lumen, after treatment by a hemodialysis apparatus or some other suitable purpose. Infused blood exits the first lumen 12 from both the venous distal opening 1232A and the venous lateral opening 1242. However, because the second lumen 12 is under positive pressure during infusion, the majority of blood returned to the bloodstream by the first lumen exits via the venous distal opening 1232A due to its relatively more distal position with respect to the pressure differential in the proximate vessel region. Note that this arrangement produces an effective stagger distance F in the “forward” direction between the primary aspiration site, i.e., the arterial lateral opening 1244, and the primary infusion site, i.e., the venous distal opening 1232A. This effective stagger distance, together with the lateral orientation of the lateral openings 1242, 1244 provides for low recirculation of already-treated blood within the vessel, recirculation being defined as already-treated blood that is returned to the bloodstream via the venous lumen being immediately aspirated by the arterial lumen to be re-treated. Such recirculation is undesirable as it results in lower treatment efficiency and longer treatment time.


During hemodialysis procedures, it is sometimes necessary to reverse the blood flow through the catheter assembly 10. FIG. 25B shows fluid flow through the distal tip region 1220 during such a “reverse” flow situation, or second staggered flow configuration. In contrast to the forward flow conditions of FIG. 25A, the second lumen 14 in FIG. 25B is employed to infuse blood into the vessel, while the first lumen 12 aspirates blood from the vessel. In this configuration, the majority of infused blood enters the vessel via the arterial distal opening 1232B, while the majority of aspirated blood is removed via the venous lateral opening 1242. This arrangement produces an effective stagger distance R in the “reverse” direction between the primary aspiration site, i.e., the venous lateral opening 1242, and the primary infusion site, i.e., the arterial distal opening 34. Thus, it is seen that a desired stagger between the primary infusion and aspiration points is achieved regardless of the direction in which the catheter is operating. In one embodiment, the effective stagger distance F in the forward direction is about 0.04 inch, while the effective stagger distance R in the reverse direction is about 0.6 inch, though the lateral and distal openings can be varied to produce other stagger distances. This can be compared to forward and reverse effective stagger distances of about 0.43 inch and about 0.23 inch, respectively, for the split-tip configuration shown in FIGS. 3A-3D. In one embodiment, both the forward and reverse effective stagger distances for the catheters described herein can be in a range of from about 0.1 inch to about 1 inch, though other distances can also be achieved.


In one embodiment, the catheter body 11 can define one or more arterial side holes 1249 that are in communication with the second lumen 14 to assist in providing desired fluid flow via the second lumen. In the present embodiment, the side holes 1249 each define a diameter of about 0.030 inch, compared with the arterial distal opening 1232B, which defines an opening of about 0.040 inch. Though shown here as round, the side holes can include other shapes and sizes as well. In other embodiments, the first lumen can include additional side holes as well.


As shown in FIGS. 25A-25C, the first and second lumens 12, 14, each include a transition region 1245 in which region the cross sectional shape of each lumen changes from a “D”-shape to an oval shape in a configuration similar to that described in connection with FIGS. 5C-5G. FIG. 25C depicts further narrowing of the lumen 14 in one embodiment in the nose portion 1230 proximate the arterial distal opening 1232B. It is appreciated that other lumen size configurations can also be used in other embodiments. Indeed, in other embodiments narrowing of the one or both lumens can occur proximal to the distal tip region, or only at the distal end thereof. In still other embodiments, no narrowing of the lumens through the distal tip region occurs. FIG. 26A shows an exterior distal end view of the distal tip portion 1220 of the catheter assembly 10, while FIG. 26B shows a distal facing internal view thereof.



FIG. 27 depicts the catheter assembly 10 after placement in the vasculature of a patient 1250, wherein a tunneled region 1252 intermediate the proximal and distal ends of the catheter body 11 is disposed underneath the skin of the patient. As shown, the proximal portion of the catheter assembly 10, including the hub 15 and extension legs 16 and 18, is exposed proximal the tunneled region 1252. Correspondingly, a distal portion of the catheter assembly 10 is shown distal of the tunneled region 1252 and inserted through an incision site 1254 into the patient's vasculature such that the distal tip region 1220 is positioned in a desired location, such as in a lower region of the superior vena cava (“SVC”). The cuff 19 (FIG. 1) is included in the tunneled region 1252 of the catheter assembly 10 such that tissue in-growth into the cuff may be achieved to subcutaneously anchor the catheter to the patient's body and prevent unintended movement of the catheter. The process by which the tunneling configuration shown in FIG. 27 is achieved is referred to as antegrade tunneling. Note, however, that the catheter 10 can be placed by other insertion and tunneling methods as well.


Reference is now made to FIGS. 28A-28D, which depict various aspects of the catheter body 11, according to another example embodiment. Note that, as the present catheter body shares various details with the catheter body described in previous embodiments, only selected differences are discussed here. The catheter body 11 of FIGS. 28A-28D comprises the distal tip region 1220, which in turn includes the venous lateral opening 1242 and the arterial lateral opening 1244, each defined by the catheter body. A venous distal opening 1332A and an arterial distal opening 1332B are also included in the distal tip region 1220, as defined by the catheter body 11. In contrast to earlier embodiments, the venous distal opening 1332A is defined as to be relatively larger than the venous distal opening 1232A of FIG. 26A, while the arterial distal opening 1332B is also defined to be larger relative to the arterial distal opening 1232B shown in FIG. 26A. The relatively larger sizes of the distal openings provide for enhanced fluid flow therethrough. As best seen in FIG. 28B, the distal profile of the distal tip region 1220 is relatively less tapered when compared to the profile of FIG. 25A, though it is appreciated that the profile and relative sizes of the lateral and distal openings of the distal tip region can be modified in various ways, as appreciated by one skilled in the art.



FIGS. 29A and 29B depict yet another example embodiment of the catheter body 11, wherein the distal tip portion 1220 comprises a plurality of distal end openings defined by the catheter body, including a venous distal opening 1432A and symmetrically opposed arterial distal opening 1432B. The openings 1432A and 1432B are each defined as circular segment openings so as to promote lateral and distal distribution of fluid flowing out therefrom. Their symmetrical opposition as best seen in FIG. 29A reduces the likelihood of blood recirculation. The nose of the catheter body is tapered in the illustrated embodiment, though other tip shapes are also possible.


A guidewire hole 1432C is also defined at the distal end of the catheter body 11, and is in communication with one of the catheter body lumens, such as the first lumen 12. This enables a guidewire to pass through the first lumen 12 and out the guidewire hole 1432C to enable the catheter to be placed by over-the-guidewire techniques.



FIG. 30 depicts the catheter body 11 one possible embodiment, wherein the lateral openings 1242, 1244 are longitudinally staggered with respect to one another so as to provide substantially equal effective stagger distances in both the forward (F′) and reverse (R′) directions, during hemodialysis procedures as described above in connection with FIGS. 25A, 25B. As such, it should be appreciated that relative positioning of the lateral and distal openings may vary from what is described herein while still residing within the scope of the present claims, and that such variation in the lateral and distal openings can be applied to the split-tip as well as the unitary (solid-body) catheter configurations described herein.


It is appreciated that other lumen size configurations can also be used in other embodiments. Indeed, in other embodiments narrowing of one or both lumens can occur proximal to the distal tip region, or only at the distal end thereof. In still other embodiments, no narrowing of the lumens through the distal tip region occurs.


The present invention may be embodied in other specific forms without departing from its spirit or essential characteristics. The described embodiments are to be considered in all respects only as illustrative, not restrictive. The scope of the invention is, therefore, indicated by the appended claims rather than by the foregoing description. All changes that come within the meaning and range of equivalency of the claims are to be embraced within their scope.

Claims
  • 1. A method of hemodialysis, comprising: inserting a catheter into a blood vessel, the catheter comprising: a catheter body including an outer wall enclosing a first lumen and a second lumen, the first lumen separated from the second lumen by a septum, the first lumen and the second lumen respectively terminating at a distal end of the catheter body in a first distal opening and a second distal opening;a first lateral opening in fluid communication with the first lumen at the distal end of the catheter body, the first lateral opening defined by a skive cut through the outer wall of the catheter body proximal to the first distal opening; anda second lateral opening in fluid communication with the second lumen at the distal end of the catheter body proximal to the second distal opening;aspirating blood from the blood vessel through the second lumen, the blood entering the second lumen through the second distal opening and the second lateral opening;treating the blood aspirated through the second lumen in a hemodialysis apparatus to form treated blood; andinfusing the treated blood into the blood vessel through the first lumen, the treated blood exiting the first lumen through the first lateral opening and the first distal opening.
  • 2. The method according to claim 1, wherein the skive cut of the first lateral opening is defined by: a first cut at an angle relative to a longitudinal axis of the catheter body in a range from about 20 degrees to about 90 degrees; anda second cut at an angle relative to a plane through the septum of about 45 degrees or less.
  • 3. The method according to claim 2, wherein the first cut of the first lateral opening of the catheter is about 30 degrees, and wherein the second cut of the first lateral opening of the catheter is about 25 degrees.
  • 4. The method according to claim 2, wherein the first cut of the first lateral opening of the catheter is about 35 degrees, and wherein the second cut of the first lateral opening of the catheter is about 25 degrees.
  • 5. The method according to claim 2, wherein the first cut of the first lateral opening of the catheter is about 30 degrees, and wherein the second cut of the first lateral opening of the catheter is about 15 degrees.
  • 6. The method according to claim 2, wherein the first cut of the first lateral opening of the catheter is about 35 degrees, and wherein the second cut of the first lateral opening of the catheter is about 15 degrees.
  • 7. The method according to claim 2, wherein the second lateral opening of the catheter is defined by the skive cut through the outer wall of the catheter body, the skive cut defined by: a third cut at an angle relative to the longitudinal axis of the catheter body in a range from about 20 degrees to about 90 degrees; anda fourth cut at an angle relative to the plane through the septum of about 45 degrees or less.
  • 8. The method according to claim 7, wherein the second lateral opening is positioned at about a same longitudinal location at the distal end of the catheter body as the first lateral opening.
  • 9. The method according to claim 8, wherein the first lateral opening and the second lateral opening of the catheter are each sized to accommodate an entirety of blood flow through the respective first lumen and second lumen.
  • 10. The method according to claim 1, further comprising reversing a flow of blood, including aspirating blood from the blood vessel through the first lumen, the blood entering the first lumen through the first distal opening and the first lateral opening, and infusing treated blood into the blood vessel through the second lumen, the treated blood exiting the second lumen through the second lateral opening and the second distal opening.
  • 11. The method according to claim 10, wherein blood exiting the first lumen through the first lateral opening is imparted a flow direction that is substantially opposite in a radial direction and substantially similar in a longitudinal direction to blood exiting the second lumen through the second lateral opening.
  • 12. The method according to claim 1, wherein the second lateral opening of the catheter is longitudinally staggered with respect to the first lateral opening of the catheter.
