Briefly summarized, embodiments of the present invention are directed to a split-tip catheter for placement within the vasculature of a patient. The catheter is configured for use in hemodialysis treatments, though the principles of the present invention may be extended to other catheters employed in other uses in addition to hemodialysis.
In one embodiment, the split-tip catheter includes a catheter body that defines a first lumen and a second lumen. The catheter body further comprises a split distal region, including a venous segment that defines a distal portion of the first lumen and an arterial segment that defines a distal portion of the second lumen. The venous segment includes a recess extending proximally of a nose portion, and a lateral opening in fluid communication with the first lumen.
The arterial segment is separate from the venous segment in the split distal region and is removably seatable in the recess provided by the venous segment such that it “nests” therein. This nesting of the arterial segment with the venous segment provides a columnar profile for the split distal region during its advancement into and through the patient's vasculature, enabling the distal region to advance as a monolithic structure and thus easing its advancement through tortuous paths and past pathway obstacles. The segments are maintained in their nested state via a guidewire that is passed through both segments and is removable after the catheter has been suitably placed. Similar to the venous segment, the arterial segment also includes a lateral opening in fluid communication with the second lumen.
An example of a split-tip catheter that can include aspects of embodiments of the present invention is disclosed in U.S. Pat. No. 6,001,079, entitled “Multilumen Catheter, Particularly for Hemodialysis,” which is incorporated herein by reference in its entirety.
In one embodiment, the distal region of the catheter is un-split, but includes symmetrically opposed lateral openings, as well as distal openings, in communication with the first and second lumens. The lateral and distal openings of the first and second lumens in the distal region provide a functional stagger for blood flow in both forward and reverse catheter flow directions. As will be further described, the configuration of the above openings is intended to reduce the likelihood of uptake and recirculation by one lumen of the catheter of treated blood just returned to the vessel via the other lumen, thus increasing catheter efficiency.
These and other features of the present invention will become more fully apparent from the following description and appended claims, or may be learned by the practice of the invention as set forth hereinafter.
To further clarify the above and other advantages and features of the present invention, a more particular description of the invention will be rendered by reference to specific embodiments thereof that are illustrated in the appended drawings. It is appreciated that these drawings depict only typical embodiments of the invention and are therefore not to be considered limiting of its scope. The invention will be described and explained with additional specificity and detail through the use of the accompanying drawings in which:
Reference will now be made to figures wherein like structures will be provided with like reference designations. It is understood that the drawings are diagrammatic and schematic representations of exemplary embodiments of the invention, and are not limiting of the present invention nor are they necessarily drawn to scale.
In accordance with one example embodiment, the split-tip portion of the catheter includes separate venous and arterial segments that are employed for simultaneously infusing and aspirating blood from a vein or other vessel of a patient's vasculature during hemodialysis treatments. The distal ends of the venous and arterial segments can be staggered to reduce the likelihood of recirculation by the arterial segment of treated blood just returned to the vessel by the venous segment, thus increasing catheter efficiency. In addition, both the venous and arterial segments are configured with openings, including laterally disposed openings, to further increase catheter efficiency during hemodialysis.
Embodiments of the split-tip catheter to be described herein further include a nested split-tip configuration, wherein the arterial segment of the catheter seats in a correspondingly shaped recess provided by a portion of the venous segment. When seated in this manner, the arterial segment defines with the venous segment a smooth, cylindrical outer surface, thus enabling the catheter to be introduced into and advanced in the patient's vasculature while avoiding snagging or obstructions that would otherwise cause the catheter to catch or bind therewith. The nested split-tip design further provides a guidewire channel for enabling a guidewire to be passed through both the venous and arterial segments to maintain the two segments in the nested configuration during catheter insertion into the vasculature. Once the catheter is properly positioned, the guidewire may be removed and the venous and arterial segments are free to separate from one another within the vessel, thus providing desired separation therebetween. A subcutaneous tunneler is also provided herein for assistance in subcutaneously tunneling the catheter.
In one embodiment, the distal region is un-split, but includes symmetrically opposed lateral openings, as well as distal openings, in communication with the first and second lumens for providing a functional stagger for blood flow in both forward and reverse catheter flow directions. The lateral and distal openings of the first and second lumens in the distal region provide a functional stagger for blood flow in both forward and reverse catheter flow directions. As with the other embodiments described herein, the configuration of the above openings is intended to reduce the likelihood of fluid recirculation so as to increase catheter efficiency.
For clarity it is to be understood that the word “proximal” refers to a direction relatively closer to a clinician using the device to be described herein, while the word “distal” refers to a direction relatively further from the clinician. For example, the end of a catheter placed within the body of a patient is considered a distal end of the catheter, while the catheter end remaining outside the body is a proximal end of the catheter. Further, the words “including,” “has,” and “having,” as used herein, including the claims, shall have the same meaning as the word “comprising.”
Reference is first made to
A bifurcating hub 15 is included at the catheter body proximal end 11A, providing fluid communication between the first and second lumens 12, 14 and arterial extension leg 16 and venous extension leg 18, respectively. The extension legs 16, 18 each include a luer connector 16A, 18A and a clamp 16B, 18B. So configured, the extension legs 16, 18 provide fluid communication with the first and second lumens 12 and 14 so as to enable the infusion or aspiration of fluids from a vein or other vessel or portion of a patient's vasculature. As such, fluid infusion or aspiration devices, such as a hemodialysis apparatus for example, may be connected to the catheter assembly 10 via the luer connectors 16A, 18A, thus providing intravascular access to the patient. The catheter body 11 further includes a cuff 19 for providing anchoring of the catheter body into body tissue when the catheter assembly is subcutaneously tunneled.
Reference is made to
Both
Reference is now made to
The venous segment 22 includes a nose portion 30 at the distal end thereof. In the present embodiment, the nose portion 30 generally defines a tapered, conical shape, though this shape may be varied, as will be seen further below. The tapered shape of the nose portion 30 reduces insertion forces during placement and minimizes abrasion between the nose portion surface and the walls of the vessel in which the distal region of the catheter is disposed. A venous distal opening 32A is defined on the tapered portion of the nose portion 30 and is in fluid communication with the distal portion of the first lumen 12 defined by the venous segment. A guidewire channel 32B proximally extends from a hole defined at the distal end of the nose portion 30 and is in communication with the second lumen 14 of the arterial segment 24, in the manner described below, to enable selective nesting of the arterial segment with the venous segment 22 during catheter insertion. Of course, these openings, as well as the other catheter openings to be described below, can vary in size and placement from what is explicitly described herein.
The venous segment 22 further defines a recess 36 proximal to the nose portion 30 that is sized to correspond to the shape of an outer surface of the arterial segment 24. The arterial segment 24 can thus be selectively and removably seated, or “nested” in the recess 36, thus providing a smooth, cylindrical outer surface profile for the distal tip region 20 of the catheter body 11 during advancement of the catheter assembly 10 through a subcutaneous tunnel or vasculature path.
In greater detail, and as best seen in
A distal end of the arterial segment 24 includes an arterial distal end opening 34, which is defined on the curved distal surface 24A thereof. The arterial distal end opening 34 is in fluid communication with the distal portion of the arterial lumen 14 defined by the arterial segment 24. In addition, the arterial distal end opening 34 coaxially aligns with the guidewire channel 32B of the venous nose portion 30 when the arterial segment 24 is nested and seated in the recess 36 of the venous segment 22. So positioned, a guidewire 46 can be passed through the guidewire channel 32B of the venous nose portion 30, the arterial distal end opening 34, and the second lumen 14, as shown in
With the arterial segment 24 nested in the recess 36 behind the venous nose portion 30, the distal tip region 20 of the catheter assembly 10 presents as a low drag, columnar structure with a tapered nose configuration. This configuration aids in guiding the distal tip region 20 through the soft tissues and vasculature of the patient during placement or catheter exchange procedures using over-the-wire techniques for instance. Later, when the catheter assembly 10 is properly positioned, the venous segment 22 and the arterial segment 24 can separate from one another within the vessel, as shown in
In one embodiment, the longitudinal axis of each cross cut of the lateral openings 42, 44 defines an angle of about 35 degrees with a longitudinal axis of the respective venous or arterial segment 22, 24, though this angle can vary in one embodiment from about 20 to about 90 degrees. The longitudinal axis of each cross cut of the lateral openings 42, 44 further defines an angle in one embodiment of about 15 degrees with a plane bisecting the first lumen 12 and second lumen 14, i.e., coplanar with the septum separating the first and second lumens proximal of the distal tip region 20, though this angle can vary in one embodiment from about 0 to about 45 degrees. This angular character imparts a lateral directional component to fluid flow out of either lateral opening 42, 44, as represented by the flow arrows in
In addition, the longitudinal axes of the lateral openings 42, 44 are symmetrically opposed in direction from one another, as best shown in
It should be appreciated that the labels “venous” and “arterial” as used above in describing the various components of the present split-tip catheter are employed for sake of convenience in describing aspects of embodiments of the present invention. Indeed, though the arterial segment is normally employed in hemodialysis procedures for aspirating blood from the blood vessel in which the catheter is disposed and the venous segment for returning already treated blood to the vessel, this can be reversed such that blood is returned via the arterial segment and aspirated by the venous segment. As such, the present invention should not be considered limited by the use of this and other descriptive terminology herein.
As can be seen in
In one embodiment, the nose portion 30 is defined via a radiofrequency (“RF) tipping process, wherein a dual lumen catheter is split to define two lumen segments, i.e., the venous and arterial segments, in a distal tip region thereof. The distal portions of the lumen segments are bonded together via RF tipping to define the shape of the nose portion as shown in
Reference is now made to
In greater detail,
Similarly, blood is infused, or returned, to the vessel by the first lumen 12, or “return” lumen, after treatment by a hemodialysis apparatus or some other suitable purpose. Infused blood exits the first lumen 12 from both the venous distal opening 32A and the venous lateral opening 42 of the venous segment 22. However, because the second lumen 12 is under positive pressure during infusion, the majority of blood returned to the bloodstream by the first lumen exits via the venous distal opening 32A due to its relatively more distal position with respect to the pressure differential in the proximate vessel region. Note that this arrangement produces an effective stagger distance F in the “forward” direction between the primary aspiration site, i.e., the arterial lateral opening 44, and the primary infusion site, i.e., the venous distal opening 32A. This effective stagger distance, together with the lateral orientation of the lateral openings 42, 44 provides for low recirculation of already-treated blood within the vessel, recirculation being defined as already-treated blood that is returned to the bloodstream via the venous lumen being immediately aspirated by the arterial lumen to be re-treated. Such recirculation is undesirable as it results in lower treatment efficiency and longer treatment time.
During hemodialysis procedures, it is sometimes necessary to reverse the blood flow through the catheter assembly 10.
Reference is now made to
Note that the oval shape of the first and second lumens 12, 14 is provided in the region proximate the lateral openings 42, 44. This provides additional stiffness and strength to the catheter body 11 in this region while also maintaining an acceptable inter-luminal thickness for the central septa of the venous and arterial segments 22, 24. In other embodiments, other cross sectional shapes can be defined by the catheter body. Or, in another embodiment the “D”-shaped cross sectional lumens continue distally to the distal end of the catheter body. In yet another embodiment, the first and second lumens define oval cross sectional shapes along most or all of the catheter body length.
Note that the configuration of the distal tip region 20 can vary according to need or design.
Reference is now made to
As shown in
The sleeve 64 is composed of materials including flexible plastic e.g., polyethylene for instance, and includes a hollow inner bore 74 (
Composed of materials including biocompatible plastic for instance, the catheter connector 66 includes a body defining a gripping portion 68 for enabling a clinician to grasp the tunneler 60, and a stepped end 68A at the point of attachment of the catheter connector with the second end 62B of the shaft 62. A nose stop 70 is included on the catheter connector 66 and is shaped as to correspond with the distal portion of the catheter to which the catheter connector will attach. As will be seen, this enables a clinician to know when the catheter connector has fully engaged the catheter prior to tunneling.
A barbed extension 72 including one or more barbs 72A extends from the catheter connector nose stop 70 and is configured to extend into a lumen of the catheter to which the tunneler 60 will connect so as to provide a retention force therebetween. Note that the barbed extension 72 is offset from a central longitudinal axis of the catheter connector 66, though this configuration may be modified according to the design of the catheter to which the catheter connector is to connect.
Reference is now made to
As shown in
So attached, the tunneler 60 can then be used to define a subcutaneous tunnel in the patient and pull the catheter assembly 10 through the tunnel until properly positioned therein, as shown in
Note that the catheter connector 66 and its barbed extension 72 are configured to provide a retention force sufficient to enable the catheter assembly 10 to be pulled by the tunneler through the subcutaneous tunnel, but low enough to prevent damaging tensile loads from being imposed on the distal end of the catheter. As such, the catheter connector 66 is configured such that it can pulled out from the engagement with the catheter assembly 10 at a predetermined tensile load that is below the maximum tensile strength of the catheter distal end. Note also that engagement of the tunneler 60 with the catheter assembly 10 as depicted herein is merely exemplary, and it is appreciated that the present tunneler can be employed with catheters having a variety of configurations.