  • 13. The method according to claim 1, wherein a cross-sectional shape of one of the first lumen of the catheter and the second lumen of the catheter transitions at a transition region from a “D” shape to an oval shape.
  • 14. The method according to claim 13, wherein the transition region is proximal to the first lateral opening of the catheter and the second lateral opening of the catheter.
  • 15. The method according to claim 1, wherein the catheter further comprises an atraumatic nose portion at the distal end of the catheter body, the atraumatic nose portion defining the first distal opening of the catheter and the second distal opening of the catheter.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 14/930,526, filed Nov. 2, 2015, now U.S. Pat. No. 10,207,043, which is a continuation of U.S. patent application Ser. No. 14/032,858, filed Sep. 20, 2013, now U.S. Pat. No. 9,174,019, which is a continuation of U.S. patent application Ser. No. 13/657,604, filed Oct. 22, 2012, now U.S. Pat. No. 8,540,661, which is a continuation of U.S. patent application Ser. No. 12/414,467, filed Mar. 30, 2009, now U.S. Pat. No. 8,292,841, which is a continuation-in-part of U.S. patent application Ser. No. 12/253,870, filed Oct. 17, 2008, now U.S. Pat. No. 8,066,660, which claims the benefit of the following applications: U.S. Provisional Application No. 60/983,032, filed Oct. 26, 2007; U.S. Provisional Application No. 61/036,848, filed Mar. 14, 2008; and U.S. Provisional Application No. 61/085,748, filed Aug. 1, 2008. Each of the afore-referenced applications is incorporated herein by reference in its entirety.

US Referenced Citations (702)
Number Name Date Kind
701075 McCully May 1902 A
1696018 Scheliberg Dec 1928 A
1856811 Inaki May 1932 A
2024982 Scott Dec 1935 A
2173527 Agayoff Sep 1939 A
2286462 Chaffin Jun 1942 A
2393002 Smith Jan 1946 A
2748769 Huber Jun 1956 A
2910981 Wilson et al. Nov 1959 A
3144868 Jascalevich Aug 1964 A
3176690 H'Doubler Apr 1965 A
3256885 Higgins et al. Jun 1966 A
3308822 De Luca Mar 1967 A
3416532 Grossman Dec 1968 A
3426759 Smith Feb 1969 A
3460255 Hutson Aug 1969 A
D217795 Spaven Jun 1970 S
3612038 Halligan Oct 1971 A
3736939 Taylor Jun 1973 A
3805794 Schlesinger Apr 1974 A
3812851 Rodriguez May 1974 A
3848604 Sackner Nov 1974 A
3890977 Wilson Jun 1975 A
3929126 Corsaut Dec 1975 A
3935857 Co Feb 1976 A
3995623 Blake et al. Dec 1976 A
4068659 Moorehead Jan 1978 A
4072146 Howes Feb 1978 A
4072153 Swartz Feb 1978 A
4098275 Consalvo Jul 1978 A
4114625 Onat Sep 1978 A
4117836 Erikson et al. Oct 1978 A
4129129 Amrine Dec 1978 A
4134402 Mahurkar Jan 1979 A
4149535 Volder Apr 1979 A
4180068 Jacobsen et al. Dec 1979 A
D254444 Levine Mar 1980 S
4248224 Jones Feb 1981 A
4276880 Malmin Jul 1981 A
4292976 Banka Oct 1981 A
4299228 Peters Nov 1981 A
4300550 Gandi et al. Nov 1981 A
4309994 Grunwald Jan 1982 A
4327722 Groshong et al. May 1982 A
4385631 Uthmann May 1983 A
4392855 Oreopoulos et al. Jul 1983 A
4403983 Edelman et al. Sep 1983 A
4405313 Sisley et al. Sep 1983 A
4406656 Hattler et al. Sep 1983 A
D272651 Mahurkar Feb 1984 S
4431426 Groshong et al. Feb 1984 A
4432722 Bohan, Jr. et al. Feb 1984 A
4432752 Marlon Feb 1984 A
4445893 Bodicky May 1984 A
4451252 Martin et al. May 1984 A
4453928 Steiger Jun 1984 A
4465482 Tittel et al. Aug 1984 A
4490138 Lipsky et al. Dec 1984 A
4493696 Uldall et al. Jan 1985 A
RE31873 Howes Apr 1985 E
4531933 Norton et al. Jul 1985 A
4543087 Sommercorn et al. Sep 1985 A
4545373 Christoudias Oct 1985 A
4549879 Groshong et al. Oct 1985 A
4557261 Rugheimer et al. Dec 1985 A
4568329 Mahurkar Feb 1986 A
4568338 Todd Feb 1986 A
4573476 Ruiz Mar 1986 A
4581012 Brown et al. Apr 1986 A
4583968 Mahurkar Apr 1986 A
4583986 Lapidus Apr 1986 A
4601697 Mammolenti et al. Jul 1986 A
4619643 Bai Oct 1986 A
4623327 Mahurkar Nov 1986 A
4626240 Edelman et al. Dec 1986 A
4642101 Krolikowski et al. Feb 1987 A
4643711 Bates Feb 1987 A
4666426 Aigner et al. May 1987 A
4668221 Luther May 1987 A
4670009 Bullock Jun 1987 A
4675004 Hadford et al. Jun 1987 A
4681122 Winters et al. Jul 1987 A
4681564 Landreneau Jul 1987 A
4681570 Dalton Jul 1987 A
4682978 Martin et al. Jul 1987 A
4687471 Twardowski et al. Aug 1987 A
4692141 Mahurkar Sep 1987 A
4694838 Wijayarthna et al. Sep 1987 A
4701159 Brown et al. Oct 1987 A
4702917 Schindler Oct 1987 A
4706671 Weinrib Nov 1987 A
4713171 Polaschegg Dec 1987 A
4717379 Ekholmer et al. Jan 1988 A
4735620 Ruiz Apr 1988 A
4737141 Spits et al. Apr 1988 A
4737152 Alchas Apr 1988 A
4738667 Galloway Apr 1988 A
4748808 Hill Jun 1988 A
4755176 Patel Jul 1988 A
4769016 Labianca Sep 1988 A
4770652 Mahurkar Sep 1988 A
4772268 Bates Sep 1988 A
4772269 Twardowski et al. Sep 1988 A
4776841 Catalano Oct 1988 A
4777951 Cribier et al. Oct 1988 A
4784638 Ghajar et al. Nov 1988 A
4790809 Kuntz Dec 1988 A
4795439 Guest Jan 1989 A
4801297 Mueller Jan 1989 A
D300060 Molgaard-Nielsen Feb 1989 S
4804359 Grunwald et al. Feb 1989 A
4808155 Mahurkar Feb 1989 A
4808163 Laub Feb 1989 A
4809710 Williamson Mar 1989 A
4820265 DeSatnick et al. Apr 1989 A
4832687 Smith, III May 1989 A
4834709 Banning et al. May 1989 A
4842582 Mahurkar Jun 1989 A
4842592 Caggiani et al. Jun 1989 A
4846814 Ruiz Jul 1989 A
4863441 Lindsay et al. Sep 1989 A
4867742 Calderon Sep 1989 A
4892518 Cupp et al. Jan 1990 A
4894057 Howes Jan 1990 A
4895561 Mahurkar Jan 1990 A
4898591 Jang et al. Feb 1990 A
4906238 Greenfeld et al. Mar 1990 A
4925452 Melinyshyn et al. May 1990 A
4927418 Dake et al. May 1990 A
4935004 Cruz Jun 1990 A
4935010 Cox et al. Jun 1990 A
4935044 Schoenpflug et al. Jun 1990 A
4936826 Amarasinghe Jun 1990 A
4950232 Ruzicka et al. Aug 1990 A
4950259 Geary et al. Aug 1990 A
4951665 Schneider Aug 1990 A
4961729 Vaillancourt Oct 1990 A
4961731 Bodicky et al. Oct 1990 A
4961809 Martin et al. Oct 1990 A
4968307 Dake et al. Nov 1990 A
4969890 Sugita et al. Nov 1990 A
4981477 Schon et al. Jan 1991 A
4985014 Orejola Jan 1991 A
4990138 Bacich et al. Feb 1991 A
4994027 Farrell Feb 1991 A
4995865 Gahara et al. Feb 1991 A
5009636 Wortley et al. Apr 1991 A
5015230 Martin et al. May 1991 A
5016640 Ruiz May 1991 A
5021044 Sharkawy Jun 1991 A
5041101 Seder et al. Aug 1991 A
5041107 Heil, Jr. Aug 1991 A
5049138 Chevalier et al. Sep 1991 A
5053003 Dadson et al. Oct 1991 A
5053004 Markel et al. Oct 1991 A
5053023 Martin Oct 1991 A
5057073 Martin Oct 1991 A
5059170 Cameron Oct 1991 A
5059177 Towne et al. Oct 1991 A
5069673 Shwab Dec 1991 A
5074841 Ademovic et al. Dec 1991 A
5084013 Takase et al. Jan 1992 A
5098412 Shiu et al. Mar 1992 A
5100395 Rosenberg et al. Mar 1992 A
5102402 Dror et al. Apr 1992 A
5106368 Uldall et al. Apr 1992 A
5106376 Mononen et al. Apr 1992 A
5111829 Alvarez de Toledo May 1992 A
5112301 Fenton, Jr. et al. May 1992 A
5114423 Kasprzyk et al. May 1992 A
5117836 Millar Jun 1992 A
5120299 Lombardi Jun 1992 A
5120304 Sasaki Jun 1992 A
5122125 Deuss et al. Jun 1992 A
5125888 Howard et al. Jun 1992 A
5125904 Lee Jun 1992 A
5129891 Young Jul 1992 A
5135599 Martin et al. Aug 1992 A
5139486 Moss Aug 1992 A
5156592 Martin et al. Oct 1992 A
5163928 Hobbs et al. Nov 1992 A
5167623 Cianci et al. Dec 1992 A
5171216 Dasse et al. Dec 1992 A
5171227 Twardowski et al. Dec 1992 A
5178616 Uemiya et al. Jan 1993 A
5188592 Hakki Feb 1993 A
5188593 Martin Feb 1993 A
5190520 Fenton, Jr. et al. Mar 1993 A
5190529 McCrory et al. Mar 1993 A
5191898 Millar Mar 1993 A
5195962 Martin et al. Mar 1993 A
5197951 Mahurkar Mar 1993 A
5197973 Pang et al. Mar 1993 A
5197976 Herweck et al. Mar 1993 A
5201723 Quinn Apr 1993 A
5207648 Gross May 1993 A
5207650 Martin May 1993 A
5209723 Twardowski et al. May 1993 A
5209725 Roth May 1993 A
5209742 Venema et al. May 1993 A
5215527 Beck et al. Jun 1993 A
5221255 Mahurkar et al. Jun 1993 A
5221256 Mahurkar Jun 1993 A
5222949 Kaldany Jun 1993 A
5226880 Martin et al. Jul 1993 A
5234438 Semrad Aug 1993 A
5236016 Vogelsang et al. Aug 1993 A
5242398 Knoll et al. Sep 1993 A
5246430 MacFarlane Sep 1993 A
5250034 Appling et al. Oct 1993 A
5254084 Geary Oct 1993 A
5273527 Schatz et al. Dec 1993 A
5273534 Knoepfler Dec 1993 A
5279596 Castaneda et al. Jan 1994 A
5279599 Wilk Jan 1994 A
5306240 Berry Apr 1994 A
5312337 Flaherty et al. May 1994 A
5312357 Buijs et al. May 1994 A
5318517 Reiman Jun 1994 A
5322519 Ash Jun 1994 A
5324274 Martin Jun 1994 A
5330432 Yoon Jul 1994 A
5338308 Wilk Aug 1994 A
5342295 Imran Aug 1994 A
5342386 Trotta Aug 1994 A
5346471 Raulerson Sep 1994 A
5348536 Young et al. Sep 1994 A
5350358 Martin Sep 1994 A
5360397 Pinchuk Nov 1994 A
5360407 Leonard et al. Nov 1994 A
5364344 Beatlie et al. Nov 1994 A
5374245 Mahurkar Dec 1994 A
5378230 Mahurkar Jan 1995 A
5380276 Miller et al. Jan 1995 A
5380290 Makower et al. Jan 1995 A
5382238 Abrahamson et al. Jan 1995 A
5389087 Miraki Feb 1995 A
5389090 Fischell et al. Feb 1995 A
5395316 Martin Mar 1995 A
5399168 Wadsworth, Jr. et al. Mar 1995 A
5403291 Abrahamson Apr 1995 A
5405320 Twardowski et al. Apr 1995 A
5405341 Martin Apr 1995 A
5409463 Thomas et al. Apr 1995 A
5417668 Setzer et al. May 1995 A
5423768 Folden et al. Jun 1995 A
5431661 Koch Jul 1995 A
5451026 Smith Sep 1995 A
5451206 Young Sep 1995 A
5451233 Yock Sep 1995 A
5458570 May, Jr. Oct 1995 A
5458582 Nakao Oct 1995 A
5462533 Daugherty Oct 1995 A
5472417 Martin et al. Dec 1995 A
5472432 Martin Dec 1995 A
5476453 Mehta Dec 1995 A
5480380 Martin Jan 1996 A
5486159 Mahurkar Jan 1996 A
5489278 Abrahamson Feb 1996 A
5496292 Burnham Mar 1996 A
5496872 Constancis et al. Mar 1996 A
5505710 Dorsey, III Apr 1996 A
5507723 Keshaviah Apr 1996 A
5509897 Twardowski et al. Apr 1996 A
5509900 Kirkman Apr 1996 A
5509902 Raulerson Apr 1996 A
5542925 Orth Aug 1996 A
5545373 Maziasz et al. Aug 1996 A
5556390 Hicks Sep 1996 A
5556930 Brehm et al. Sep 1996 A
5558635 Cannon Sep 1996 A
5562609 Brumbach Oct 1996 A
5562696 Nobles et al. Oct 1996 A
5569182 Twardowski et al. Oct 1996 A
5569195 Saab Oct 1996 A
5571093 Cruz et al. Nov 1996 A
5584803 Stevens et al. Dec 1996 A
5599304 Shaari Feb 1997 A
5599328 Stevens Feb 1997 A
5607462 Imran Mar 1997 A
5624392 Saab Apr 1997 A
5624413 Markel et al. Apr 1997 A
5632729 Cai et al. May 1997 A
5637102 Tolkoff et al. Jun 1997 A
5642270 Green et al. Jun 1997 A
5655867 Gysi et al. Aug 1997 A
5662606 Cimino et al. Sep 1997 A
5665067 Linder et al. Sep 1997 A
5674237 Ott Oct 1997 A
5685867 Twardowski et al. Nov 1997 A
5686867 Sutardja et al. Nov 1997 A
5693030 Lee et al. Dec 1997 A
5695457 St. Goar et al. Dec 1997 A
5704915 Melsky et al. Jan 1998 A
5713849 Bosma et al. Feb 1998 A
5713853 Clark et al. Feb 1998 A
5717216 McCoy et al. Feb 1998 A
5718678 Fleming, III Feb 1998 A
5718692 Schon et al. Feb 1998 A
5720735 Dorros Feb 1998 A
5738649 Macoviak Apr 1998 A
5741329 Agrawal et al. Apr 1998 A
5743873 Cai et al. Apr 1998 A
5752939 Makoto et al. May 1998 A
5769796 Palermo et al. Jun 1998 A
5772643 Howell et al. Jun 1998 A
5776096 Fields Jul 1998 A
5776111 Tesio Jul 1998 A
5785686 Runge Jul 1998 A
5792094 Stevens et al. Aug 1998 A
5792123 Ensminger Aug 1998 A
5797869 Martin et al. Aug 1998 A
5800384 Russell et al. Sep 1998 A
5800414 Cazal Sep 1998 A
5800516 Fine et al. Sep 1998 A
5807311 Palestrant Sep 1998 A
5807318 St. Goar et al. Sep 1998 A
5807329 Gelman Sep 1998 A
5809897 Powell et al. Sep 1998 A
5810789 Powers et al. Sep 1998 A
5814016 Valley et al. Sep 1998 A
5830184 Basta Nov 1998 A
5830196 Hicks Nov 1998 A
5833671 Macoviak et al. Nov 1998 A
5843048 Gross Dec 1998 A
5858009 Jonkman Jan 1999 A
5861010 Boussignac et al. Jan 1999 A
5868717 Prosl Feb 1999 A
5873865 Horzewski et al. Feb 1999 A
5876366 Dykstra et al. Mar 1999 A
5876426 Kume et al. Mar 1999 A
5882347 Mouris-Laan et al. Mar 1999 A
5891111 Ismael et al. Apr 1999 A
5904670 Schreiner May 1999 A
5911715 Berg et al. Jun 1999 A
5913848 Luther et al. Jun 1999 A
5916208 Luther et al. Jun 1999 A
5919160 Sanfilippo, II Jul 1999 A
5944732 Raulerson et al. Aug 1999 A
5947937 Urrutia et al. Sep 1999 A
5947953 Ash et al. Sep 1999 A
5957879 Roberts et al. Sep 1999 A
5957893 Luther et al. Sep 1999 A
5957912 Heitzmann Sep 1999 A
5961486 Twardowski et al. Oct 1999 A
5964796 Imran Oct 1999 A
5976103 Martin Nov 1999 A
5976120 Chow et al. Nov 1999 A
5980551 Summers et al. Nov 1999 A
5984908 Davis et al. Nov 1999 A
5989206 Prosl et al. Nov 1999 A
5989213 Maginot Nov 1999 A
6001079 Pourchez Dec 1999 A
6033382 Basta Mar 2000 A
6036654 Quinn et al. Mar 2000 A
6059771 Balbierz et al. May 2000 A
6074374 Fulton Jun 2000 A
6086555 Eliasen et al. Jul 2000 A
6086557 Morejohn et al. Jul 2000 A
6090096 St. Goar et al. Jul 2000 A
6099513 Spehalski Aug 2000 A
6103778 Hyon et al. Aug 2000 A
6106540 White et al. Aug 2000 A
6113572 Gailey et al. Sep 2000 A
6117117 Mauch Sep 2000 A
6120494 Jonkman Sep 2000 A
6126631 Loggie Oct 2000 A
6132425 Gough Oct 2000 A
6143013 Samson et al. Nov 2000 A
6146354 Beil Nov 2000 A
6146373 Cragg et al. Nov 2000 A
6152909 Bagaoisan et al. Nov 2000 A
6156016 Maginot Dec 2000 A
6161547 Barbut Dec 2000 A
6178356 Chastain et al. Jan 2001 B1
6180059 Divino, Jr. et al. Jan 2001 B1
6190349 Ash et al. Feb 2001 B1
6190371 Maginot et al. Feb 2001 B1
6193685 Goodin Feb 2001 B1
6196996 Teirstein Mar 2001 B1
6206849 Martin et al. Mar 2001 B1
6210365 Afzal Apr 2001 B1
6210380 Mauch Apr 2001 B1
6217527 Selmon et al. Apr 2001 B1
6224622 Kotzev May 2001 B1
6238406 Ellis et al. May 2001 B1
6264627 Liska et al. Jul 2001 B1
6273879 Keith et al. Aug 2001 B1
6280413 Clark et al. Aug 2001 B1
6280423 Davey et al. Aug 2001 B1
6287326 Pecor Sep 2001 B1
6293927 McGuckin, Jr. Sep 2001 B1
6293958 Berry et al. Sep 2001 B1
6296631 Chow Oct 2001 B2
6299631 Shalaby Oct 2001 B1
6322551 Brugger Nov 2001 B1
6328730 Harkrider, Jr. Dec 2001 B1
6342120 Basta Jan 2002 B1
6361529 Goodin et al. Mar 2002 B1
6383172 Barbut May 2002 B1
6394141 Wages et al. May 2002 B2
6394142 Woelfel et al. May 2002 B1
6409700 Siegel, Jr. et al. Jun 2002 B1
6413228 Hung et al. Jul 2002 B1
6428513 Abrahamson Aug 2002 B1
6443922 Roberts et al. Sep 2002 B1
6450988 Bradshaw Sep 2002 B1
6453185 O'Keefe Sep 2002 B1
6454997 Divino, Jr. et al. Sep 2002 B1
6455608 Jia et al. Sep 2002 B1
6463335 Munch et al. Oct 2002 B1
6468287 Baugh Oct 2002 B1
6473633 Heil, Jr. et al. Oct 2002 B1
6475207 Maginot et al. Nov 2002 B1
6475209 Larson et al. Nov 2002 B1
6478789 Spehalski et al. Nov 2002 B1
6482169 Kuhle Nov 2002 B1
6533763 Schneiter Mar 2003 B1
6565594 Herweck et al. May 2003 B1
6576001 Werneth et al. Jun 2003 B2
6582459 Lau et al. Jun 2003 B1
6585705 Maginot et al. Jul 2003 B1
6592565 Twardowski Jul 2003 B2
6595966 Davey et al. Jul 2003 B2
6620118 Prosl et al. Sep 2003 B1
6638242 Wilson et al. Oct 2003 B2
6659134 Navis Dec 2003 B2
6682498 Ross Jan 2004 B2
6682519 Schon Jan 2004 B1
6691625 Duncan Feb 2004 B2
6695832 Schon et al. Feb 2004 B2
6702776 Quinn Mar 2004 B2
6712797 Southern, Jr. Mar 2004 B1
6712798 Constantz Mar 2004 B2
6719717 Johnson et al. Apr 2004 B1
6719749 Schweikert et al. Apr 2004 B1
6723084 Maginot et al. Apr 2004 B1
6723114 Shalaby Apr 2004 B2
6730299 Tayot et al. May 2004 B1