It should be further appreciated that the tunneler configuration can be varied according to need or design.
Reference is now generally made to
The venous segment 122 includes a venous lateral opening 142 proximate the nose portion 130, while the arterial segment 124 includes an arterial lateral opening 144 proximate the distal end thereof. The lateral openings 142 and 144 are cross-cut, or skived in a manner similar to the embodiment shown in
The venous segment 222 includes a venous lateral opening 242 proximate the nose portion 230, while the arterial segment 224 includes an arterial opening 248 proximate the distal end thereof. The lateral opening 242 is cross-cut, or skived in a manner similar to the embodiment shown in
The venous segment 322 includes a venous lateral opening 342 proximate the nose portion 330, while the arterial segment 324 includes an arterial lateral opening 344 proximate the distal end thereof. The lateral openings 342, 344 are cross-cut, or skived in a manner similar to the embodiment shown in
The nose portion 330 of the present embodiment has a rounded shape, in contrast to the tapered nose portion 30 of
The venous segment 422 includes a venous lateral opening 442 proximate the nose portion 430, while the arterial segment 424 includes an arterial lateral opening 444 proximate the distal end thereof. The lateral openings 442, 444 are cross-cut, or skived in a manner similar to the embodiment shown in
The venous segment 522 includes a venous lateral opening 542 proximate the nose portion 430, while the arterial segment 524 includes an arterial lateral opening 544 proximate the distal end thereof. The lateral openings 542, 544 are semi-circular in shape, as best seen in
The venous segment 622 includes a venous lateral opening 642 proximate the nose portion 630, while the arterial segment 624 includes an arterial lateral opening 644 proximate the distal end thereof. The lateral openings 642, 644 define a triangular shape and are in fluid communication with the first and second lumens, respectively, of the catheter body 11. The nose portion 630 of the present embodiment has a rounded shape, in contrast to the tapered nose portion 30 of
The venous segment 722 includes a venous lateral opening 742 proximate the nose portion 730, while the arterial segment 724 includes an arterial lateral opening 744 proximate the distal end thereof. The lateral openings 742, 744 define a triangular shape and are in fluid communication with the first and second lumens, respectively, of the catheter body 11. The nose portion 730 of the present embodiment has a rounded shape, in contrast to the tapered nose portion 30 of
Guidewire holes 850 are included on an inward-pointing distal surface of both the venous segment 822 and arterial segment 824 so as to enable the guidewire 46 to be passed therethrough to maintain the two segments in a joined, or contact, configuration during catheter insertion procedures.
The venous segment 1022 includes a plurality of venous lateral openings 1042 proximal to the nose portion 1030, while the arterial segment 1024 also includes a plurality of arterial lateral openings 1044 proximal to the distal end thereof. The lateral openings 1042 and 1044 are in fluid communication with the first and second lumens 12, 14, respectively, of the catheter body 11 and are spaced apart to preclude or lessen vessel wall suck-up.
The venous segment 1122 includes a plurality of venous outer lateral openings 1142A and venous inner lateral openings 1142B proximal to the nose portion 1130. Likewise, the arterial segment 1124 includes a plurality of arterial outer lateral openings 1144A and arterial inner lateral openings 1144B proximal to the nose portion 1130. The lateral openings 1142A, B and 1144A, B are in fluid communication with the first and second lumens, respectively, of the catheter body 11 and are spaced apart to preclude or lessen vessel wall suck-up.
The distal ends of the venous segment 1122 and arterial segment 1124 are un-staggered with respect to one another so as to enable both lateral opening sets 1142A, B and 1144 A, B to be placed in a single desired location within the patient's vasculature, such as in the SVC for instance. The venous segment 1122 and arterial segment 1124 can be maintained in a contact configuration via the use of a guidewire that extends through the inner lateral openings 1142B, 1144B, for instance.
Reference is now made to
The distal portion 1220 includes a nose portion 1230 at the distal end thereof. In the present embodiment, the nose portion 1230 generally defines a tapered, generally conical shape, though it is appreciated that the nose portion may define other circumferentially convergent shapes, including hemispherical or bullet-shapes, frustoconical, and other smooth and/or contoured shapes that converge toward the distal end. The nose portion 1230 is therefore atraumatic, reducing insertion forces during placement and minimizing abrasion between the nose portion surface and the walls of the vessel in which the distal region of the catheter is disposed, thus reducing vascular injury. In contrast to previous embodiments, the distal portion 1220 does not include separate split tip portions, but is a unitary, or solid-body, structure, defining distal portions of the first and second lumens 12, 14 (
The catheter body 11 defines a venous distal opening 1232A on the tapered surface of the nose portion 1230 so as to be in fluid communication with the distal portion of the first lumen 12. The catheter body 11 further defines an arterial distal opening 1232B at the distal end of the nose portion 1230 so as to be in fluid communication with the second lumen 14. The openings of both the venous and arterial distal openings 1232A, 1232B face in the distal direction for fluid flow purposes as will be described. The second lumen 14 and corresponding arterial distal opening 1232B in the current embodiment can receive a guidewire therethrough for enabling over-the-wire placement of the catheter 10. The first lumen 12 and corresponding venous distal opening 1232A can also be used for receiving a guidewire therethrough, if desired. Of course, the venous and arterial distal opening, as well as the other catheter openings to be described below, can vary in size and placement from what is explicitly described herein.
In one embodiment and as best seen in
This angular character imparts both a lateral, or radial, directional component, as well as a longitudinal directional component to fluid flow out of either lateral opening 1242, 1244, as represented by the flow arrows in
Note that, in one embodiment, the angle defined by each lateral opening can be different. In another embodiment, non-compound-angle cross cuts may be used to define the lateral openings. It should be appreciated that the particular angular configuration of the lateral openings can vary from what is described herein while still residing within the scope of embodiments of the present invention.
In the present embodiment, the cross cut that defines the lateral openings 1242, 1244 is achieved via use of a cylindrical drill bit or coring tool having a size sufficient to define the lateral opening having the compound angle described above. For instance, in one embodiment a drill bit is used to diagonally cross cut the venous and arterial lateral openings 1242, 1244 through the catheter body. Note that the catheter body size in one embodiment can vary from 7-16 Fr., though other French sizes are also possible. Note here that, though identically sized and shaped in the present embodiment, the first and second openings could include respectively differing dimensions if desired or needed for a particular application. Of course, other methods for defining the lateral openings, including molding, cutting, heat forming, etc., may also be used.
As a result of defining the cross cuts as just described, the elongate venous and arterial openings 1242, 1244 are defined by perimeters shaped in the present embodiment as a figure-eight shape, or analemma, when viewed in a two-dimensional perspective and an elongate saddle shape when viewed in a three-dimensional perspective. “Elongate” and “elongated” are understood herein as including a long or extended shape, or including more length than width. Again, this enables the lateral openings 1242, 1244 to partially extend longitudinally and circumferentially about the outer perimeter of the catheter body 11. This helps to prevent undesired suctioning of the distal tip region 1220 to the vessel wall when one of the openings is removing blood from the vessel as the negative flow pressure of the opening is distributed about a portion of the catheter body circumference. If vessel suck-up does occur, the lateral openings 1242, 1244 are shaped so as to nonetheless provide acceptable fluid flow in and out of the catheter assembly 10. The relatively large size of the lateral openings 1242, 1244 also assists in the prevention of occlusion or sheath formation and provides a fanned-out or wide distribution of fluid flowing out therefrom. Recirculation efficiency rates are improved as a result.
In addition, the longitudinal axes of the lateral openings 1242, 1244 are symmetrically opposed in direction from one another, as best shown in
It is noted that in one embodiment the size of the lateral openings 1242, 1244 is such that each can accommodate the entirety of fluid flow through their respective first or second lumens 12, 14. Thus, the inclusion of the lateral openings 1242, 1244 with their corresponding distal openings 1232A, 1232B provides a redundant system such that any clotting that occurs at one opening will not significantly impact fluid throughput of the respective lumen. In addition, the lateral opening configuration described herein minimizes radical redirection of the fluid upon exiting the catheter body 11 via either of the lateral openings 1242 and 1244, which in turn prevents fluid turbulence and possible clotting or hemolysis.
It should be appreciated that the labels “venous” and “arterial” as used above in describing the various components of the present catheter are employed for sake of convenience in describing aspects of embodiments of the present invention. Indeed, though the second (arterial) lumen 14 is normally employed in hemodialysis procedures for aspirating blood from the blood vessel in which the catheter is disposed and the first (venous) segment 12 for returning already treated blood to the vessel, this can be reversed such that blood is returned via the arterial segment and aspirated by the venous segment. As such, the present invention should not be considered limited by the use of this and other descriptive terminology herein.
In one embodiment, the nose portion 1230 is defined via a radiofrequency (“RF”) tipping process, but other forming processes may also be employed to define the distal tip region in accordance with other embodiments and as appreciated by one skilled in the art.
Reference is now made to
In greater detail,
Simultaneously, blood is infused, or returned, to the vessel by the first lumen 12, or “return” lumen, after treatment by a hemodialysis apparatus or some other suitable purpose. Infused blood exits the first lumen 12 from both the venous distal opening 1232A and the venous lateral opening 1242. However, because the second lumen 12 is under positive pressure during infusion, the majority of blood returned to the bloodstream by the first lumen exits via the venous distal opening 1232A due to its relatively more distal position with respect to the pressure differential in the proximate vessel region. Note that this arrangement produces an effective stagger distance F in the “forward” direction between the primary aspiration site, i.e., the arterial lateral opening 1244, and the primary infusion site, i.e., the venous distal opening 1232A. This effective stagger distance, together with the lateral orientation of the lateral openings 1242, 1244 provides for low recirculation of already-treated blood within the vessel, recirculation being defined as already-treated blood that is returned to the bloodstream via the venous lumen being immediately aspirated by the arterial lumen to be re-treated. Such recirculation is undesirable as it results in lower treatment efficiency and longer treatment time.
During hemodialysis procedures, it is sometimes necessary to reverse the blood flow through the catheter assembly 10.
In one embodiment, the catheter body 11 can define one or more arterial side holes 1249 that are in communication with the second lumen 14 to assist in providing desired fluid flow via the second lumen. In the present embodiment, the side holes 1249 each define a diameter of about 0.030 inch, compared with the arterial distal opening 1232B, which defines an opening of about 0.040 inch. Though shown here as round, the side holes can include other shapes and sizes as well. In other embodiments, the first lumen can include additional side holes as well.
As shown in
Reference is now made to
A guidewire hole 1432C is also defined at the distal end of the catheter body 11, and is in communication with one of the catheter body lumens, such as the first lumen 12. This enables a guidewire to pass through the first lumen 12 and out the guidewire hole 1432C to enable the catheter to be placed by over-the-guidewire techniques.
It is appreciated that other lumen size configurations can also be used in other embodiments. Indeed, in other embodiments narrowing of one or both lumens can occur proximal to the distal tip region, or only at the distal end thereof. In still other embodiments, no narrowing of the lumens through the distal tip region occurs.
The present invention may be embodied in other specific forms without departing from its spirit or essential characteristics. The described embodiments are to be considered in all respects only as illustrative, not restrictive. The scope of the invention is, therefore, indicated by the appended claims rather than by the foregoing description. All changes that come within the meaning and range of equivalency of the claims are to be embraced within their scope.
This application is a continuation of U.S. patent application Ser. No. 14/930,526, filed Nov. 2, 2015, now U.S. Pat. No. 10,207,043, which is a continuation of U.S. patent application Ser. No. 14/032,858, filed Sep. 20, 2013, now U.S. Pat. No. 9,174,019, which is a continuation of U.S. patent application Ser. No. 13/657,604, filed Oct. 22, 2012, now U.S. Pat. No. 8,540,661, which is a continuation of U.S. patent application Ser. No. 12/414,467, filed Mar. 30, 2009, now U.S. Pat. No. 8,292,841, which is a continuation-in-part of U.S. patent application Ser. No. 12/253,870, filed Oct. 17, 2008, now U.S. Pat. No. 8,066,660, which claims the benefit of the following applications: U.S. Provisional Application No. 60/983,032, filed Oct. 26, 2007; U.S. Provisional Application No. 61/036,848, filed Mar. 14, 2008; and U.S. Provisional Application No. 61/085,748, filed Aug. 1, 2008. Each of the afore-referenced applications is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
701075 | McCully | May 1902 | A |
1696018 | Scheliberg | Dec 1928 | A |
1856811 | Inaki | May 1932 | A |
2024982 | Scott | Dec 1935 | A |
2173527 | Agayoff | Sep 1939 | A |
2286462 | Chaffin | Jun 1942 | A |
2393002 | Smith | Jan 1946 | A |
2748769 | Huber | Jun 1956 | A |
2910981 | Wilson et al. | Nov 1959 | A |
3144868 | Jascalevich | Aug 1964 | A |
3176690 | H'Doubler | Apr 1965 | A |
3256885 | Higgins et al. | Jun 1966 | A |
3308822 | De Luca | Mar 1967 | A |
3416532 | Grossman | Dec 1968 | A |
3426759 | Smith | Feb 1969 | A |
3460255 | Hutson | Aug 1969 | A |
D217795 | Spaven | Jun 1970 | S |
3612038 | Halligan | Oct 1971 | A |
3736939 | Taylor | Jun 1973 | A |
3805794 | Schlesinger | Apr 1974 | A |
3812851 | Rodriguez | May 1974 | A |
3848604 | Sackner | Nov 1974 | A |
3890977 | Wilson | Jun 1975 | A |
3929126 | Corsaut | Dec 1975 | A |
3935857 | Co | Feb 1976 | A |
3995623 | Blake et al. | Dec 1976 | A |
4068659 | Moorehead | Jan 1978 | A |
4072146 | Howes | Feb 1978 | A |
4072153 | Swartz | Feb 1978 | A |
4098275 | Consalvo | Jul 1978 | A |
4114625 | Onat | Sep 1978 | A |
4117836 | Erikson et al. | Oct 1978 | A |
4129129 | Amrine | Dec 1978 | A |
4134402 | Mahurkar | Jan 1979 | A |
4149535 | Volder | Apr 1979 | A |
4180068 | Jacobsen et al. | Dec 1979 | A |
D254444 | Levine | Mar 1980 | S |
4248224 | Jones | Feb 1981 | A |
4276880 | Malmin | Jul 1981 | A |
4292976 | Banka | Oct 1981 | A |
4299228 | Peters | Nov 1981 | A |
4300550 | Gandi et al. | Nov 1981 | A |
4309994 | Grunwald | Jan 1982 | A |
4327722 | Groshong et al. | May 1982 | A |
4385631 | Uthmann | May 1983 | A |
4392855 | Oreopoulos et al. | Jul 1983 | A |
4403983 | Edelman et al. | Sep 1983 | A |
4405313 | Sisley et al. | Sep 1983 | A |
4406656 | Hattler et al. | Sep 1983 | A |
D272651 | Mahurkar | Feb 1984 | S |
4431426 | Groshong et al. | Feb 1984 | A |
4432722 | Bohan, Jr. et al. | Feb 1984 | A |
4432752 | Marlon | Feb 1984 | A |
4445893 | Bodicky | May 1984 | A |
4451252 | Martin et al. | May 1984 | A |
4453928 | Steiger | Jun 1984 | A |
4465482 | Tittel et al. | Aug 1984 | A |
4490138 | Lipsky et al. | Dec 1984 | A |
4493696 | Uldall et al. | Jan 1985 | A |
RE31873 | Howes | Apr 1985 | E |
4531933 | Norton et al. | Jul 1985 | A |
4543087 | Sommercorn et al. | Sep 1985 | A |
4545373 | Christoudias | Oct 1985 | A |
4549879 | Groshong et al. | Oct 1985 | A |
4557261 | Rugheimer et al. | Dec 1985 | A |
4568329 | Mahurkar | Feb 1986 | A |
4568338 | Todd | Feb 1986 | A |
4573476 | Ruiz | Mar 1986 | A |
4581012 | Brown et al. | Apr 1986 | A |
4583968 | Mahurkar | Apr 1986 | A |
4583986 | Lapidus | Apr 1986 | A |
4601697 | Mammolenti et al. | Jul 1986 | A |
4619643 | Bai | Oct 1986 | A |
4623327 | Mahurkar | Nov 1986 | A |
4626240 | Edelman et al. | Dec 1986 | A |
4642101 | Krolikowski et al. | Feb 1987 | A |
4643711 | Bates | Feb 1987 | A |
4666426 | Aigner et al. | May 1987 | A |
4668221 | Luther | May 1987 | A |
4670009 | Bullock | Jun 1987 | A |
4675004 | Hadford et al. | Jun 1987 | A |
4681122 | Winters et al. | Jul 1987 | A |
4681564 | Landreneau | Jul 1987 | A |
4681570 | Dalton | Jul 1987 | A |
4682978 | Martin et al. | Jul 1987 | A |
4687471 | Twardowski et al. | Aug 1987 | A |
4692141 | Mahurkar | Sep 1987 | A |
4694838 | Wijayarthna et al. | Sep 1987 | A |
4701159 | Brown et al. | Oct 1987 | A |
4702917 | Schindler | Oct 1987 | A |
4706671 | Weinrib | Nov 1987 | A |
4713171 | Polaschegg | Dec 1987 | A |
4717379 | Ekholmer et al. | Jan 1988 | A |
4735620 | Ruiz | Apr 1988 | A |
4737141 | Spits et al. | Apr 1988 | A |
4737152 | Alchas | Apr 1988 | A |
4738667 | Galloway | Apr 1988 | A |
4748808 | Hill | Jun 1988 | A |
4755176 | Patel | Jul 1988 | A |
4769016 | Labianca | Sep 1988 | A |
4770652 | Mahurkar | Sep 1988 | A |
4772268 | Bates | Sep 1988 | A |
4772269 | Twardowski et al. | Sep 1988 | A |
4776841 | Catalano | Oct 1988 | A |
4777951 | Cribier et al. | Oct 1988 | A |
4784638 | Ghajar et al. | Nov 1988 | A |
4790809 | Kuntz | Dec 1988 | A |
4795439 | Guest | Jan 1989 | A |
4801297 | Mueller | Jan 1989 | A |
D300060 | Molgaard-Nielsen | Feb 1989 | S |
4804359 | Grunwald et al. | Feb 1989 | A |
4808155 | Mahurkar | Feb 1989 | A |
4808163 | Laub | Feb 1989 | A |
4809710 | Williamson | Mar 1989 | A |
4820265 | DeSatnick et al. | Apr 1989 | A |
4832687 | Smith, III | May 1989 | A |
4834709 | Banning et al. | May 1989 | A |
4842582 | Mahurkar | Jun 1989 | A |
4842592 | Caggiani et al. | Jun 1989 | A |
4846814 | Ruiz | Jul 1989 | A |
4863441 | Lindsay et al. | Sep 1989 | A |
4867742 | Calderon | Sep 1989 | A |
4892518 | Cupp et al. | Jan 1990 | A |
4894057 | Howes | Jan 1990 | A |
4895561 | Mahurkar | Jan 1990 | A |
4898591 | Jang et al. | Feb 1990 | A |
4906238 | Greenfeld et al. | Mar 1990 | A |
4925452 | Melinyshyn et al. | May 1990 | A |
4927418 | Dake et al. | May 1990 | A |
4935004 | Cruz | Jun 1990 | A |
4935010 | Cox et al. | Jun 1990 | A |
4935044 | Schoenpflug et al. | Jun 1990 | A |
4936826 | Amarasinghe | Jun 1990 | A |
4950232 | Ruzicka et al. | Aug 1990 | A |
4950259 | Geary et al. | Aug 1990 | A |
4951665 | Schneider | Aug 1990 | A |
4961729 | Vaillancourt | Oct 1990 | A |
4961731 | Bodicky et al. | Oct 1990 | A |
4961809 | Martin et al. | Oct 1990 | A |
4968307 | Dake et al. | Nov 1990 | A |
4969890 | Sugita et al. | Nov 1990 | A |
4981477 | Schon et al. | Jan 1991 | A |
4985014 | Orejola | Jan 1991 | A |
4990138 | Bacich et al. | Feb 1991 | A |
4994027 | Farrell | Feb 1991 | A |
4995865 | Gahara et al. | Feb 1991 | A |
5009636 | Wortley et al. | Apr 1991 | A |
5015230 | Martin et al. | May 1991 | A |
5016640 | Ruiz | May 1991 | A |
5021044 | Sharkawy | Jun 1991 | A |
5041101 | Seder et al. | Aug 1991 | A |
5041107 | Heil, Jr. | Aug 1991 | A |
5049138 | Chevalier et al. | Sep 1991 | A |
5053003 | Dadson et al. | Oct 1991 | A |
5053004 | Markel et al. | Oct 1991 | A |
5053023 | Martin | Oct 1991 | A |
5057073 | Martin | Oct 1991 | A |
5059170 | Cameron | Oct 1991 | A |
5059177 | Towne et al. | Oct 1991 | A |
5069673 | Shwab | Dec 1991 | A |
5074841 | Ademovic et al. | Dec 1991 | A |
5084013 | Takase et al. | Jan 1992 | A |
5098412 | Shiu et al. | Mar 1992 | A |
5100395 | Rosenberg et al. | Mar 1992 | A |
5102402 | Dror et al. | Apr 1992 | A |
5106368 | Uldall et al. | Apr 1992 | A |
5106376 | Mononen et al. | Apr 1992 | A |
5111829 | Alvarez de Toledo | May 1992 | A |
5112301 | Fenton, Jr. et al. | May 1992 | A |
5114423 | Kasprzyk et al. | May 1992 | A |
5117836 | Millar | Jun 1992 | A |
5120299 | Lombardi | Jun 1992 | A |
5120304 | Sasaki | Jun 1992 | A |
5122125 | Deuss et al. | Jun 1992 | A |
5125888 | Howard et al. | Jun 1992 | A |
5125904 | Lee | Jun 1992 | A |
5129891 | Young | Jul 1992 | A |
5135599 | Martin et al. | Aug 1992 | A |
5139486 | Moss | Aug 1992 | A |
5156592 | Martin et al. | Oct 1992 | A |
5163928 | Hobbs et al. | Nov 1992 | A |
5167623 | Cianci et al. | Dec 1992 | A |
5171216 | Dasse et al. | Dec 1992 | A |
5171227 | Twardowski et al. | Dec 1992 | A |
5178616 | Uemiya et al. | Jan 1993 | A |
5188592 | Hakki | Feb 1993 | A |
5188593 | Martin | Feb 1993 | A |
5190520 | Fenton, Jr. et al. | Mar 1993 | A |
5190529 | McCrory et al. | Mar 1993 | A |
5191898 | Millar | Mar 1993 | A |
5195962 | Martin et al. | Mar 1993 | A |
5197951 | Mahurkar | Mar 1993 | A |
5197973 | Pang et al. | Mar 1993 | A |
5197976 | Herweck et al. | Mar 1993 | A |
5201723 | Quinn | Apr 1993 | A |
5207648 | Gross | May 1993 | A |
5207650 | Martin | May 1993 | A |
5209723 | Twardowski et al. | May 1993 | A |
5209725 | Roth | May 1993 | A |
5209742 | Venema et al. | May 1993 | A |
5215527 | Beck et al. | Jun 1993 | A |
5221255 | Mahurkar et al. | Jun 1993 | A |
5221256 | Mahurkar | Jun 1993 | A |
5222949 | Kaldany | Jun 1993 | A |
5226880 | Martin et al. | Jul 1993 | A |
5234438 | Semrad | Aug 1993 | A |
5236016 | Vogelsang et al. | Aug 1993 | A |
5242398 | Knoll et al. | Sep 1993 | A |
5246430 | MacFarlane | Sep 1993 | A |
5250034 | Appling et al. | Oct 1993 | A |
5254084 | Geary | Oct 1993 | A |
5273527 | Schatz et al. | Dec 1993 | A |
5273534 | Knoepfler | Dec 1993 | A |
5279596 | Castaneda et al. | Jan 1994 | A |
5279599 | Wilk | Jan 1994 | A |
5306240 | Berry | Apr 1994 | A |
5312337 | Flaherty et al. | May 1994 | A |
5312357 | Buijs et al. | May 1994 | A |
5318517 | Reiman | Jun 1994 | A |
5322519 | Ash | Jun 1994 | A |