6752827 Ross et al. Jun 2004 B2
6755851 Noda et al. Jun 2004 B2
6758836 Zawacki Jul 2004 B2
6786664 Claramunt et al. Sep 2004 B2
6786884 DeCant, Jr. et al. Sep 2004 B1
6796991 Nardeo Sep 2004 B2
6797107 Kotzey Sep 2004 B1
6808510 DiFiore Oct 2004 B1
6814718 McGuckin, Jr. et al. Nov 2004 B2
6819951 Patel et al. Nov 2004 B2
6821287 Jang Nov 2004 B1
6824554 Jang Nov 2004 B1
6835452 Hamerski Dec 2004 B1
6837864 Bertolero et al. Jan 2005 B1
6852079 Miyano Feb 2005 B2
6852097 Fulton, III Feb 2005 B1
6858019 McGuckin, Jr. et al. Feb 2005 B2
6872198 Wilson et al. Mar 2005 B1
6878143 Andersen Apr 2005 B2
6881211 Schweikert et al. Apr 2005 B2
6884253 McFarlane Apr 2005 B1
6911014 Wentling et al. Jun 2005 B2
6913601 St. Goar et al. Jul 2005 B2
6916313 Cunningham Jul 2005 B2
6921396 Wilson et al. Jul 2005 B1
6921411 Yock Jul 2005 B2
6934142 Grosse et al. Aug 2005 B2
6966886 Appling Nov 2005 B2
6969381 Voorhees Nov 2005 B2
6979318 McDonald et al. Dec 2005 B1
6991625 Gately et al. Jan 2006 B1
D515211 Chesnin Feb 2006 S
6997894 Caresio Feb 2006 B2
7008395 Loggie Mar 2006 B1
7011645 McGuckin, Jr. et al. Mar 2006 B2
7018384 Skakoon Mar 2006 B2
7029467 Currier et al. Apr 2006 B2
7066914 Andersen Jun 2006 B2
7066925 Gately et al. Jun 2006 B2
7074213 McGuckin, Jr. et al. Jul 2006 B2
7077829 McGuckin, Jr. et al. Jul 2006 B2
7087053 Vanney Aug 2006 B2
7090654 Lotito et al. Aug 2006 B2
7108674 Quinn Sep 2006 B2
D530420 Chesnin Oct 2006 S
7128734 Wilson et al. Oct 2006 B1
7130700 Gardeski et al. Oct 2006 B2
7141035 Haggstrom Nov 2006 B2
RE39451 Kuhle Dec 2006 E
7182746 Haarala et al. Feb 2007 B2
7300430 Wilson et al. Nov 2007 B2
7322953 Redinger Jan 2008 B2
7347852 Hobbs et al. Mar 2008 B2
7381204 Wilson et al. Jun 2008 B2
7393339 Zawacki et al. Jul 2008 B2
7422571 Schweikert et al. Sep 2008 B2
7465286 Patterson et al. Dec 2008 B2
7485107 DiFiore et al. Feb 2009 B2
7569029 Clark Aug 2009 B2
7575563 Appling Aug 2009 B2
7651482 Harris Jan 2010 B2
7686823 Pingleton et al. Mar 2010 B2
7798999 Bailey et al. Sep 2010 B2
7972465 Patterson et al. Jul 2011 B2
8021321 Zawacki Sep 2011 B2
8066660 Gregersen et al. Nov 2011 B2
8092415 Moehle Jan 2012 B2
8100863 Moehle et al. Jan 2012 B2
8152951 Zawacki et al. Apr 2012 B2
8206371 Nimkar et al. Jun 2012 B2
8292841 Gregersen Oct 2012 B2
8500939 Nimkar et al. Aug 2013 B2
8540661 Gregersen Sep 2013 B2
8597275 Nimkar et al. Dec 2013 B2
8696614 Gregersen et al. Apr 2014 B2
8808227 Zawacki et al. Aug 2014 B2
8894601 Moehle et al. Nov 2014 B2
8992454 Anand Mar 2015 B2
9174019 Gregersen Nov 2015 B2
9233200 Gregersen et al. Jan 2016 B2
9572956 Nimkar et al. Feb 2017 B2
9579485 Obom et al. Feb 2017 B2
9610422 Moehle et al. Apr 2017 B2
9669149 Anand Jun 2017 B2
9782535 Anand Oct 2017 B2
10105514 Nimkar et al. Oct 2018 B2
10207043 Gregersen Feb 2019 B2
10258732 Gregersen et al. Apr 2019 B2
10258768 Loesener et al. Apr 2019 B2
10518064 Oborn et al. Dec 2019 B2
10857330 Loesener et al. Dec 2020 B2
20010041857 Sansoucy Nov 2001 A1
20010041873 Dopper et al. Nov 2001 A1
20020013569 Sterman et al. Jan 2002 A1
20020026156 Quinn Feb 2002 A1
20020055724 Hughes May 2002 A1
20020086047 Mueller et al. Jul 2002 A1
20020087108 Maginot et al. Jul 2002 A1
20020087145 Ehwald et al. Jul 2002 A1
20020091362 Maginot et al. Jul 2002 A1
20020091430 Dobak et al. Jul 2002 A1
20020099326 Wilson et al. Jul 2002 A1
20020099327 Wilson et al. Jul 2002 A1
20020107506 McGuckin et al. Aug 2002 A1
20020138031 Ross Sep 2002 A1
20020169490 Noda et al. Nov 2002 A1
20020173770 Flory et al. Nov 2002 A1
20020177904 Huxel et al. Nov 2002 A1
20030023198 Twardowski Jan 2003 A1
20030032734 Roby Feb 2003 A1
20030088213 Schweikert et al. May 2003 A1
20030093027 McGuckin et al. May 2003 A1
20030097091 Hobbs et al. May 2003 A1
20030135147 Rosenberg et al. Jul 2003 A1
20030144623 Heath et al. Jul 2003 A1
20030149395 Zawacki Aug 2003 A1
20030153898 Schon et al. Aug 2003 A1
20030163145 Raulerson Aug 2003 A1
20030187411 Constantz Oct 2003 A1
20030204179 Davey et al. Oct 2003 A1
20040039350 McKittrick Feb 2004 A1
20040054321 Schon et al. Mar 2004 A1
20040059314 Schon et al. Mar 2004 A1
20040064086 Gottlieb et al. Apr 2004 A1
20040065333 Wilson et al. Apr 2004 A1
20040075198 Schweikert et al. Apr 2004 A1
20040087892 Cunningham May 2004 A1
20040092863 Raulerson et al. May 2004 A1
20040097863 Appling May 2004 A1
20040097903 Raulerson May 2004 A1
20040122418 Voorhees Jun 2004 A1
20040147903 Latini Jul 2004 A1
20040167463 Zawacki et al. Aug 2004 A1
20040171997 Wilson et al. Sep 2004 A1
20040172003 Wilson et al. Sep 2004 A1
20040176739 Stephens et al. Sep 2004 A1
20040193102 Haggstrom Sep 2004 A1
20040197301 Zhao et al. Oct 2004 A1
20040210180 Altman Oct 2004 A1
20040210187 Zawacki Oct 2004 A1
20040210237 Ross et al. Oct 2004 A1
20040220550 Schryver Nov 2004 A1
20040230204 Wortley et al. Nov 2004 A1
20040243095 Nimkar et al. Dec 2004 A1
20040249337 DiFiore Dec 2004 A1
20050003322 Logan et al. Jan 2005 A1
20050004504 Frye et al. Jan 2005 A1
20050013341 Baghai Jan 2005 A1
20050019382 Kummer et al. Jan 2005 A1
20050025641 Shibata et al. Feb 2005 A1
20050027282 Schweikert et al. Feb 2005 A1
20050027289 Castellano et al. Feb 2005 A1
20050033222 Haggstrom et al. Feb 2005 A1
20050033264 Redinger Feb 2005 A1
20050054989 McGuckin et al. Mar 2005 A1
20050055012 Trerotola Mar 2005 A1
20050059925 Maginot et al. Mar 2005 A1
20050070842 Lotito et al. Mar 2005 A1
20050080398 Markel et al. Apr 2005 A1
20050085765 Voorhees Apr 2005 A1
20050096585 Schon et al. May 2005 A1
20050113904 Shank et al. May 2005 A1
20050131341 McGuckin et al. Jun 2005 A1
20050171469 Cunningham Aug 2005 A1
20050187535 Wilson et al. Aug 2005 A1
20050209582 Quinn et al. Sep 2005 A1
20050215977 Uschold Sep 2005 A1
20050228339 Clark Oct 2005 A1
20050240165 Miki et al. Oct 2005 A1
20050245900 Ash Nov 2005 A1
20050251190 McFarlane Nov 2005 A1
20050256461 DiFiore et al. Nov 2005 A1
20050261663 Patterson et al. Nov 2005 A1
20050267400 Haarala et al. Dec 2005 A1
20050277862 Anand Dec 2005 A1
20050283111 Maurice Dec 2005 A1
20050288623 Hjalmarsson Dec 2005 A1
20050288706 Widomski et al. Dec 2005 A1
20060004316 Difiore et al. Jan 2006 A1
20060004325 Hamatake et al. Jan 2006 A1
20060009783 Rome et al. Jan 2006 A1
20060015072 Raulerson Jan 2006 A1
20060015130 Voorhees et al. Jan 2006 A1
20060030827 Raulerson et al. Feb 2006 A1
20060047267 Gately et al. Mar 2006 A1
20060047268 Stephens Mar 2006 A1
20060058775 Stevens et al. Mar 2006 A1
20060064072 Gately et al. Mar 2006 A1
20060095062 Stephens May 2006 A1
20060100572 DiMatteo et al. May 2006 A1
20060111537 Roby May 2006 A1
20060116629 Tal et al. Jun 2006 A1
20060161100 Hamboly Jul 2006 A1
20060184142 Schon et al. Aug 2006 A1
20060189922 Amarasinghe et al. Aug 2006 A1
20060200111 Moehle et al. Sep 2006 A1
20060206094 Chesnin et al. Sep 2006 A1
20060251612 Kotzev et al. Nov 2006 A1
20060253063 Schweikert Nov 2006 A1
20060271012 Canaud et al. Nov 2006 A1
20070005003 Patterson et al. Jan 2007 A1
20070019181 Sinclair et al. Jan 2007 A1
20070066964 Atkins Mar 2007 A1
20070078478 Atkins et al. Apr 2007 A1
20070106206 Appling May 2007 A1
20070129704 O'Mahony et al. Jun 2007 A1
20070167925 Jacqmein Jul 2007 A1
20070191810 Kennedy Aug 2007 A1
20070225661 Ash et al. Sep 2007 A1
20070225682 Ash et al. Sep 2007 A1
20070282274 Chesnin Dec 2007 A1
20080021417 Zawacki et al. Jan 2008 A1
20080039774 Zawacki et al. Feb 2008 A1
20080065029 Racz Mar 2008 A1
20080082079 Braga et al. Apr 2008 A1
20080082080 Braga Apr 2008 A1
20080097409 Stephens Apr 2008 A1