5324274 | Martin | Jun 1994 | A |
5330432 | Yoon | Jul 1994 | A |
5338308 | Wilk | Aug 1994 | A |
5342295 | Imran | Aug 1994 | A |
5342386 | Trotta | Aug 1994 | A |
5346471 | Raulerson | Sep 1994 | A |
5348536 | Young et al. | Sep 1994 | A |
5350358 | Martin | Sep 1994 | A |
5360397 | Pinchuk | Nov 1994 | A |
5360407 | Leonard et al. | Nov 1994 | A |
5364344 | Beatlie et al. | Nov 1994 | A |
5374245 | Mahurkar | Dec 1994 | A |
5378230 | Mahurkar | Jan 1995 | A |
5380276 | Miller et al. | Jan 1995 | A |
5380290 | Makower et al. | Jan 1995 | A |
5382238 | Abrahamson et al. | Jan 1995 | A |
5389087 | Miraki | Feb 1995 | A |
5389090 | Fischell et al. | Feb 1995 | A |
5395316 | Martin | Mar 1995 | A |
5399168 | Wadsworth, Jr. et al. | Mar 1995 | A |
5403291 | Abrahamson | Apr 1995 | A |
5405320 | Twardowski et al. | Apr 1995 | A |
5405341 | Martin | Apr 1995 | A |
5409463 | Thomas et al. | Apr 1995 | A |
5417668 | Setzer et al. | May 1995 | A |
5423768 | Folden et al. | Jun 1995 | A |
5431661 | Koch | Jul 1995 | A |
5451026 | Smith | Sep 1995 | A |
5451206 | Young | Sep 1995 | A |
5451233 | Yock | Sep 1995 | A |
5458570 | May, Jr. | Oct 1995 | A |
5458582 | Nakao | Oct 1995 | A |
5462533 | Daugherty | Oct 1995 | A |
5472417 | Martin et al. | Dec 1995 | A |
5472432 | Martin | Dec 1995 | A |
5476453 | Mehta | Dec 1995 | A |
5480380 | Martin | Jan 1996 | A |
5486159 | Mahurkar | Jan 1996 | A |
5489278 | Abrahamson | Feb 1996 | A |
5496292 | Burnham | Mar 1996 | A |
5496872 | Constancis et al. | Mar 1996 | A |
5505710 | Dorsey, III | Apr 1996 | A |
5507723 | Keshaviah | Apr 1996 | A |
5509897 | Twardowski et al. | Apr 1996 | A |
5509900 | Kirkman | Apr 1996 | A |
5509902 | Raulerson | Apr 1996 | A |
5542925 | Orth | Aug 1996 | A |
5545373 | Maziasz et al. | Aug 1996 | A |
5556390 | Hicks | Sep 1996 | A |
5556930 | Brehm et al. | Sep 1996 | A |
5558635 | Cannon | Sep 1996 | A |
5562609 | Brumbach | Oct 1996 | A |
5562696 | Nobles et al. | Oct 1996 | A |
5569182 | Twardowski et al. | Oct 1996 | A |
5569195 | Saab | Oct 1996 | A |
5571093 | Cruz et al. | Nov 1996 | A |
5584803 | Stevens et al. | Dec 1996 | A |
5599304 | Shaari | Feb 1997 | A |
5599328 | Stevens | Feb 1997 | A |
5607462 | Imran | Mar 1997 | A |
5624392 | Saab | Apr 1997 | A |
5624413 | Markel et al. | Apr 1997 | A |
5632729 | Cai et al. | May 1997 | A |
5637102 | Tolkoff et al. | Jun 1997 | A |
5642270 | Green et al. | Jun 1997 | A |
5655867 | Gysi et al. | Aug 1997 | A |
5662606 | Cimino et al. | Sep 1997 | A |
5665067 | Linder et al. | Sep 1997 | A |
5674237 | Ott | Oct 1997 | A |
5685867 | Twardowski et al. | Nov 1997 | A |
5686867 | Sutardja et al. | Nov 1997 | A |
5693030 | Lee et al. | Dec 1997 | A |
5695457 | St. Goar et al. | Dec 1997 | A |
5704915 | Melsky et al. | Jan 1998 | A |
5713849 | Bosma et al. | Feb 1998 | A |
5713853 | Clark et al. | Feb 1998 | A |
5717216 | McCoy et al. | Feb 1998 | A |
5718678 | Fleming, III | Feb 1998 | A |
5718692 | Schon et al. | Feb 1998 | A |
5720735 | Dorros | Feb 1998 | A |
5738649 | Macoviak | Apr 1998 | A |
5741329 | Agrawal et al. | Apr 1998 | A |
5743873 | Cai et al. | Apr 1998 | A |
5752939 | Makoto et al. | May 1998 | A |
5769796 | Palermo et al. | Jun 1998 | A |
5772643 | Howell et al. | Jun 1998 | A |
5776096 | Fields | Jul 1998 | A |
5776111 | Tesio | Jul 1998 | A |
5785686 | Runge | Jul 1998 | A |
5792094 | Stevens et al. | Aug 1998 | A |
5792123 | Ensminger | Aug 1998 | A |
5797869 | Martin et al. | Aug 1998 | A |
5800384 | Russell et al. | Sep 1998 | A |
5800414 | Cazal | Sep 1998 | A |
5800516 | Fine et al. | Sep 1998 | A |
5807311 | Palestrant | Sep 1998 | A |
5807318 | St. Goar et al. | Sep 1998 | A |
5807329 | Gelman | Sep 1998 | A |
5809897 | Powell et al. | Sep 1998 | A |
5810789 | Powers et al. | Sep 1998 | A |
5814016 | Valley et al. | Sep 1998 | A |
5830184 | Basta | Nov 1998 | A |
5830196 | Hicks | Nov 1998 | A |
5833671 | Macoviak et al. | Nov 1998 | A |
5843048 | Gross | Dec 1998 | A |
5858009 | Jonkman | Jan 1999 | A |
5861010 | Boussignac et al. | Jan 1999 | A |
5868717 | Prosl | Feb 1999 | A |
5873865 | Horzewski et al. | Feb 1999 | A |
5876366 | Dykstra et al. | Mar 1999 | A |
5876426 | Kume et al. | Mar 1999 | A |
5882347 | Mouris-Laan et al. | Mar 1999 | A |
5891111 | Ismael et al. | Apr 1999 | A |
5904670 | Schreiner | May 1999 | A |
5911715 | Berg et al. | Jun 1999 | A |
5913848 | Luther et al. | Jun 1999 | A |
5916208 | Luther et al. | Jun 1999 | A |
5919160 | Sanfilippo, II | Jul 1999 | A |
5944732 | Raulerson et al. | Aug 1999 | A |
5947937 | Urrutia et al. | Sep 1999 | A |
5947953 | Ash et al. | Sep 1999 | A |
5957879 | Roberts et al. | Sep 1999 | A |
5957893 | Luther et al. | Sep 1999 | A |
5957912 | Heitzmann | Sep 1999 | A |
5961486 | Twardowski et al. | Oct 1999 | A |
5964796 | Imran | Oct 1999 | A |
5976103 | Martin | Nov 1999 | A |
5976120 | Chow et al. | Nov 1999 | A |
5980551 | Summers et al. | Nov 1999 | A |
5984908 | Davis et al. | Nov 1999 | A |
5989206 | Prosl et al. | Nov 1999 | A |
5989213 | Maginot | Nov 1999 | A |
6001079 | Pourchez | Dec 1999 | A |
6033382 | Basta | Mar 2000 | A |
6036654 | Quinn et al. | Mar 2000 | A |
6059771 | Balbierz et al. | May 2000 | A |
6074374 | Fulton | Jun 2000 | A |
6086555 | Eliasen et al. | Jul 2000 | A |
6086557 | Morejohn et al. | Jul 2000 | A |
6090096 | St. Goar et al. | Jul 2000 | A |
6099513 | Spehalski | Aug 2000 | A |
6103778 | Hyon et al. | Aug 2000 | A |
6106540 | White et al. | Aug 2000 | A |
6113572 | Gailey et al. | Sep 2000 | A |
6117117 | Mauch | Sep 2000 | A |
6120494 | Jonkman | Sep 2000 | A |
6126631 | Loggie | Oct 2000 | A |
6132425 | Gough | Oct 2000 | A |
6143013 | Samson et al. | Nov 2000 | A |
6146354 | Beil | Nov 2000 | A |
6146373 | Cragg et al. | Nov 2000 | A |
6152909 | Bagaoisan et al. | Nov 2000 | A |
6156016 | Maginot | Dec 2000 | A |
6161547 | Barbut | Dec 2000 | A |
6178356 | Chastain et al. | Jan 2001 | B1 |
6180059 | Divino, Jr. et al. | Jan 2001 | B1 |
6190349 | Ash et al. | Feb 2001 | B1 |
6190371 | Maginot et al. | Feb 2001 | B1 |
6193685 | Goodin | Feb 2001 | B1 |
6196996 | Teirstein | Mar 2001 | B1 |
6206849 | Martin et al. | Mar 2001 | B1 |
6210365 | Afzal | Apr 2001 | B1 |
6210380 | Mauch | Apr 2001 | B1 |
6217527 | Selmon et al. | Apr 2001 | B1 |
6224622 | Kotzev | May 2001 | B1 |
6238406 | Ellis et al. | May 2001 | B1 |
6264627 | Liska et al. | Jul 2001 | B1 |
6273879 | Keith et al. | Aug 2001 | B1 |
6280413 | Clark et al. | Aug 2001 | B1 |
6280423 | Davey et al. | Aug 2001 | B1 |
6287326 | Pecor | Sep 2001 | B1 |
6293927 | McGuckin, Jr. | Sep 2001 | B1 |
6293958 | Berry et al. | Sep 2001 | B1 |
6296631 | Chow | Oct 2001 | B2 |
6299631 | Shalaby | Oct 2001 | B1 |
6322551 | Brugger | Nov 2001 | B1 |
6328730 | Harkrider, Jr. | Dec 2001 | B1 |
6342120 | Basta | Jan 2002 | B1 |
6361529 | Goodin et al. | Mar 2002 | B1 |
6383172 | Barbut | May 2002 | B1 |
6394141 | Wages et al. | May 2002 | B2 |
6394142 | Woelfel et al. | May 2002 | B1 |
6409700 | Siegel, Jr. et al. | Jun 2002 | B1 |
6413228 | Hung et al. | Jul 2002 | B1 |
6428513 | Abrahamson | Aug 2002 | B1 |
6443922 | Roberts et al. | Sep 2002 | B1 |
6450988 | Bradshaw | Sep 2002 | B1 |
6453185 | O'Keefe | Sep 2002 | B1 |
6454997 | Divino, Jr. et al. | Sep 2002 | B1 |
6455608 | Jia et al. | Sep 2002 | B1 |
6463335 | Munch et al. | Oct 2002 | B1 |
6468287 | Baugh | Oct 2002 | B1 |
6473633 | Heil, Jr. et al. | Oct 2002 | B1 |
6475207 | Maginot et al. | Nov 2002 | B1 |
6475209 | Larson et al. | Nov 2002 | B1 |
6478789 | Spehalski et al. | Nov 2002 | B1 |
6482169 | Kuhle | Nov 2002 | B1 |
6533763 | Schneiter | Mar 2003 | B1 |
6565594 | Herweck et al. | May 2003 | B1 |
6576001 | Werneth et al. | Jun 2003 | B2 |
6582459 | Lau et al. | Jun 2003 | B1 |
6585705 | Maginot et al. | Jul 2003 | B1 |
6592565 | Twardowski | Jul 2003 | B2 |
6595966 | Davey et al. | Jul 2003 | B2 |
6620118 | Prosl et al. | Sep 2003 | B1 |
6638242 | Wilson et al. | Oct 2003 | B2 |
6659134 | Navis | Dec 2003 | B2 |
6682498 | Ross | Jan 2004 | B2 |
6682519 | Schon | Jan 2004 | B1 |
6691625 | Duncan | Feb 2004 | B2 |
6695832 | Schon et al. | Feb 2004 | B2 |
6702776 | Quinn | Mar 2004 | B2 |
6712797 | Southern, Jr. | Mar 2004 | B1 |
6712798 | Constantz | Mar 2004 | B2 |
6719717 | Johnson et al. | Apr 2004 | B1 |
6719749 | Schweikert et al. | Apr 2004 | B1 |
6723084 | Maginot et al. | Apr 2004 | B1 |
6723114 | Shalaby | Apr 2004 | B2 |
6730299 | Tayot et al. | May 2004 | B1 |
6752827 | Ross et al. | Jun 2004 | B2 |
6755851 | Noda et al. | Jun 2004 | B2 |
6758836 | Zawacki | Jul 2004 | B2 |
6786664 | Claramunt et al. | Sep 2004 | B2 |
6786884 | DeCant, Jr. et al. | Sep 2004 | B1 |
6796991 | Nardeo | Sep 2004 | B2 |
6797107 | Kotzey | Sep 2004 | B1 |
6808510 | DiFiore | Oct 2004 | B1 |
6814718 | McGuckin, Jr. et al. | Nov 2004 | B2 |
6819951 | Patel et al. | Nov 2004 | B2 |
6821287 | Jang | Nov 2004 | B1 |
6824554 | Jang | Nov 2004 | B1 |
6835452 | Hamerski | Dec 2004 | B1 |
6837864 | Bertolero et al. | Jan 2005 | B1 |
6852079 | Miyano | Feb 2005 | B2 |
6852097 | Fulton, III | Feb 2005 | B1 |
6858019 | McGuckin, Jr. et al. | Feb 2005 | B2 |
6872198 | Wilson et al. | Mar 2005 | B1 |
6878143 | Andersen | Apr 2005 | B2 |
6881211 | Schweikert et al. | Apr 2005 | B2 |
6884253 | McFarlane | Apr 2005 | B1 |
6911014 | Wentling et al. | Jun 2005 | B2 |
6913601 | St. Goar et al. | Jul 2005 | B2 |
6916313 | Cunningham | Jul 2005 | B2 |
6921396 | Wilson et al. | Jul 2005 | B1 |
6921411 | Yock | Jul 2005 | B2 |
6934142 | Grosse et al. | Aug 2005 | B2 |
6966886 | Appling | Nov 2005 | B2 |
6969381 | Voorhees | Nov 2005 | B2 |
6979318 | McDonald et al. | Dec 2005 | B1 |
6991625 | Gately et al. | Jan 2006 | B1 |
D515211 | Chesnin | Feb 2006 | S |
6997894 | Caresio | Feb 2006 | B2 |
7008395 | Loggie | Mar 2006 | B1 |
7011645 | McGuckin, Jr. et al. | Mar 2006 | B2 |
7018384 | Skakoon | Mar 2006 | B2 |
7029467 | Currier et al. | Apr 2006 | B2 |
7066914 | Andersen | Jun 2006 | B2 |
7066925 | Gately et al. | Jun 2006 | B2 |
7074213 | McGuckin, Jr. et al. | Jul 2006 | B2 |
7077829 | McGuckin, Jr. et al. | Jul 2006 | B2 |
7087053 | Vanney | Aug 2006 | B2 |
7090654 | Lotito et al. | Aug 2006 | B2 |
7108674 | Quinn | Sep 2006 | B2 |
D530420 | Chesnin | Oct 2006 | S |
7128734 | Wilson et al. | Oct 2006 | B1 |
7130700 | Gardeski et al. | Oct 2006 | B2 |
7141035 | Haggstrom | Nov 2006 | B2 |
RE39451 | Kuhle | Dec 2006 | E |
7182746 | Haarala et al. | Feb 2007 | B2 |
7300430 | Wilson et al. | Nov 2007 | B2 |
7322953 | Redinger | Jan 2008 | B2 |
7347852 | Hobbs et al. | Mar 2008 | B2 |
7381204 | Wilson et al. | Jun 2008 | B2 |
7393339 | Zawacki et al. | Jul 2008 | B2 |
7422571 | Schweikert et al. | Sep 2008 | B2 |
7465286 | Patterson et al. | Dec 2008 | B2 |
7485107 | DiFiore et al. | Feb 2009 | B2 |
7569029 | Clark | Aug 2009 | B2 |
7575563 | Appling | Aug 2009 | B2 |
7651482 | Harris | Jan 2010 | B2 |
7686823 | Pingleton et al. | Mar 2010 | B2 |
7798999 | Bailey et al. | Sep 2010 | B2 |
7972465 | Patterson et al. | Jul 2011 | B2 |
8021321 | Zawacki | Sep 2011 | B2 |
8066660 | Gregersen et al. | Nov 2011 | B2 |
8092415 | Moehle | Jan 2012 | B2 |
8100863 | Moehle et al. | Jan 2012 | B2 |
8152951 | Zawacki et al. | Apr 2012 | B2 |
8206371 | Nimkar et al. | Jun 2012 | B2 |
8292841 | Gregersen | Oct 2012 | B2 |
8500939 | Nimkar et al. | Aug 2013 | B2 |
8540661 | Gregersen | Sep 2013 | B2 |
8597275 | Nimkar et al. | Dec 2013 | B2 |
8696614 | Gregersen et al. | Apr 2014 | B2 |
8808227 | Zawacki et al. | Aug 2014 | B2 |
8894601 | Moehle et al. | Nov 2014 | B2 |
8992454 | Anand | Mar 2015 | B2 |
9174019 | Gregersen | Nov 2015 | B2 |
9233200 | Gregersen et al. | Jan 2016 | B2 |
9572956 | Nimkar et al. | Feb 2017 | B2 |
9579485 | Obom et al. | Feb 2017 | B2 |
9610422 | Moehle et al. | Apr 2017 | B2 |
9669149 | Anand | Jun 2017 | B2 |
9782535 | Anand | Oct 2017 | B2 |
10105514 | Nimkar et al. | Oct 2018 | B2 |
10207043 | Gregersen | Feb 2019 | B2 |
10258732 | Gregersen et al. | Apr 2019 | B2 |
10258768 | Loesener et al. | Apr 2019 | B2 |
10518064 | Oborn et al. | Dec 2019 | B2 |
10857330 | Loesener et al. | Dec 2020 | B2 |
20010041857 | Sansoucy | Nov 2001 | A1 |
20010041873 | Dopper et al. | Nov 2001 | A1 |
20020013569 | Sterman et al. | Jan 2002 | A1 |
20020026156 | Quinn | Feb 2002 | A1 |
20020055724 | Hughes | May 2002 | A1 |
20020086047 | Mueller et al. | Jul 2002 | A1 |
20020087108 | Maginot et al. | Jul 2002 | A1 |
20020087145 | Ehwald et al. | Jul 2002 | A1 |
20020091362 | Maginot et al. | Jul 2002 | A1 |
20020091430 | Dobak et al. | Jul 2002 | A1 |
20020099326 | Wilson et al. | Jul 2002 | A1 |
20020099327 | Wilson et al. | Jul 2002 | A1 |
20020107506 | McGuckin et al. | Aug 2002 | A1 |
20020138031 | Ross | Sep 2002 | A1 |
20020169490 | Noda et al. | Nov 2002 | A1 |
20020173770 | Flory et al. | Nov 2002 | A1 |
20020177904 | Huxel et al. | Nov 2002 | A1 |
20030023198 | Twardowski | Jan 2003 | A1 |
20030032734 | Roby | Feb 2003 | A1 |
20030088213 | Schweikert et al. | May 2003 | A1 |
20030093027 | McGuckin et al. | May 2003 | A1 |
20030097091 | Hobbs et al. | May 2003 | A1 |
20030135147 | Rosenberg et al. | Jul 2003 | A1 |
20030144623 | Heath et al. | Jul 2003 | A1 |
20030149395 | Zawacki | Aug 2003 | A1 |
20030153898 | Schon et al. | Aug 2003 | A1 |
20030163145 | Raulerson | Aug 2003 | A1 |
20030187411 | Constantz | Oct 2003 | A1 |
20030204179 | Davey et al. | Oct 2003 | A1 |
20040039350 | McKittrick | Feb 2004 | A1 |
20040054321 | Schon et al. | Mar 2004 | A1 |
20040059314 | Schon et al. | Mar 2004 | A1 |
20040064086 | Gottlieb et al. | Apr 2004 | A1 |
20040065333 | Wilson et al. | Apr 2004 | A1 |
20040075198 | Schweikert et al. | Apr 2004 | A1 |
20040087892 | Cunningham | May 2004 | A1 |
20040092863 | Raulerson et al. | May 2004 | A1 |
20040097863 | Appling | May 2004 | A1 |
20040097903 | Raulerson | May 2004 | A1 |
20040122418 | Voorhees | Jun 2004 | A1 |
20040147903 | Latini | Jul 2004 | A1 |
20040167463 | Zawacki et al. | Aug 2004 | A1 |
20040171997 | Wilson et al. | Sep 2004 | A1 |
20040172003 | Wilson et al. | Sep 2004 | A1 |
20040176739 | Stephens et al. | Sep 2004 | A1 |
20040193102 | Haggstrom | Sep 2004 | A1 |
20040197301 | Zhao et al. | Oct 2004 | A1 |
20040210180 | Altman | Oct 2004 | A1 |
20040210187 | Zawacki | Oct 2004 | A1 |
20040210237 | Ross et al. | Oct 2004 | A1 |
20040220550 | Schryver | Nov 2004 | A1 |
20040230204 | Wortley et al. | Nov 2004 | A1 |
20040243095 | Nimkar et al. | Dec 2004 | A1 |
20040249337 | DiFiore | Dec 2004 | A1 |
20050003322 | Logan et al. | Jan 2005 | A1 |
20050004504 | Frye et al. | Jan 2005 | A1 |
20050013341 | Baghai | Jan 2005 | A1 |
20050019382 | Kummer et al. | Jan 2005 | A1 |
20050025641 | Shibata et al. | Feb 2005 | A1 |
20050027282 | Schweikert et al. | Feb 2005 | A1 |
20050027289 | Castellano et al. | Feb 2005 | A1 |
20050033222 | Haggstrom et al. | Feb 2005 | A1 |
20050033264 | Redinger | Feb 2005 | A1 |
20050054989 | McGuckin et al. | Mar 2005 | A1 |
20050055012 | Trerotola | Mar 2005 | A1 |
20050059925 | Maginot et al. | Mar 2005 | A1 |
20050070842 | Lotito et al. | Mar 2005 | A1 |
20050080398 | Markel et al. | Apr 2005 | A1 |
20050085765 | Voorhees | Apr 2005 | A1 |
20050096585 | Schon et al. | May 2005 | A1 |
20050113904 | Shank et al. | May 2005 | A1 |
20050131341 | McGuckin et al. | Jun 2005 | A1 |
20050171469 | Cunningham | Aug 2005 | A1 |
20050187535 | Wilson et al. | Aug 2005 | A1 |
20050209582 | Quinn et al. | Sep 2005 | A1 |
20050215977 | Uschold | Sep 2005 | A1 |
20050228339 | Clark | Oct 2005 | A1 |
20050240165 | Miki et al. | Oct 2005 | A1 |
20050245900 | Ash | Nov 2005 | A1 |
20050251190 | McFarlane | Nov 2005 | A1 |
20050256461 | DiFiore et al. | Nov 2005 | A1 |
20050261663 | Patterson et al. | Nov 2005 | A1 |
20050267400 | Haarala et al. | Dec 2005 | A1 |
20050277862 | Anand | Dec 2005 | A1 |
20050283111 | Maurice | Dec 2005 | A1 |
20050288623 | Hjalmarsson | Dec 2005 | A1 |
20050288706 | Widomski et al. | Dec 2005 | A1 |
20060004316 | Difiore et al. | Jan 2006 | A1 |
20060004325 | Hamatake et al. | Jan 2006 | A1 |
20060009783 | Rome et al. | Jan 2006 | A1 |
20060015072 | Raulerson | Jan 2006 | A1 |
20060015130 | Voorhees et al. | Jan 2006 | A1 |
20060030827 | Raulerson et al. | Feb 2006 | A1 |
20060047267 | Gately et al. | Mar 2006 | A1 |
20060047268 | Stephens | Mar 2006 | A1 |
20060058775 | Stevens et al. | Mar 2006 | A1 |
20060064072 | Gately et al. | Mar 2006 | A1 |
20060095062 | Stephens | May 2006 | A1 |
20060100572 | DiMatteo et al. | May 2006 | A1 |
20060111537 | Roby | May 2006 | A1 |
20060116629 | Tal et al. | Jun 2006 | A1 |
20060161100 | Hamboly | Jul 2006 | A1 |
20060184142 | Schon et al. | Aug 2006 | A1 |
20060189922 | Amarasinghe et al. | Aug 2006 | A1 |
20060200111 | Moehle et al. | Sep 2006 | A1 |
20060206094 | Chesnin et al. | Sep 2006 | A1 |
20060251612 | Kotzev et al. | Nov 2006 | A1 |
20060253063 | Schweikert | Nov 2006 | A1 |
20060271012 | Canaud et al. | Nov 2006 | A1 |
20070005003 | Patterson et al. | Jan 2007 | A1 |
20070019181 | Sinclair et al. | Jan 2007 | A1 |
20070066964 | Atkins | Mar 2007 | A1 |
20070078478 | Atkins et al. | Apr 2007 | A1 |
20070106206 | Appling | May 2007 | A1 |
20070129704 | O'Mahony et al. | Jun 2007 | A1 |
20070167925 | Jacqmein | Jul 2007 | A1 |
20070191810 | Kennedy | Aug 2007 | A1 |
20070225661 | Ash et al. | Sep 2007 | A1 |
20070225682 | Ash et al. | Sep 2007 | A1 |
20070282274 | Chesnin | Dec 2007 | A1 |
20080021417 | Zawacki et al. | Jan 2008 | A1 |
20080039774 | Zawacki et al. | Feb 2008 | A1 |
20080065029 | Racz | Mar 2008 | A1 |
20080082079 | Braga et al. | Apr 2008 | A1 |
20080082080 | Braga | Apr 2008 | A1 |
20080097409 | Stephens | Apr 2008 | A1 |
20080172012 | Hiniduma-Lokuge et al. | Jul 2008 | A1 |
20080214980 | Anand | Sep 2008 | A1 |
20080214992 | Haarala et al. | Sep 2008 | A1 |
20090112153 | Gregersen et al. | Apr 2009 | A1 |
20090118661 | Moehle et al. | May 2009 | A1 |
20090118701 | Nimkar et al. | May 2009 | A1 |
20090118707 | Schweikert et al. | May 2009 | A1 |
20090118755 | Maliglowka et al. | May 2009 | A1 |
20090138034 | Maliglowka et al. | May 2009 | A1 |
20090157051 | Appling et al. | Jun 2009 | A1 |
20090187141 | Lareau et al. | Jul 2009 | A1 |
20090192435 | Gregersen | Jul 2009 | A1 |
20090204052 | Nimkar et al. | Aug 2009 | A1 |
20090204079 | Nimkar et al. | Aug 2009 | A1 |
20090204083 | O'Donnell et al. | Aug 2009 | A1 |
20090205189 | Nimkar et al. | Aug 2009 | A1 |
20090209940 | Nimkar et al. | Aug 2009 | A1 |
20090292248 | Schon et al. | Nov 2009 | A1 |
20090312687 | DeFonzo et al. | Dec 2009 | A1 |
20100081986 | Matson et al. | Apr 2010 | A1 |