20080172012 Hiniduma-Lokuge et al. Jul 2008 A1
20080214980 Anand Sep 2008 A1
20080214992 Haarala et al. Sep 2008 A1
20090112153 Gregersen et al. Apr 2009 A1
20090118661 Moehle et al. May 2009 A1
20090118701 Nimkar et al. May 2009 A1
20090118707 Schweikert et al. May 2009 A1
20090118755 Maliglowka et al. May 2009 A1
20090138034 Maliglowka et al. May 2009 A1
20090157051 Appling et al. Jun 2009 A1
20090187141 Lareau et al. Jul 2009 A1
20090192435 Gregersen Jul 2009 A1
20090204052 Nimkar et al. Aug 2009 A1
20090204079 Nimkar et al. Aug 2009 A1
20090204083 O'Donnell et al. Aug 2009 A1
20090205189 Nimkar et al. Aug 2009 A1
20090209940 Nimkar et al. Aug 2009 A1
20090292248 Schon et al. Nov 2009 A1
20090312687 DeFonzo et al. Dec 2009 A1
20100081986 Matson et al. Apr 2010 A1
20100331780 Bellisario et al. Dec 2010 A1
20110020418 Bosley, Jr. et al. Jan 2011 A1
20110301522 DeFonzo Dec 2011 A1
20120059304 Gregersen et al. Mar 2012 A1
20120089070 Moehle et al. Apr 2012 A1
20130018405 Onishi et al. Jan 2013 A1
20130079752 Gregersen Mar 2013 A1
20130253445 Nimkar et al. Sep 2013 A1
20130261605 Gregersen et al. Oct 2013 A1
20140018772 Ash Jan 2014 A1
20140025042 Gregersen Jan 2014 A1
20140088510 Nimkar et al. Mar 2014 A1
20140228742 Gregersen et al. Aug 2014 A1
20140276472 VanderStek et al. Sep 2014 A1
20140276493 Leung et al. Sep 2014 A1
20140277052 Haselby et al. Sep 2014 A1
20140330220 Zawacki et al. Nov 2014 A1
20140336687 Iwase et al. Nov 2014 A1
20150073336 Moehle et al. Mar 2015 A1
20150088100 Oborn et al. Mar 2015 A1
20150335810 Anand Nov 2015 A1
20170151418 Nimkar et al. Jun 2017 A1
20170165453 Oborn et al. Jun 2017 A1
20190240393 Gregersen et al. Aug 2019 A1
20190240453 Loesener et al. Aug 2019 A1
20200129729 Oborn et al. Apr 2020 A1
Foreign Referenced Citations (62)
Number Date Country
834211 Feb 1976 BE
1150122 Jul 1983 CA
2474351 Aug 2003 CA
2788836 Jun 2006 CN
101918067 Dec 2010 CN
103170050 Jun 2013 CN
101918066 Jul 2013 CN
8815869 Feb 1989 DE
9108132 Sep 1991 DE
102005051211 May 2007 DE
0030854 Jun 1981 EP
0132344 Jan 1985 EP
0301854 Feb 1989 EP
0332366 Sep 1989 EP
0386408 Sep 1990 EP
0453234 Oct 1991 EP
0476796 Mar 1992 EP
0495263 Jul 1992 EP
0650740 May 1995 EP
0711574 May 1996 EP
1471966 Nov 2004 EP
1599247 Nov 2005 EP
2305337 Apr 2011 EP
1503469 Mar 1978 GB
56-136569 Oct 1981 JP
8-510935 Nov 1996 JP
2001137350 May 2001 JP
2008500081 Jan 2008 JP
2011-502583 Jan 2011 JP
4827377 Nov 2011 JP
45923 Nov 2004 RU
459237 Feb 1975 SU
1991008132 Jun 1991 WO
1993016741 Sep 1993 WO
1993016752 Sep 1993 WO
1997009086 Mar 1997 WO
1997017102 May 1997 WO
1997022374 Jun 1997 WO
1997037699 Oct 1997 WO
1999004844 Feb 1999 WO
2000023137 Apr 2000 WO
2002018004 Mar 2002 WO
2002058776 Aug 2002 WO
2002083223 Oct 2002 WO
2003030960 Apr 2003 WO
2003033049 Apr 2003 WO
2003066148 Aug 2003 WO
2004075962 Sep 2004 WO
2004096334 Nov 2004 WO
2004112876 Dec 2004 WO
2005018712 Mar 2005 WO
2005023336 Mar 2005 WO
2005077449 Aug 2005 WO
2005084741 Sep 2005 WO
2005118039 Dec 2005 WO
2006034877 Apr 2006 WO
2008048183 Apr 2008 WO
2009051967 Apr 2009 WO
2009055332 Apr 2009 WO
2009059220 May 2009 WO
2015077560 May 2015 WO
2016011091 Jan 2016 WO
Non-Patent Literature Citations (264)
Entry
U.S. Appl. No. 14/991,858, filed Jan. 8, 2016 Non-Final Office Action dated May 17, 2018.
U.S. Appl. No. 14/991,858, filed Jan. 8, 2016 Notice of Allowance dated Nov. 26, 2018.
U.S. Appl. No. 15/429,049, filed Feb. 9, 2017 Non-Final Office Action dated Mar. 20, 2018.
U.S. Appl. No. 15/429,049, filed Feb. 9, 2017 Notice of Allowance dated May 31, 2018.
US Patent File History U.S. Pat. No. 5,403,291 (Abrahamson), issued Apr. 4, 1995.
US Patent File History U.S. Pat. No. 5,489,278 (Abrahamson), issued Feb. 6, 1996.
US Patent File History U.S. Pat. No. 5,685,867 (Twardowski et al.), issued Nov. 11, 1997.
Wechsler, et al., Thrombosis and Infection Caused by Thoracic Venous Catheters: Pathogenesis and Imagings Findings, AJR, 1993; 160:467-471.
Weitzel, et al., Successful Use of Indwelling Cuffed Femoral Vein Catheters in Ambulatory Hemodialysis Patients, American Journal of Kidney Diseases, 1993, vol. 22, No. 3, pp. 426-429.
U.S. Appl. No. 10/371,774, filed Feb. 21, 2003 Notice of Allowance dated Jun. 1, 2007.
U.S. Appl. No. 10/445,731, filed May 27, 2003 Non-Final Office Action dated Apr. 13, 2007.
U.S. Appl. No. 10/445,731, filed May 27, 2003 Non-Final Office Action dated Dec. 12, 2008.
U.S. Appl. No. 10/445,731, filed May 27, 2003 Non-Final Office Action dated May 30, 2008.
U.S. Appl. No. 10/842,586, filed May 10, 2004 Advisory Action dated Oct. 9, 2008.
U.S. Appl. No. 10/842,586, filed May 10, 2004 Final Office Action dated Jul. 29, 2008.
U.S. Appl. No. 10/842,586, filed May 10, 2004 Final Office Action dated May 25, 2010.
U.S. Appl. No. 10/842,586, filed May 10, 2004 Non-Final Office Action dated Jan. 7, 2008.
U.S. Appl. No. 10/842,586, filed May 10, 2004 Non-Final Office Action dated Jun. 16, 2009.
U.S. Appl. No. 10/842,586, filed May 10, 2004 Non-Final Office Action dated Nov. 13, 2008.
U.S. Appl. No. 10/842,586, filed May 10, 2004 Non-Final Office Action dated Nov. 23, 2009.
U.S. Appl. No. 10/874,298, filed Jun. 9, 2004 Advisory Action dated Feb. 19, 2009.
U.S. Appl. No. 10/874,298, filed Jun. 9, 2004 Final Office Action dated Jul. 15, 2008.
U.S. Appl. No. 10/874,298, filed Jun. 9, 2004 Final Office Action dated Jul. 7, 2010.
U.S. Appl. No. 10/874,298, filed Jun. 9, 2004 Final Office Action dated Mar. 18, 2014.
U.S. Appl. No. 10/874,298, filed Jun. 9, 2004 Non-Final Office Action dated Aug. 1, 2013.
U.S. Appl. No. 10/874,298, filed Jun. 9, 2004 Non-Final Office Action dated Aug. 18, 2011.
U.S. Appl. No. 10/874,298, filed Jun. 9, 2004 Non-Final Office Action dated Dec. 30, 2009.
U.S. Appl. No. 10/874,298, filed Jun. 9, 2004 Non-Final Office Action dated Feb. 2, 2011.
U.S. Appl. No. 10/874,298, filed Jun. 9, 2004 Non-Final Office Action dated Jul. 23, 2009.
U.S. Appl. No. 10/874,298, filed Jun. 9, 2004 Non-Final Office Action dated Jul. 9, 2014.
U.S. Appl. No. 10/874,298, filed Jun. 9, 2004 Non-Final Office Action dated May 23, 2006.
U.S. Appl. No. 10/874,298, filed Jun. 9, 2004 Non-Final Office Action dated May 24, 2007.
U.S. Appl. No. 11/859,106 filed Sep. 21, 2007 Final Office Action dated Sep. 1, 2009.
U.S. Appl. No. 11/859,106 filed Sep. 21, 2007 Non-Final Office Action dated Feb. 5, 2009.
U.S. Appl. No. 11/859,106 filed Sep. 21, 2007 Non-Final Office Action dated Mar. 30, 2011.
U.S. Appl. No. 11/859,106 filed Sep. 21, 2007 Non-Final Office Action dated Jun. 25, 2008.
U.S. Appl. No. 11/874,447, filed Oct. 18, 2007 Decision on Appeal dated Dec. 26, 2012.
U.S. Appl. No. 11/874,447, filed Oct. 18, 2007 Examiner's Answer dated Apr. 28, 2010.
U.S. Appl. No. 11/874,447, filed Oct. 18, 2007 Final Office Action dated Jul. 22, 2009.
U.S. Appl. No. 11/874,447, filed Oct. 18, 2007 Non-Final Office Action dated Jan. 6, 2009.
U.S. Appl. No. 11/874,447, filed Oct. 18, 2007 Non-Final Office Action dated Jul. 12, 2013.
U.S. Appl. No. 11/874,447, filed Oct. 18, 2007 Non-Final Office Action dated Jul. 9, 2008.
U.S. Appl. No. 11/874,447, filed Oct. 18, 2007 Notice of Allowance dated Apr. 18, 2014.
U.S. Appl. No. 12/048,871, filed Mar. 14, 2008 Decision on Appeal dated Feb. 2, 2015.
U.S. Appl. No. 12/048,871, filed Mar. 14, 2008 Examiner's Answer dated Feb. 9, 2012.
U.S. Appl. No. 12/048,871, filed Mar. 14, 2008 Final Office Action dated Jan. 20, 2011.
U.S. Appl. No. 12/048,871, filed Mar. 14, 2008 Final Office Action dated Jan. 4, 2016.