20100331780 | Bellisario et al. | Dec 2010 | A1 |
20110020418 | Bosley, Jr. et al. | Jan 2011 | A1 |
20110301522 | DeFonzo | Dec 2011 | A1 |
20120059304 | Gregersen et al. | Mar 2012 | A1 |
20120089070 | Moehle et al. | Apr 2012 | A1 |
20130018405 | Onishi et al. | Jan 2013 | A1 |
20130079752 | Gregersen | Mar 2013 | A1 |
20130253445 | Nimkar et al. | Sep 2013 | A1 |
20130261605 | Gregersen et al. | Oct 2013 | A1 |
20140018772 | Ash | Jan 2014 | A1 |
20140025042 | Gregersen | Jan 2014 | A1 |
20140088510 | Nimkar et al. | Mar 2014 | A1 |
20140228742 | Gregersen et al. | Aug 2014 | A1 |
20140276472 | VanderStek et al. | Sep 2014 | A1 |
20140276493 | Leung et al. | Sep 2014 | A1 |
20140277052 | Haselby et al. | Sep 2014 | A1 |
20140330220 | Zawacki et al. | Nov 2014 | A1 |
20140336687 | Iwase et al. | Nov 2014 | A1 |
20150073336 | Moehle et al. | Mar 2015 | A1 |
20150088100 | Oborn et al. | Mar 2015 | A1 |
20150335810 | Anand | Nov 2015 | A1 |
20170151418 | Nimkar et al. | Jun 2017 | A1 |
20170165453 | Oborn et al. | Jun 2017 | A1 |
20190240393 | Gregersen et al. | Aug 2019 | A1 |
20190240453 | Loesener et al. | Aug 2019 | A1 |
20200129729 | Oborn et al. | Apr 2020 | A1 |
Number | Date | Country |
---|---|---|
834211 | Feb 1976 | BE |
1150122 | Jul 1983 | CA |
2474351 | Aug 2003 | CA |
2788836 | Jun 2006 | CN |
101918067 | Dec 2010 | CN |
103170050 | Jun 2013 | CN |
101918066 | Jul 2013 | CN |
8815869 | Feb 1989 | DE |
9108132 | Sep 1991 | DE |
102005051211 | May 2007 | DE |
0030854 | Jun 1981 | EP |
0132344 | Jan 1985 | EP |
0301854 | Feb 1989 | EP |
0332366 | Sep 1989 | EP |
0386408 | Sep 1990 | EP |
0453234 | Oct 1991 | EP |
0476796 | Mar 1992 | EP |
0495263 | Jul 1992 | EP |
0650740 | May 1995 | EP |
0711574 | May 1996 | EP |
1471966 | Nov 2004 | EP |
1599247 | Nov 2005 | EP |
2305337 | Apr 2011 | EP |
1503469 | Mar 1978 | GB |
56-136569 | Oct 1981 | JP |
8-510935 | Nov 1996 | JP |
2001137350 | May 2001 | JP |
2008500081 | Jan 2008 | JP |
2011-502583 | Jan 2011 | JP |
4827377 | Nov 2011 | JP |
45923 | Nov 2004 | RU |
459237 | Feb 1975 | SU |
1991008132 | Jun 1991 | WO |
1993016741 | Sep 1993 | WO |
1993016752 | Sep 1993 | WO |
1997009086 | Mar 1997 | WO |
1997017102 | May 1997 | WO |
1997022374 | Jun 1997 | WO |
1997037699 | Oct 1997 | WO |
1999004844 | Feb 1999 | WO |
2000023137 | Apr 2000 | WO |
2002018004 | Mar 2002 | WO |
2002058776 | Aug 2002 | WO |
2002083223 | Oct 2002 | WO |
2003030960 | Apr 2003 | WO |
2003033049 | Apr 2003 | WO |
2003066148 | Aug 2003 | WO |
2004075962 | Sep 2004 | WO |
2004096334 | Nov 2004 | WO |
2004112876 | Dec 2004 | WO |
2005018712 | Mar 2005 | WO |
2005023336 | Mar 2005 | WO |
2005077449 | Aug 2005 | WO |
2005084741 | Sep 2005 | WO |
2005118039 | Dec 2005 | WO |
2006034877 | Apr 2006 | WO |
2008048183 | Apr 2008 | WO |
2009051967 | Apr 2009 | WO |
2009055332 | Apr 2009 | WO |
2009059220 | May 2009 | WO |
2015077560 | May 2015 | WO |
2016011091 | Jan 2016 | WO |
Entry |
---|
U.S. Appl. No. 14/991,858, filed Jan. 8, 2016 Non-Final Office Action dated May 17, 2018. |
U.S. Appl. No. 14/991,858, filed Jan. 8, 2016 Notice of Allowance dated Nov. 26, 2018. |
U.S. Appl. No. 15/429,049, filed Feb. 9, 2017 Non-Final Office Action dated Mar. 20, 2018. |
U.S. Appl. No. 15/429,049, filed Feb. 9, 2017 Notice of Allowance dated May 31, 2018. |
US Patent File History U.S. Pat. No. 5,403,291 (Abrahamson), issued Apr. 4, 1995. |
US Patent File History U.S. Pat. No. 5,489,278 (Abrahamson), issued Feb. 6, 1996. |
US Patent File History U.S. Pat. No. 5,685,867 (Twardowski et al.), issued Nov. 11, 1997. |
Wechsler, et al., Thrombosis and Infection Caused by Thoracic Venous Catheters: Pathogenesis and Imagings Findings, AJR, 1993; 160:467-471. |
Weitzel, et al., Successful Use of Indwelling Cuffed Femoral Vein Catheters in Ambulatory Hemodialysis Patients, American Journal of Kidney Diseases, 1993, vol. 22, No. 3, pp. 426-429. |
U.S. Appl. No. 10/371,774, filed Feb. 21, 2003 Notice of Allowance dated Jun. 1, 2007. |
U.S. Appl. No. 10/445,731, filed May 27, 2003 Non-Final Office Action dated Apr. 13, 2007. |
U.S. Appl. No. 10/445,731, filed May 27, 2003 Non-Final Office Action dated Dec. 12, 2008. |
U.S. Appl. No. 10/445,731, filed May 27, 2003 Non-Final Office Action dated May 30, 2008. |
U.S. Appl. No. 10/842,586, filed May 10, 2004 Advisory Action dated Oct. 9, 2008. |
U.S. Appl. No. 10/842,586, filed May 10, 2004 Final Office Action dated Jul. 29, 2008. |
U.S. Appl. No. 10/842,586, filed May 10, 2004 Final Office Action dated May 25, 2010. |
U.S. Appl. No. 10/842,586, filed May 10, 2004 Non-Final Office Action dated Jan. 7, 2008. |
U.S. Appl. No. 10/842,586, filed May 10, 2004 Non-Final Office Action dated Jun. 16, 2009. |
U.S. Appl. No. 10/842,586, filed May 10, 2004 Non-Final Office Action dated Nov. 13, 2008. |
U.S. Appl. No. 10/842,586, filed May 10, 2004 Non-Final Office Action dated Nov. 23, 2009. |
U.S. Appl. No. 10/874,298, filed Jun. 9, 2004 Advisory Action dated Feb. 19, 2009. |
U.S. Appl. No. 10/874,298, filed Jun. 9, 2004 Final Office Action dated Jul. 15, 2008. |
U.S. Appl. No. 10/874,298, filed Jun. 9, 2004 Final Office Action dated Jul. 7, 2010. |
U.S. Appl. No. 10/874,298, filed Jun. 9, 2004 Final Office Action dated Mar. 18, 2014. |
U.S. Appl. No. 10/874,298, filed Jun. 9, 2004 Non-Final Office Action dated Aug. 1, 2013. |
U.S. Appl. No. 10/874,298, filed Jun. 9, 2004 Non-Final Office Action dated Aug. 18, 2011. |
U.S. Appl. No. 10/874,298, filed Jun. 9, 2004 Non-Final Office Action dated Dec. 30, 2009. |
U.S. Appl. No. 10/874,298, filed Jun. 9, 2004 Non-Final Office Action dated Feb. 2, 2011. |
U.S. Appl. No. 10/874,298, filed Jun. 9, 2004 Non-Final Office Action dated Jul. 23, 2009. |
U.S. Appl. No. 10/874,298, filed Jun. 9, 2004 Non-Final Office Action dated Jul. 9, 2014. |
U.S. Appl. No. 10/874,298, filed Jun. 9, 2004 Non-Final Office Action dated May 23, 2006. |
U.S. Appl. No. 10/874,298, filed Jun. 9, 2004 Non-Final Office Action dated May 24, 2007. |
U.S. Appl. No. 11/859,106 filed Sep. 21, 2007 Final Office Action dated Sep. 1, 2009. |
U.S. Appl. No. 11/859,106 filed Sep. 21, 2007 Non-Final Office Action dated Feb. 5, 2009. |
U.S. Appl. No. 11/859,106 filed Sep. 21, 2007 Non-Final Office Action dated Mar. 30, 2011. |
U.S. Appl. No. 11/859,106 filed Sep. 21, 2007 Non-Final Office Action dated Jun. 25, 2008. |
U.S. Appl. No. 11/874,447, filed Oct. 18, 2007 Decision on Appeal dated Dec. 26, 2012. |
U.S. Appl. No. 11/874,447, filed Oct. 18, 2007 Examiner's Answer dated Apr. 28, 2010. |
U.S. Appl. No. 11/874,447, filed Oct. 18, 2007 Final Office Action dated Jul. 22, 2009. |
U.S. Appl. No. 11/874,447, filed Oct. 18, 2007 Non-Final Office Action dated Jan. 6, 2009. |
U.S. Appl. No. 11/874,447, filed Oct. 18, 2007 Non-Final Office Action dated Jul. 12, 2013. |
U.S. Appl. No. 11/874,447, filed Oct. 18, 2007 Non-Final Office Action dated Jul. 9, 2008. |
U.S. Appl. No. 11/874,447, filed Oct. 18, 2007 Notice of Allowance dated Apr. 18, 2014. |
U.S. Appl. No. 12/048,871, filed Mar. 14, 2008 Decision on Appeal dated Feb. 2, 2015. |
U.S. Appl. No. 12/048,871, filed Mar. 14, 2008 Examiner's Answer dated Feb. 9, 2012. |
U.S. Appl. No. 12/048,871, filed Mar. 14, 2008 Final Office Action dated Jan. 20, 2011. |
U.S. Appl. No. 12/048,871, filed Mar. 14, 2008 Final Office Action dated Jan. 4, 2016. |
U.S. Appl. No. 12/048,871, filed Mar. 14, 2008 Non-Final Office Action dated Aug. 31, 2016. |
U.S. Appl. No. 12/048,871, filed Mar. 14, 2008 Non-Final Office Action dated Jan. 7, 2010. |
U.S. Appl. No. 12/048,871, filed Mar. 14, 2008 Non-Final Office Action dated Jul. 16, 2015. |
U.S. Appl. No. 12/048,871, filed Mar. 14, 2008 Non-Final Office Action dated Jul. 7, 2010. |
U.S. Appl. No. 12/048,871, filed Mar. 14, 2008 Non-Final Office Action dated May 12, 2009. |
U.S. Appl. No. 12/048,871, filed Mar. 14, 2008 Notice of Allowance dated Feb. 10, 2017. |
U.S. Appl. No. 12/244,514, filed Oct. 2, 2008 Final Office Action dated Jun. 19, 2012. |
U.S. Appl. No. 12/244,514, filed Oct. 2, 2008 Non-Final Office Action dated Jan. 17, 2012. |
U.S. Appl. No. 12/244,559, filed Oct. 2, 2008 Decision on Appeal dated Aug. 31, 2015. |
U.S. Appl. No. 12/244,559, filed Oct. 2, 2008 Examiner's Answer dated Mar. 27, 2013. |
U.S. Appl. No. 12/244,559, filed Oct. 2, 2009 Final Office Action dated Jul. 3, 2012. |
U.S. Appl. No. 12/244,559, filed Oct. 2, 2009 Non-Final Office Action dated Mar. 14, 2012. |
U.S. Appl. No. 16/163,372, filed Oct. 17, 2018 Non-Final Office Action dated May 14, 2020. |
U.S. Appl. No. 16/163,372, filed Oct. 17, 2018 Notice of Allowance dated Aug. 19, 2020. |
U.S. Appl. No. 16/384,509, filed Apr. 15, 2019 Notice of Allowance dated Sep. 9, 2020. |
U.S. Appl. No. 12/244,514, filed Oct. 2, 2008 Advisory Action dated Sep. 5, 2012. |
U.S. Appl. No. 12/244,514, filed Oct. 2, 2008 Final Office Action dated Jul. 11, 2011. |
U.S. Appl. No. 12/244,514, filed Oct. 2, 2008 Non-Final Office Action dated Jan. 19, 2011. |
U.S. Appl. No. 12/244,544, filed Oct. 2, 2008 Final Office Action dated Jul. 11, 2011. |
U.S. Appl. No. 12/244,544, filed Oct. 2, 2008 Non-Final Office Action dated Dec. 22, 2010. |
U.S. Appl. No. 12/244,554, filed Oct. 2, 2008 Final Office Action dated Dec. 27, 2010. |
U.S. Appl. No. 12/244,554, filed Oct. 2, 2008 Non-Final Office Action dated Jul. 6, 2010. |