U.S. Appl. No. 12/048,871, filed Mar. 14, 2008 Non-Final Office Action dated Aug. 31, 2016.
U.S. Appl. No. 12/048,871, filed Mar. 14, 2008 Non-Final Office Action dated Jan. 7, 2010.
U.S. Appl. No. 12/048,871, filed Mar. 14, 2008 Non-Final Office Action dated Jul. 16, 2015.
U.S. Appl. No. 12/048,871, filed Mar. 14, 2008 Non-Final Office Action dated Jul. 7, 2010.
U.S. Appl. No. 12/048,871, filed Mar. 14, 2008 Non-Final Office Action dated May 12, 2009.
U.S. Appl. No. 12/048,871, filed Mar. 14, 2008 Notice of Allowance dated Feb. 10, 2017.
U.S. Appl. No. 12/244,514, filed Oct. 2, 2008 Final Office Action dated Jun. 19, 2012.
U.S. Appl. No. 12/244,514, filed Oct. 2, 2008 Non-Final Office Action dated Jan. 17, 2012.
U.S. Appl. No. 12/244,559, filed Oct. 2, 2008 Decision on Appeal dated Aug. 31, 2015.
U.S. Appl. No. 12/244,559, filed Oct. 2, 2008 Examiner's Answer dated Mar. 27, 2013.
U.S. Appl. No. 12/244,559, filed Oct. 2, 2009 Final Office Action dated Jul. 3, 2012.
U.S. Appl. No. 12/244,559, filed Oct. 2, 2009 Non-Final Office Action dated Mar. 14, 2012.
U.S. Appl. No. 16/163,372, filed Oct. 17, 2018 Non-Final Office Action dated May 14, 2020.
U.S. Appl. No. 16/163,372, filed Oct. 17, 2018 Notice of Allowance dated Aug. 19, 2020.
U.S. Appl. No. 16/384,509, filed Apr. 15, 2019 Notice of Allowance dated Sep. 9, 2020.
U.S. Appl. No. 12/244,514, filed Oct. 2, 2008 Advisory Action dated Sep. 5, 2012.
U.S. Appl. No. 12/244,514, filed Oct. 2, 2008 Final Office Action dated Jul. 11, 2011.
U.S. Appl. No. 12/244,514, filed Oct. 2, 2008 Non-Final Office Action dated Jan. 19, 2011.
U.S. Appl. No. 12/244,544, filed Oct. 2, 2008 Final Office Action dated Jul. 11, 2011.
U.S. Appl. No. 12/244,544, filed Oct. 2, 2008 Non-Final Office Action dated Dec. 22, 2010.
U.S. Appl. No. 12/244,554, filed Oct. 2, 2008 Final Office Action dated Dec. 27, 2010.
U.S. Appl. No. 12/244,554, filed Oct. 2, 2008 Non-Final Office Action dated Jul. 6, 2010.
U.S. Appl. No. 12/253,870, filed Oct. 17, 2008 Non-Final Office Action dated Jan. 21, 2011.
U.S. Appl. No. 12/253,870, filed Oct. 17, 2008 Notice of Allowance dated Aug. 19, 2011.
U.S. Appl. No. 12/262,820, filed Oct. 31, 2008 Non-Final Office Action dated Feb. 18, 2011.
U.S. Appl. No. 12/262,820, filed Oct. 31, 2008 Notice of Allowance dated Sep. 28, 2011.
U.S. Appl. No. 12/263,141, filed Oct. 31, 2008 Advisory Action dated Aug. 17, 2011.
U.S. Appl. No. 12/263,141, filed Oct. 31, 2008 Final Office Action dated May 26, 2011.
U.S. Appl. No. 12/263,141, filed Oct. 31, 2008 Non-Final Office Action dated Jan. 5, 2011.
U.S. Appl. No. 12/414,467, filed Mar. 30, 2009 Final Office Action dated Feb. 7, 2012.
U.S. Appl. No. 12/414,467, filed Mar. 30, 2009 Notice of Allowance dated May 31, 2012.
U.S. Appl. No. 12/414,467, filed Mar. 30, 2009 Non-Final Office Action dated Aug. 11, 2011.
U.S. Appl. No. 13/294,941, filed Nov. 11, 2011 Non-Final Office Action dated May 27, 2016.
U.S. Appl. No. 13/294,941, filed Nov. 11, 2011 Non-Final Office Action dated May 31, 2013.
U.S. Appl. No. 13/294,941, filed Nov. 11, 2011 Notice of Allowance dated Nov. 27, 2013.
U.S. Appl. No. 13/329,156, filed Dec. 16, 2011 Non-Final Office Action dated May 16, 2014.
U.S. Appl. No. 13/445,713, filed Apr. 12, 2012 Advisory Action dated Aug. 8, 2013.
U.S. Appl. No. 13/445,713, filed Apr. 12, 2012 Final Office Action dated May 30, 2013.
U.S. Appl. No. 13/445,713, filed Apr. 12, 2012 Non-Final Office Action dated Jan. 2, 2013.
U.S. Appl. No. 13/445,713, filed Apr. 12, 2012 Notice of Allowance dated Oct. 18, 2013.
U.S. Appl. No. 13/897,292, filed May 17, 2013 Decision on Appeal dated Jun. 8, 2017.
U.S. Appl. No. 13/897,292, filed May 17, 2013 Final Office Action dated Apr. 9, 2015.
U.S. Appl. No. 13/897,292, filed May 17, 2013 Non-Final Office Action dated Nov. 20, 2014.
U.S. Appl. No. 13/897,292, filed May 17, 2013 Notice of Allowance dated Aug. 23, 2017.
U.S. Appl. No. 14/032,858, filed Sep. 20, 2013 Final Office Action dated Mar. 31, 2015.
U.S. Appl. No. 14/032,858, filed Sep. 20, 2013 Non-Final Office Action dated Nov. 4, 2014.
U.S. Appl. No. 14/032,858, filed Sep. 20, 2013, Notice of Allowance dated Jun. 26, 2015.
U.S. Appl. No. 14/094,534, filed Dec. 2, 2013 Final Office Action dated Jul. 20, 2016.
U.S. Appl. No. 14/094,534, filed Dec. 2, 2013 Non-Final Office Action dated Feb. 24, 2016.
U.S. Appl. No. 14/094,534, filed Dec. 2, 2013 Notice of Allowance dated Sep. 30, 2016.
U.S. Appl. No. 14/252,567, filed Apr. 14, 2014 Non-Final Office Action dated Mar. 31, 2015.
U.S. Appl. No. 14/252,567, filed Apr. 14, 2014 Notice of Allowance dated Sep. 3, 2015.
U.S. Appl. No. 14/328,541, filed Jul. 10, 2014 Final Office Action dated Oct. 22, 2015.
U.S. Appl. No. 14/328,541, filed Jul. 10, 2014 Non-Final Office Action dated Apr. 9, 2015.
U.S. Appl. No. 14/542,495, filed Nov. 14, 2014 Final Office Action dated Aug. 31, 2016.
U.S. Appl. No. 14/542,495, filed Nov. 14, 2014 Non-Final Office Action dated May 10, 2016.
U.S. Appl. No. 14/542,495, filed Nov. 14, 2014 Notice of Allowance dated Nov. 15, 2016.
U.S. Appl. No. 14/675,236, filed Mar. 31, 2015 Non-Final Office Action dated Feb. 2, 2017.
U.S. Appl. No. 14/675,236, filed Mar. 31, 2015 Notice of Allowance dated May 16, 2017.
U.S. Appl. No. 14/799,547, filed Jul. 14, 2015 Non-Final Office Action dated Mar. 16, 2018.
U.S. Appl. No. 14/799,547, filed Jul. 14, 2015 Restriction Requirement dated Nov. 30, 2017.
U.S. Appl. No. 14/930,526, filed Nov. 2, 2015 Final Office Action dated Jun. 7, 2018.
U.S. Appl. No. 14/930,526, filed Nov. 2, 2015 Non-Final Office Action dated Feb. 23, 2016.
U.S. Appl. No. 14/930,526, filed Nov. 2, 2015 Notice of Allowance dated Oct. 2, 2018.
PCT/US2004/005102 filed Feb. 19, 2004 Search Report dated Dec. 27, 2004.
PCT/US2004/005102 filed Feb. 19, 2004 Written Opinion dated Aug. 21, 2005.
PCT/US2008/078551 filed Oct. 2, 2008 International Preliminary Report on Patentability dated Apr. 20, 2010.
PCT/US2008/078551 filed Oct. 2, 2008 Search Report dated Mar. 13, 2009.
PCT/US2008/078551 filed Oct. 2, 2008 Written Opinion dated Mar. 13, 2009.
PCT/US2008/078560 filed Oct. 2, 2008 Preliminary Report on Patentability dated Aug. 26, 2010.
PCT/US2008/078560 filed Oct. 2, 2008 Search Report dated Mar. 16, 2009.
PCT/US2008/078560 filed Oct. 2, 2008 Written Opinion dated Mar. 16, 2009.
PCT/US2008/078566 filed Oct. 2, 2008 International Preliminary Report on Patentability dated Apr. 20, 2010.
PCT/US2008/078566 filed Oct. 2, 2008 Search Report dated Mar. 19, 2009.
PCT/US2008/078566 filed Oct. 2, 2008 Written Opinion dated Mar. 19, 2009.
PCT/US2008/078571 filed Oct. 2, 2008 Preliminary Report on Patentability dated Aug. 26, 2010.
PCT/US2008/078571 filed Oct. 2, 2008 Search Report dated Mar. 20, 2009.
PCT/US2008/078571 filed Oct. 2, 2008 Written Opinion dated Mar. 20, 2009.
PCT/US2008/080463 filed Oct. 20, 2008 Preliminary Report on Patentability dated Apr. 27, 2010.
PCT/US2008/080463 filed Oct. 20, 2008 Search Report dated Mar. 16, 2009.
PCT/US2008/080463 filed Oct. 20, 2008 Written Opinion dated Apr. 16, 2009.
PCT/US2008/082106 filed Oct. 31, 2008 International Preliminary Report on Patentability dated May 4, 2010.
PCT/US2008/082106 filed Oct. 31, 2008 Search Report dated Jan. 12, 2009.
PCT/US2008/082106 filed Oct. 31, 2008 Written Opinion dated Jan. 12, 2009.
PCT/US2014/066811 filed Nov. 21, 2014 International Search Report and Written Opinion dated Apr. 15, 2015.
Picture of Device believed to be partial sample of a product believed to have been sold in the United States with Polycath and/or Infuse-a-Cath Instructions for Use, 1 page, 2011.
QUINTON® Catheter Products (1993).
Raaf Dual Lumen Right Atrial Catheters Brochure—Quinton Instrument Co., 6 pages, 1993.
Raaf, et al., Open Insertion of Right Atrial Catheters Through the Jugular Veins, Surgery, Gynecology & Obstetrics, 1993, vol. 177, pp. 295-298.