U.S. Appl. No. 12/253,870, filed Oct. 17, 2008 Non-Final Office Action dated Jan. 21, 2011. |
U.S. Appl. No. 12/253,870, filed Oct. 17, 2008 Notice of Allowance dated Aug. 19, 2011. |
U.S. Appl. No. 12/262,820, filed Oct. 31, 2008 Non-Final Office Action dated Feb. 18, 2011. |
U.S. Appl. No. 12/262,820, filed Oct. 31, 2008 Notice of Allowance dated Sep. 28, 2011. |
U.S. Appl. No. 12/263,141, filed Oct. 31, 2008 Advisory Action dated Aug. 17, 2011. |
U.S. Appl. No. 12/263,141, filed Oct. 31, 2008 Final Office Action dated May 26, 2011. |
U.S. Appl. No. 12/263,141, filed Oct. 31, 2008 Non-Final Office Action dated Jan. 5, 2011. |
U.S. Appl. No. 12/414,467, filed Mar. 30, 2009 Final Office Action dated Feb. 7, 2012. |
U.S. Appl. No. 12/414,467, filed Mar. 30, 2009 Notice of Allowance dated May 31, 2012. |
U.S. Appl. No. 12/414,467, filed Mar. 30, 2009 Non-Final Office Action dated Aug. 11, 2011. |
U.S. Appl. No. 13/294,941, filed Nov. 11, 2011 Non-Final Office Action dated May 27, 2016. |
U.S. Appl. No. 13/294,941, filed Nov. 11, 2011 Non-Final Office Action dated May 31, 2013. |
U.S. Appl. No. 13/294,941, filed Nov. 11, 2011 Notice of Allowance dated Nov. 27, 2013. |
U.S. Appl. No. 13/329,156, filed Dec. 16, 2011 Non-Final Office Action dated May 16, 2014. |
U.S. Appl. No. 13/445,713, filed Apr. 12, 2012 Advisory Action dated Aug. 8, 2013. |
U.S. Appl. No. 13/445,713, filed Apr. 12, 2012 Final Office Action dated May 30, 2013. |
U.S. Appl. No. 13/445,713, filed Apr. 12, 2012 Non-Final Office Action dated Jan. 2, 2013. |
U.S. Appl. No. 13/445,713, filed Apr. 12, 2012 Notice of Allowance dated Oct. 18, 2013. |
U.S. Appl. No. 13/897,292, filed May 17, 2013 Decision on Appeal dated Jun. 8, 2017. |
U.S. Appl. No. 13/897,292, filed May 17, 2013 Final Office Action dated Apr. 9, 2015. |
U.S. Appl. No. 13/897,292, filed May 17, 2013 Non-Final Office Action dated Nov. 20, 2014. |
U.S. Appl. No. 13/897,292, filed May 17, 2013 Notice of Allowance dated Aug. 23, 2017. |
U.S. Appl. No. 14/032,858, filed Sep. 20, 2013 Final Office Action dated Mar. 31, 2015. |
U.S. Appl. No. 14/032,858, filed Sep. 20, 2013 Non-Final Office Action dated Nov. 4, 2014. |
U.S. Appl. No. 14/032,858, filed Sep. 20, 2013, Notice of Allowance dated Jun. 26, 2015. |
U.S. Appl. No. 14/094,534, filed Dec. 2, 2013 Final Office Action dated Jul. 20, 2016. |
U.S. Appl. No. 14/094,534, filed Dec. 2, 2013 Non-Final Office Action dated Feb. 24, 2016. |
U.S. Appl. No. 14/094,534, filed Dec. 2, 2013 Notice of Allowance dated Sep. 30, 2016. |
U.S. Appl. No. 14/252,567, filed Apr. 14, 2014 Non-Final Office Action dated Mar. 31, 2015. |
U.S. Appl. No. 14/252,567, filed Apr. 14, 2014 Notice of Allowance dated Sep. 3, 2015. |
U.S. Appl. No. 14/328,541, filed Jul. 10, 2014 Final Office Action dated Oct. 22, 2015. |
U.S. Appl. No. 14/328,541, filed Jul. 10, 2014 Non-Final Office Action dated Apr. 9, 2015. |
U.S. Appl. No. 14/542,495, filed Nov. 14, 2014 Final Office Action dated Aug. 31, 2016. |
U.S. Appl. No. 14/542,495, filed Nov. 14, 2014 Non-Final Office Action dated May 10, 2016. |
U.S. Appl. No. 14/542,495, filed Nov. 14, 2014 Notice of Allowance dated Nov. 15, 2016. |
U.S. Appl. No. 14/675,236, filed Mar. 31, 2015 Non-Final Office Action dated Feb. 2, 2017. |
U.S. Appl. No. 14/675,236, filed Mar. 31, 2015 Notice of Allowance dated May 16, 2017. |
U.S. Appl. No. 14/799,547, filed Jul. 14, 2015 Non-Final Office Action dated Mar. 16, 2018. |
U.S. Appl. No. 14/799,547, filed Jul. 14, 2015 Restriction Requirement dated Nov. 30, 2017. |
U.S. Appl. No. 14/930,526, filed Nov. 2, 2015 Final Office Action dated Jun. 7, 2018. |
U.S. Appl. No. 14/930,526, filed Nov. 2, 2015 Non-Final Office Action dated Feb. 23, 2016. |
U.S. Appl. No. 14/930,526, filed Nov. 2, 2015 Notice of Allowance dated Oct. 2, 2018. |
PCT/US2004/005102 filed Feb. 19, 2004 Search Report dated Dec. 27, 2004. |
PCT/US2004/005102 filed Feb. 19, 2004 Written Opinion dated Aug. 21, 2005. |
PCT/US2008/078551 filed Oct. 2, 2008 International Preliminary Report on Patentability dated Apr. 20, 2010. |
PCT/US2008/078551 filed Oct. 2, 2008 Search Report dated Mar. 13, 2009. |
PCT/US2008/078551 filed Oct. 2, 2008 Written Opinion dated Mar. 13, 2009. |
PCT/US2008/078560 filed Oct. 2, 2008 Preliminary Report on Patentability dated Aug. 26, 2010. |
PCT/US2008/078560 filed Oct. 2, 2008 Search Report dated Mar. 16, 2009. |
PCT/US2008/078560 filed Oct. 2, 2008 Written Opinion dated Mar. 16, 2009. |
PCT/US2008/078566 filed Oct. 2, 2008 International Preliminary Report on Patentability dated Apr. 20, 2010. |
PCT/US2008/078566 filed Oct. 2, 2008 Search Report dated Mar. 19, 2009. |
PCT/US2008/078566 filed Oct. 2, 2008 Written Opinion dated Mar. 19, 2009. |
PCT/US2008/078571 filed Oct. 2, 2008 Preliminary Report on Patentability dated Aug. 26, 2010. |
PCT/US2008/078571 filed Oct. 2, 2008 Search Report dated Mar. 20, 2009. |
PCT/US2008/078571 filed Oct. 2, 2008 Written Opinion dated Mar. 20, 2009. |
PCT/US2008/080463 filed Oct. 20, 2008 Preliminary Report on Patentability dated Apr. 27, 2010. |
PCT/US2008/080463 filed Oct. 20, 2008 Search Report dated Mar. 16, 2009. |
PCT/US2008/080463 filed Oct. 20, 2008 Written Opinion dated Apr. 16, 2009. |
PCT/US2008/082106 filed Oct. 31, 2008 International Preliminary Report on Patentability dated May 4, 2010. |
PCT/US2008/082106 filed Oct. 31, 2008 Search Report dated Jan. 12, 2009. |
PCT/US2008/082106 filed Oct. 31, 2008 Written Opinion dated Jan. 12, 2009. |
PCT/US2014/066811 filed Nov. 21, 2014 International Search Report and Written Opinion dated Apr. 15, 2015. |
Picture of Device believed to be partial sample of a product believed to have been sold in the United States with Polycath and/or Infuse-a-Cath Instructions for Use, 1 page, 2011. |
QUINTON® Catheter Products (1993). |
Raaf Dual Lumen Right Atrial Catheters Brochure—Quinton Instrument Co., 6 pages, 1993. |
Raaf, et al., Open Insertion of Right Atrial Catheters Through the Jugular Veins, Surgery, Gynecology & Obstetrics, 1993, vol. 177, pp. 295-298. |
Rawn, et al., The Hemodialysis Access, Chapter 9, pp. 9.1-9.11, available at <<http://msl1.mit.edu/ESD10/kidneys/HndbkPDF/Chap09.pdf>>, last accessed Jun. 4, 2012. |
Schwab, et al., Prospective Evaluation of a Dacron Cuffed Hemodialysis Catheter for Prolonged Use, American Journal of Kidney Diseases, 1988, vol. XI, No. 2, pp. 166-169. |
Schwab, et al., Vascular Access: Case Oriented Discussions of Selected Critical Issues: Hemodialysis Catheters tor Permanent Use, 1999. |
Septum, Wikipedia, The Free Encyclopedia, hhtp://en.wikipedia.org/wiki/Septum (last visited Dec. 18, 2012) defining “septum” as “a wall, dividing a cavity or structure into smaller ones”). |
Shaffer, D., Catheter-Related Sepsis Complicating Long-Term Tunnelled Central Venous Dialysis Catheters: Management by Guidewire Exchange, American Journal of Kidney Diseases, 1995, vol. 25, No. 4, pp. 593-596. |
Shaffer, D., Lessons From Vascular Access Procedures for Hemodialysis, Surgical Oncology Clinics of North America, 1995, vol. 4, No. 3, pp. 537-549. |
Sioshansi, P., New Processes for Surface Treatment of Catheters, Artificial Organs, 1994, 18(4):266-271. |
Swartz, et al., Successful Use of Cuffed Central Venous Hemodialysis Catheters Inserted Percutaneously, J. Am. Soc. Nephrol., 1994, 4:1719-1725. |
Taber's Cyclopedic Medical Dictionary 1662 (16th ed. 1989) (defining “septum” as a “wall dividing two cavities”). |
Tal, Michael G, Comparison of Recirculation Percentage of the Palindrome Catheter and Standard Hemodialysis Catheters in a Swine Model, J Vasc Interv Radiol, pp. 1237-1240, vol. 16, No. 9, 2005. |
Tesio, et al., Double Catheterization of the Internal Jugular Vein for Hemodialysis: Indications, Techniques, and Clinical Results, Artificial Organs, 1994, vol. 18, No. 4, pp. 301-304. |
The Groshong™ Peripherally Inserted Central Venous Catheter Brochure—Cath-tech®, 4 pages, 1988. |
Transcript of Videotaped Deposition of Gregory Haas (Excerpt), Sep. 23, 2003, Thierry Pourchez and Bard Access Systems, Inc. v. Diatek, Inc. and Arrow International, Inc., Civil Action No. 03-CV-0972 (S.D.N.Y.). |
Transcript of Videotaped Deposition of Thierry Pourchez, vol. 1, Oct. 16, 2003, Thierry Pourchez and Bard Access Systems, Inc. v. Diatek, Inc. and Arrow International, Inc., Civil Action No. 03-CV-0972 (S.D.N.Y.). |
Transcript of Videotaped Deposition of Thierry Pourchez, vol. 2, Oct. 17, 2003, Thierry Pourchez and Bard Access Systems, Inc. v. Diatek, Inc. and Arrow International, Inc., Civil Action No. 03-CV-0972 (S.D.N.Y.). |
Treiman, et al., Chronic Venous Access in Patients with Cancer, Cancer, 1993, vol. 72, No. 3, pp. 760-765. |
Twardowski et al. “Side Holes at the Tip of Chronic Hemodialysis Catehters are Harmful,” The Journal of Vascular Access 2001; 2:8-16. |
Twardowski et al., “Blood Recirculation in Intravenous Catheters for Hemodialysis” J. Am. Soc. Nephrol. 3:1978-81 (1993). |
TYCO Healthcare, Mahurkar Dual Lumen Catheters, Informational Brochure, 2 pages, 2004. |
TYCO Healthcare, Mahurkar QPlus High Flow Acute Care Catheter, Informational Brochure, 2 pages, 2004. |
TYCO Healthcare, Tai Palindrome™ Dual Lumen Catheters Order Information, Features and Benefits, Frequently Asked Questions, printed from http://www.kendallvasculartherapy.com/VascularTherapy, 6 pages, on Mar. 1, 2007. |