Rawn, et al., The Hemodialysis Access, Chapter 9, pp. 9.1-9.11, available at <<http://msl1.mit.edu/ESD10/kidneys/HndbkPDF/Chap09.pdf>>, last accessed Jun. 4, 2012.
Schwab, et al., Prospective Evaluation of a Dacron Cuffed Hemodialysis Catheter for Prolonged Use, American Journal of Kidney Diseases, 1988, vol. XI, No. 2, pp. 166-169.
Schwab, et al., Vascular Access: Case Oriented Discussions of Selected Critical Issues: Hemodialysis Catheters tor Permanent Use, 1999.
Septum, Wikipedia, The Free Encyclopedia, hhtp://en.wikipedia.org/wiki/Septum (last visited Dec. 18, 2012) defining “septum” as “a wall, dividing a cavity or structure into smaller ones”).
Shaffer, D., Catheter-Related Sepsis Complicating Long-Term Tunnelled Central Venous Dialysis Catheters: Management by Guidewire Exchange, American Journal of Kidney Diseases, 1995, vol. 25, No. 4, pp. 593-596.
Shaffer, D., Lessons From Vascular Access Procedures for Hemodialysis, Surgical Oncology Clinics of North America, 1995, vol. 4, No. 3, pp. 537-549.
Sioshansi, P., New Processes for Surface Treatment of Catheters, Artificial Organs, 1994, 18(4):266-271.
Swartz, et al., Successful Use of Cuffed Central Venous Hemodialysis Catheters Inserted Percutaneously, J. Am. Soc. Nephrol., 1994, 4:1719-1725.
Taber's Cyclopedic Medical Dictionary 1662 (16th ed. 1989) (defining “septum” as a “wall dividing two cavities”).
Tal, Michael G, Comparison of Recirculation Percentage of the Palindrome Catheter and Standard Hemodialysis Catheters in a Swine Model, J Vasc Interv Radiol, pp. 1237-1240, vol. 16, No. 9, 2005.
Tesio, et al., Double Catheterization of the Internal Jugular Vein for Hemodialysis: Indications, Techniques, and Clinical Results, Artificial Organs, 1994, vol. 18, No. 4, pp. 301-304.
The Groshong™ Peripherally Inserted Central Venous Catheter Brochure—Cath-tech®, 4 pages, 1988.
Transcript of Videotaped Deposition of Gregory Haas (Excerpt), Sep. 23, 2003, Thierry Pourchez and Bard Access Systems, Inc. v. Diatek, Inc. and Arrow International, Inc., Civil Action No. 03-CV-0972 (S.D.N.Y.).
Transcript of Videotaped Deposition of Thierry Pourchez, vol. 1, Oct. 16, 2003, Thierry Pourchez and Bard Access Systems, Inc. v. Diatek, Inc. and Arrow International, Inc., Civil Action No. 03-CV-0972 (S.D.N.Y.).
Transcript of Videotaped Deposition of Thierry Pourchez, vol. 2, Oct. 17, 2003, Thierry Pourchez and Bard Access Systems, Inc. v. Diatek, Inc. and Arrow International, Inc., Civil Action No. 03-CV-0972 (S.D.N.Y.).
Treiman, et al., Chronic Venous Access in Patients with Cancer, Cancer, 1993, vol. 72, No. 3, pp. 760-765.
Twardowski et al. “Side Holes at the Tip of Chronic Hemodialysis Catehters are Harmful,” The Journal of Vascular Access 2001; 2:8-16.
Twardowski et al., “Blood Recirculation in Intravenous Catheters for Hemodialysis” J. Am. Soc. Nephrol. 3:1978-81 (1993).
TYCO Healthcare, Mahurkar Dual Lumen Catheters, Informational Brochure, 2 pages, 2004.
TYCO Healthcare, Mahurkar QPlus High Flow Acute Care Catheter, Informational Brochure, 2 pages, 2004.
TYCO Healthcare, Tai Palindrome™ Dual Lumen Catheters Order Information, Features and Benefits, Frequently Asked Questions, printed from http://www.kendallvasculartherapy.com/VascularTherapy, 6 pages, on Mar. 1, 2007.
Uldall, P., Subclavian Cannulation Is No Longer Necessary or Justified in Patients with End-Stage Renal Failure, Seminars in Dialysis, 1994, vol. 7, No. 3, pp. 161-164.
U.S. Appl. No. 10/371,774, filed Feb. 21, 2003 Final Office Action dated Jan. 19, 2007.
U.S. Appl. No. 10/371,774, filed Feb. 21, 2003 Final Office Action dated Mar. 7, 2007.
U.S. Appl. No. 10/371,774, filed Feb. 21, 2003 Non-Final Office Action dated Jul. 17, 2006.
U.S. Appl. No. 15/442,608, filed Feb. 24, 2017 Non-Final Office Action dated May 9, 2019.
U.S. Appl. No. 15/442,608, filed Feb. 24, 2017 Notice of Allowance dated Aug. 27, 2019.
Arrow Cannon II Plus Brochure, 2006.
Arrow International, Inc. et al v. Spire Biomedical, Inc., U.S. Dist Ct Dist MA CA No. 06-CV-11564-DPW, Declaration of Dr. Karim Valji (Jul. 17, 2008).
Arrow International, Inc. et al v. Spire Biomedical, Inc., U.S. Dist Ct Dist MA CA No. 06-CV-11564-DPW, Declaration of Kenneth Todd Cassidy (Jul. 16, 2008).
Arrow International, Inc. et al v. Spire Biomedical, Inc., U.S. Dist Ct Dist MA CA No. 06-CV-11564-DPW, Declaration of Rebecca R. Eisenberg in Opposition to Defendant's Motion for Partial Summary Judgment of Invalidity (Jun. 8, 2009).
Arrow International, Inc. et al v. Spire Biomedical, Inc., U.S. Dist Ct Dist MA CA No. 06-CV-11564-DPW, Memorandum of Law in Support of Defendant's Motion for Summary Judgment on Invalidity [Redacted Pursuant to Jun. 10, 2008 Order on Motion to Seal].
Arrow International, Inc. et al v. Spire Biomedical, Inc., U.S. Dist Ct Dist MA CA No. 06-CV-11564-DPW, Memorandum of Law in Support of Defendant's Motion for Summary Judgment on Invalidity Exhibit A (Jul. 10, 2009).
Arrow International, Inc. et al v. Spire Biomedical, Inc., U.S. Dist Ct Dist MA CA No. 06-CV-11564-DPW, Plaintiff's Memorandum in Opposition to Defendant's Motion for Summary Judgement on Non-Infringement (Jul. 17, 2008).
Arrow International, Inc. et al v. Spire Biomedical, Inc., U.S. Dist. Ct. Dist MA CA No. 06-CV-11564-DPW, Defendant's Omnibus Statement of Material Facts in Support of its Motions for Summary Judgment (Jun. 10, 2008) [Redacted Pursuant to Jun. 10, 2008 Order on Motion to Seal].
Bander, et al., Central Venous Angioaccess for Hemodialysis and Its Complications, Seminars in Dialysis, 1992, vol. 5, No. 2, pp. 121-128.
Baranowski, L., Central Venous Access Devices, Journal of Intravenous Nursing, 1993, vol. 16, No. 3, pp. 167-194.
Bard Access Systems Hickman®, Leonard®, and Broviac® Central Venous Catheters (Long Term), Instructions for Use, 31 pages, 1999.
Bard Access Systems Hickman®, Leonard®, and Broviac® Central Venous Catheters, Nursing Procedural Manual, 52 pages, Jun. 1994.
Bard Davol® Hickman®Round Dual Lumen Catheters for Central Venous Access Informational Brochure, 4 pages, 1994.
Bard Hickman® Catheters Informational Brochure, 3 pages, 1994.
Believed to be an unpublished sketch of a conception by Dr. John Frusha; date of sketch believed to be Jun. 24, 1997.
Berkoben, et al., Maintenance of Permanent Hemodialysis Vascular Access Patency, ANNA Journal, 1995, vol. 22, No. 1, pp. 17-24.
Bolz, et al., Catheter Malfunction and Thrombus Formation on Double-Lumen Hemodialysis Catheters: An Intravascular Ultrasonographic Study, American Journal of Kidney Diseases, 1995, vol. 25, No. 4, pp. 597-602.
Bour, et al., Experience With The Double Lumen Silastic® Catheter For Hemoaccess, Surgery, Gynecology & Obstetrics, 1990, vol. 171, pp. 33-39.
Camp, “Care of the Groshong Catheter”, Oncol Nurs Forum, vol. 15, No. 6, 1988.
Campbell, et al., Radiological Insertion of Long-term Venous Access Devices, Seminars in Interventional Radiology, 1994, vol. II, No. 4, pp. 366-375.
Canaud, B et al., Permenant Twin Catheter: A Vascular Access Option of Choice for Haemodialysis in Elderly Patients, pp. 82-88, vol. 17 No. 7, 1994.
Claim Construction Order of Federal District Court dated May 9, 2003 in Thierry Pourchez and Bard Access Systems, Inc. v. Diatek, Inc. and Arrow International, Inc. litigation (S.D. N.Y. 03 Civ.0972).
Claim Construction Order of Federal District Court dated Oct. 31, 2006 in Arrow Int'l. Inc.and Arrow Int'l. Investment Corp. v. Spire Biomedical, Inc. litigation (D. Mass. Civil Action No. 06-CV-11564).
CN 200880121182.0 filed Oct. 20, 2008 First Office Action dated May 2, 2012.
CN 200880121183.5 filed Oct. 2, 2008 First Office Action dated Mar. 28, 2012.
CN 200880121183.5 filed Oct. 2, 2008 Second Office Action dated Aug. 17, 2012.
CN 200880121183.5 filed Oct. 2, 2008 Third Office Action dated Dec. 11, 2012.
CN 200880123095.9 filed Oct. 20, 2008 First Office Action dated Feb. 13, 2012.
CN 200880123095.9 filed Oct. 20, 2008 Second Office Action dated Dec. 18, 2012.
CN 200880123533.1 filed Jun. 30, 2008 First Office Action dated May 28, 2012.
CN 200880123533.1 filed Jun. 30, 2008 Notice of Grant dated Dec. 24, 2012.
CN 201310073124.8 filed Mar. 7, 2013 First Office Action dated May 5, 2014.
Decision of Federal District Court dated Jul. 7, 2009 granting Summary Judgement of Invalidity in Arrow Int'l. Inc.and Arrow Int'l. Investment Corp. v. Spire Biomedical, Inc. litigation (D. Mass. Civil Action No. 06-CV-11564).
Declaration of Gregory S. Haas (Plaintiff's Exhibit 88 in Haas Deposition), Mar. 13, 2003, Thierry Pourchez and Bard Access Systems, Inc. v. Diatek, Inc. and Arrow International, Inc., Civil Action No. 03-CV-0972 (S.D.N.Y.).
Defendant's Exhibits DX78-DX114, Thierry Pourchez and Bard Access Systems, Inc. v. Diatek, Inc. and Arrow International, Inc., Civil Action No. 03-CV-0972 (S.D.N.Y.), 2003.
Defendants' Reponses and Objections to Plaintiffs' Second Set of Interrogatories (Excerpt), Thierry Pourchez and Bard Access Systems, Inc. v. Diatek, Inc. and Arrow International, Inc., Civil Action No. 03-CV-0972 (S.D.N.Y.) (Oct. 8, 2003).
Delmore et al., “Experience with the Groshong Long-Term Central Venous Catheter”, Gynecologic Oncology 34, 216-218 (1989).
Dialysis Vascular Access, SchonXL® Temporary Dialysis (AngioDynamics Inc.) brochure, Nov. 1998.
Dialysis Vascular Access, Technological Innovations Improving Flow (AngioDynamics Inc.) Brochure, 4 pages, Nov. 1998.
Difiore, “Central Venous Dialysis Catheter Evaluatio in Swine”, Journal of Vascular Access Devices, Fall 2000.
Donaldson, et al., Peripherally Inserted Central Venous Catheters: US-guided Vascular Access in Pediatric Patients1, Radiology, 1995, vol. 197, pp. 542-544.
Dunea, et. al., A Survey of Permanent Double Lumen Catheters in Hemodialysis Patients. ASAIO Transac. 1991; 37: M276-7.
Dupont et al, Long-term development of Permacath Quinton catheters used as a vascular access route for extra-renal detoxification; Néphrologie, vol. 15, pp. 105-110, 1994.
EP 04712925.9 filed Feb. 19, 2004 Office Action dated Nov. 7, 2008.
EP 08839196.6 filed Oct. 2, 2008 Examination Report dated Jan. 16, 2013.
EP 08839196.6 filed Oct. 2, 2008 Search Opinion dated Jul. 12, 2011.
EP 08839196.6 filed Oct. 2, 2008 Search Report dated Jul. 12, 2011.
EP 08872340.8 filed Oct. 2, 2008 Extended European Search Report and an Opinion dated Apr. 19, 2012.
EP 14864273.9 filed May 20, 2016 Extended European Search Report dated Jun. 9, 2017.
EP 14864273.9 filed May 20, 2016 Partial European Search Report dated Jun. 9, 2017.
Gallichio, et al., Placement of a Double Lumen Silastic Catheter for Hemodialysis Access Through The Cephalic Vein, Journal of the American College of Surgeons, 1994, vol. 179, pp. 171-172.
Gravenstein, et al., In Vitro Evaluation of Relative Perforating Potential of Central Venous Catheters Comparison of Materials, Selected Models, Number of Lumens, and Angles of Incidence to Simulated Membrane, Journal of Clinical Monitoring, 1991, vol. 7, pp. 1-6.
Haindl, H., Technical complications of port-catheter systems, Reg. Cancer Treat, 1989, 2:238-242.
Haire, et al., Thrombotic Complications of Subclavian Apheresis catheters in Cancer Patients: Prevention With Heparin Infusion, Journal of Clinical Apheresis, 1990, vol. 5, pp. 188-191.
Hull, et al., The Groshong Catheter: Initial Experience and Early Results of Imaging-guided Placement1, Radiology, 1992, vol. 185, pp. 803-807.
Ignotus, et al., Review of Radiological Insertion of Indwelling Central Venous Catheters, Minimally Invasive Therapy, 1992, 1:373-388.
Instructions For Use (Copyright Dated 1990) for Polycath Polyurethance Central Venous Catheter; believed to have been packaged with product and sold in the United States before Jan. 4, 2000 and with related marketing materials.
Instructions for Use (Copyright Dated 1992) for FloLock Single Lumen Bi-directional Valved Catheter; believed to have been packaged with product and sold in the United States before Jan. 2000.
Instructions for Use (not dated) for Infuse-a-Cath Polyurethance Central Venous Catheter; believed to have been packaged with product and sold in the United States before Jan. 2000.
Instructions For Use for Diatek Cannon Catheter Product First Sold in the United States in Sep. 2001.
Jones, et al., Efficacy of the Supraclavicular Route for Temporary Hemodialysis Access, Southern Medical Journal, 1992, vol. 85, No. 7, pp. 725-726.
JP 2010-532299 filed Apr. 30, 2010 Final Notice of Reason for Rejection dated Feb. 8, 2013.
JP 2010-532299 filed Apr. 30, 2010 Official Action dated Apr. 23, 2012.
JP 2016-533038 filed May 20, 2016 Office Action dated Oct. 11, 2018.
JP App. No. 2003-565569 filed Feb. 7, 2003, Translated Decision of Refusal dated Dec. 24, 2009.
JP App. No. 2003-565569 filed Feb. 7, 2003, Translated Official Action dated May 28, 2009.
JP App. No. 2003-565569 filed Feb. 7, 2003, Translated Official Action dated Nov. 7, 2008.
Kapoian et al. Dialysis as Treatment of End-Stage Renal Disease, Chapter 5: Dialysis Access and Recirculation, © 1999.
Kaupke, et al., Perforation of the Superior Vena Cava By a Subclavian Hemodialysis Catheter: early detection by angiography, The International Journal of Artificial Organs, 1992, vol. 15, No. 11, pp. 666-668.
Kelber, et al., Factors Affecting Delivery of High-Efficiency Dialysis Using Temporary Vascular Access, American Journal of Kidney Diseases, 1993, vol. 22, No. 1, pp. 24-29.
Lubrizol, “Lubrizol's Family of TPUs” Brochure (2005), 9 pages.
Lumsden, et al., Hemodialysis Access in the Pediatric Patient Population, The American Journal of Surgery, 1994, vol. 168, p. 197.
Lund, “Percutaneous Translumbar Inferior Vena Cava Cannulation and other Alternative Vascular Access Techniques” in Venous Interventional Radiology with Clinical Perspectives, Savader et al., eds. pp. 251-261, Apr. 10, 2000.
Lund, et al., Percutaneous Translumbar Inferior Vena Cava Cannulation for Hemodialysis, American Journal of Kidney Diseases, 1995, vol. 25, No. 5, pp. 732-737.
Maki, D., Pathogenesis, Prevention, and Management of Infections Due to Intravascular Devices Used for Infusion Therapy, in Infections Associated with Indwelling Medical Devices, Bisno et al, eds, American Society for Microbiology, 1989, pp. 161-177.
Malviya et al., “Vascular Access in Gynecological Cancer Using the Groshong Right Atrial Catheter”, Gynecological Oneology 33, 313-316 (1989).
Mauro, et al., Radiologic Placement of Long-term Central Venous Catheters: A Review, JVIR, 1993, vol. 4, No. 1, pp. 127-137.
McGee, et al., Accurate placement of central venous catheters: A prospective, randomized, multicenter trial, Critical Care Medicine, 1993, vol. 21, No. 8, pp. 1118-1123.
Medcomp, For Access via the Internal Jugular Vein . . . The Medcomp TESIO Catheter is the Solution: The Short and Long Term Solution to Subclavian Venin Stenosis and Difficult Access Problems, Brochure, 4 pages. 1991.
Medcomp® Brochure , “Ash Split Cath™ XL”, Dec. 2001, PN 2291.
Medcomp® Brochure , “Ash Split Cath™”, Guidewire Weave Insertion Technique, Jan. 2002, PN 2296.
Medcomp® Brochure , “Ash Split Cath™”, Jul. 2001, PN 2114.
Medcomp® Brochure , “Ash Split Cath™”, Nov. 1997, PN 2050.
Medcomp® Brochure , “Ash Split Cath® II”, Aug. 2002, PN 2334.
Medcomp® Brochure , “Magna™ High Flow Catheter”, Mar. 2002, PN 2321.
Moss et al., Use of Silicone Dual-Lumen Catheter with a Dacron Cuff as a Long Term Vascular Access for Hemodialysis Patients, Amer J Kidney Diseases, vol. XVI, No. 3, pp. 211-215, Sep. 1990.
Moss, et al., Use of a Silicone Catheter With a Dacron Cuff for Dialysis Short-Term Vascular Access, American Journal of Kidney Diseases, 1988, vol. XII, No. 6, pp. 492-498.
Myers, R.D. et al., New Double-lumen Polyethylene Cannula for Push-pull Perfusion of Brain Tissue in Vivo, Journal of Neuroscience Methods, pp. 205-218, vol. 12, 1985.
Northsea, C., Using Urokinase to Restore Patency in Double Lumen Catheters, ANNA Journal 1994, vol. 21, No. 5, pp. 261-273.
OriGen, OriGen Biomedical Dual Lumen Catheter, from <http://origen.net/catheter.html>, downloaded May 13, 2009, 4 pages (reprinted for submission on Jul. 21, 2011).
Parsa, et al., Establishment of Intravenous Lines for Long-term Intravenous Therapy and Monitoring, Surgical Clinics of N. Am. 1985, vol. 65, No. 4, pp. 835-865.
Parsa, et al., Vascular Access Techniques, Textbook of Critical Care, W.B. Saunders, Philadelphia, PA (1989), pp. 122-127.
Pasquale, et al., Groshong® Versus Hickman® Catheters, Surgery, Gynecology & Obstetrics, 1992, vol. 174, pp. 408-410.
Passaro, et al., Long-term Silastic Catheters and Chest Pain, Journal of Parenteral and Enteral Nutrition, 1994, vol. 18, No. 3, pp. 240-242.
Patel et al., “Sheathless Technique of Ash Split-Cath Insertion”, 12 JVIR 376-78 (Mar. 2001).
Paulsen, et al., Use of Tissue Plasminogen Activator for Reopening of Clotted Dialysis Catheters, Nephron, 1993, vol. 64, pp. 468-470.
PCT/US15/40463 filed Jul. 14, 2015 International Search Report and Written Opinion dated Dec. 18, 2015.
PCT/US2003/003751 filed Feb. 7, 2003 Preliminary Examination Report dated May 5, 2004.
PCT/US2003/003751 filed Feb. 7, 2003 Search Report dated Jul. 3, 2003.
PCT/US2004/005102 filed Feb. 19, 2004 Preliminary Report Patenability dated Aug. 29, 2005.
U.S. Appl. No. 16/384,481, filed Apr. 15, 2019 Non-Final Office Action dated Sep. 14, 2021.
Related Publications (1)
Number Date Country
20190167888 A1 Jun 2019 US
Provisional Applications (3)
Number Date Country
61085748 Aug 2008 US
61036848 Mar 2008 US
60983032 Oct 2007 US
Continuations (4)
Number Date Country
Parent 14930526 Nov 2015 US
Child 16270044 US
Parent 14032858 Sep 2013 US
Child 14930526 US
Parent 13657604 Oct 2012 US
Child 14032858 US
Parent 12414467 Mar 2009 US
Child 13657604 US
Continuation in Parts (1)
Number Date Country
Parent 12253870 Oct 2008 US
Child 12414467 US