Uldall, P., Subclavian Cannulation Is No Longer Necessary or Justified in Patients with End-Stage Renal Failure, Seminars in Dialysis, 1994, vol. 7, No. 3, pp. 161-164. |
U.S. Appl. No. 10/371,774, filed Feb. 21, 2003 Final Office Action dated Jan. 19, 2007. |
U.S. Appl. No. 10/371,774, filed Feb. 21, 2003 Final Office Action dated Mar. 7, 2007. |
U.S. Appl. No. 10/371,774, filed Feb. 21, 2003 Non-Final Office Action dated Jul. 17, 2006. |
U.S. Appl. No. 15/442,608, filed Feb. 24, 2017 Non-Final Office Action dated May 9, 2019. |
U.S. Appl. No. 15/442,608, filed Feb. 24, 2017 Notice of Allowance dated Aug. 27, 2019. |
Arrow Cannon II Plus Brochure, 2006. |
Arrow International, Inc. et al v. Spire Biomedical, Inc., U.S. Dist Ct Dist MA CA No. 06-CV-11564-DPW, Declaration of Dr. Karim Valji (Jul. 17, 2008). |
Arrow International, Inc. et al v. Spire Biomedical, Inc., U.S. Dist Ct Dist MA CA No. 06-CV-11564-DPW, Declaration of Kenneth Todd Cassidy (Jul. 16, 2008). |
Arrow International, Inc. et al v. Spire Biomedical, Inc., U.S. Dist Ct Dist MA CA No. 06-CV-11564-DPW, Declaration of Rebecca R. Eisenberg in Opposition to Defendant's Motion for Partial Summary Judgment of Invalidity (Jun. 8, 2009). |
Arrow International, Inc. et al v. Spire Biomedical, Inc., U.S. Dist Ct Dist MA CA No. 06-CV-11564-DPW, Memorandum of Law in Support of Defendant's Motion for Summary Judgment on Invalidity [Redacted Pursuant to Jun. 10, 2008 Order on Motion to Seal]. |
Arrow International, Inc. et al v. Spire Biomedical, Inc., U.S. Dist Ct Dist MA CA No. 06-CV-11564-DPW, Memorandum of Law in Support of Defendant's Motion for Summary Judgment on Invalidity Exhibit A (Jul. 10, 2009). |
Arrow International, Inc. et al v. Spire Biomedical, Inc., U.S. Dist Ct Dist MA CA No. 06-CV-11564-DPW, Plaintiff's Memorandum in Opposition to Defendant's Motion for Summary Judgement on Non-Infringement (Jul. 17, 2008). |
Arrow International, Inc. et al v. Spire Biomedical, Inc., U.S. Dist. Ct. Dist MA CA No. 06-CV-11564-DPW, Defendant's Omnibus Statement of Material Facts in Support of its Motions for Summary Judgment (Jun. 10, 2008) [Redacted Pursuant to Jun. 10, 2008 Order on Motion to Seal]. |
Bander, et al., Central Venous Angioaccess for Hemodialysis and Its Complications, Seminars in Dialysis, 1992, vol. 5, No. 2, pp. 121-128. |
Baranowski, L., Central Venous Access Devices, Journal of Intravenous Nursing, 1993, vol. 16, No. 3, pp. 167-194. |
Bard Access Systems Hickman®, Leonard®, and Broviac® Central Venous Catheters (Long Term), Instructions for Use, 31 pages, 1999. |
Bard Access Systems Hickman®, Leonard®, and Broviac® Central Venous Catheters, Nursing Procedural Manual, 52 pages, Jun. 1994. |
Bard Davol® Hickman®Round Dual Lumen Catheters for Central Venous Access Informational Brochure, 4 pages, 1994. |
Bard Hickman® Catheters Informational Brochure, 3 pages, 1994. |
Believed to be an unpublished sketch of a conception by Dr. John Frusha; date of sketch believed to be Jun. 24, 1997. |
Berkoben, et al., Maintenance of Permanent Hemodialysis Vascular Access Patency, ANNA Journal, 1995, vol. 22, No. 1, pp. 17-24. |
Bolz, et al., Catheter Malfunction and Thrombus Formation on Double-Lumen Hemodialysis Catheters: An Intravascular Ultrasonographic Study, American Journal of Kidney Diseases, 1995, vol. 25, No. 4, pp. 597-602. |
Bour, et al., Experience With The Double Lumen Silastic® Catheter For Hemoaccess, Surgery, Gynecology & Obstetrics, 1990, vol. 171, pp. 33-39. |
Camp, “Care of the Groshong Catheter”, Oncol Nurs Forum, vol. 15, No. 6, 1988. |
Campbell, et al., Radiological Insertion of Long-term Venous Access Devices, Seminars in Interventional Radiology, 1994, vol. II, No. 4, pp. 366-375. |
Canaud, B et al., Permenant Twin Catheter: A Vascular Access Option of Choice for Haemodialysis in Elderly Patients, pp. 82-88, vol. 17 No. 7, 1994. |
Claim Construction Order of Federal District Court dated May 9, 2003 in Thierry Pourchez and Bard Access Systems, Inc. v. Diatek, Inc. and Arrow International, Inc. litigation (S.D. N.Y. 03 Civ.0972). |
Claim Construction Order of Federal District Court dated Oct. 31, 2006 in Arrow Int'l. Inc.and Arrow Int'l. Investment Corp. v. Spire Biomedical, Inc. litigation (D. Mass. Civil Action No. 06-CV-11564). |
CN 200880121182.0 filed Oct. 20, 2008 First Office Action dated May 2, 2012. |
CN 200880121183.5 filed Oct. 2, 2008 First Office Action dated Mar. 28, 2012. |
CN 200880121183.5 filed Oct. 2, 2008 Second Office Action dated Aug. 17, 2012. |
CN 200880121183.5 filed Oct. 2, 2008 Third Office Action dated Dec. 11, 2012. |
CN 200880123095.9 filed Oct. 20, 2008 First Office Action dated Feb. 13, 2012. |
CN 200880123095.9 filed Oct. 20, 2008 Second Office Action dated Dec. 18, 2012. |
CN 200880123533.1 filed Jun. 30, 2008 First Office Action dated May 28, 2012. |
CN 200880123533.1 filed Jun. 30, 2008 Notice of Grant dated Dec. 24, 2012. |
CN 201310073124.8 filed Mar. 7, 2013 First Office Action dated May 5, 2014. |
Decision of Federal District Court dated Jul. 7, 2009 granting Summary Judgement of Invalidity in Arrow Int'l. Inc.and Arrow Int'l. Investment Corp. v. Spire Biomedical, Inc. litigation (D. Mass. Civil Action No. 06-CV-11564). |
Declaration of Gregory S. Haas (Plaintiff's Exhibit 88 in Haas Deposition), Mar. 13, 2003, Thierry Pourchez and Bard Access Systems, Inc. v. Diatek, Inc. and Arrow International, Inc., Civil Action No. 03-CV-0972 (S.D.N.Y.). |
Defendant's Exhibits DX78-DX114, Thierry Pourchez and Bard Access Systems, Inc. v. Diatek, Inc. and Arrow International, Inc., Civil Action No. 03-CV-0972 (S.D.N.Y.), 2003. |
Defendants' Reponses and Objections to Plaintiffs' Second Set of Interrogatories (Excerpt), Thierry Pourchez and Bard Access Systems, Inc. v. Diatek, Inc. and Arrow International, Inc., Civil Action No. 03-CV-0972 (S.D.N.Y.) (Oct. 8, 2003). |
Delmore et al., “Experience with the Groshong Long-Term Central Venous Catheter”, Gynecologic Oncology 34, 216-218 (1989). |
Dialysis Vascular Access, SchonXL® Temporary Dialysis (AngioDynamics Inc.) brochure, Nov. 1998. |
Dialysis Vascular Access, Technological Innovations Improving Flow (AngioDynamics Inc.) Brochure, 4 pages, Nov. 1998. |
Difiore, “Central Venous Dialysis Catheter Evaluatio in Swine”, Journal of Vascular Access Devices, Fall 2000. |
Donaldson, et al., Peripherally Inserted Central Venous Catheters: US-guided Vascular Access in Pediatric Patients1, Radiology, 1995, vol. 197, pp. 542-544. |
Dunea, et. al., A Survey of Permanent Double Lumen Catheters in Hemodialysis Patients. ASAIO Transac. 1991; 37: M276-7. |
Dupont et al, Long-term development of Permacath Quinton catheters used as a vascular access route for extra-renal detoxification; Néphrologie, vol. 15, pp. 105-110, 1994. |
EP 04712925.9 filed Feb. 19, 2004 Office Action dated Nov. 7, 2008. |
EP 08839196.6 filed Oct. 2, 2008 Examination Report dated Jan. 16, 2013. |
EP 08839196.6 filed Oct. 2, 2008 Search Opinion dated Jul. 12, 2011. |
EP 08839196.6 filed Oct. 2, 2008 Search Report dated Jul. 12, 2011. |
EP 08872340.8 filed Oct. 2, 2008 Extended European Search Report and an Opinion dated Apr. 19, 2012. |
EP 14864273.9 filed May 20, 2016 Extended European Search Report dated Jun. 9, 2017. |
EP 14864273.9 filed May 20, 2016 Partial European Search Report dated Jun. 9, 2017. |
Gallichio, et al., Placement of a Double Lumen Silastic Catheter for Hemodialysis Access Through The Cephalic Vein, Journal of the American College of Surgeons, 1994, vol. 179, pp. 171-172. |
Gravenstein, et al., In Vitro Evaluation of Relative Perforating Potential of Central Venous Catheters Comparison of Materials, Selected Models, Number of Lumens, and Angles of Incidence to Simulated Membrane, Journal of Clinical Monitoring, 1991, vol. 7, pp. 1-6. |
Haindl, H., Technical complications of port-catheter systems, Reg. Cancer Treat, 1989, 2:238-242. |
Haire, et al., Thrombotic Complications of Subclavian Apheresis catheters in Cancer Patients: Prevention With Heparin Infusion, Journal of Clinical Apheresis, 1990, vol. 5, pp. 188-191. |
Hull, et al., The Groshong Catheter: Initial Experience and Early Results of Imaging-guided Placement1, Radiology, 1992, vol. 185, pp. 803-807. |
Ignotus, et al., Review of Radiological Insertion of Indwelling Central Venous Catheters, Minimally Invasive Therapy, 1992, 1:373-388. |
Instructions For Use (Copyright Dated 1990) for Polycath Polyurethance Central Venous Catheter; believed to have been packaged with product and sold in the United States before Jan. 4, 2000 and with related marketing materials. |
Instructions for Use (Copyright Dated 1992) for FloLock Single Lumen Bi-directional Valved Catheter; believed to have been packaged with product and sold in the United States before Jan. 2000. |
Instructions for Use (not dated) for Infuse-a-Cath Polyurethance Central Venous Catheter; believed to have been packaged with product and sold in the United States before Jan. 2000. |
Instructions For Use for Diatek Cannon Catheter Product First Sold in the United States in Sep. 2001. |
Jones, et al., Efficacy of the Supraclavicular Route for Temporary Hemodialysis Access, Southern Medical Journal, 1992, vol. 85, No. 7, pp. 725-726. |
JP 2010-532299 filed Apr. 30, 2010 Final Notice of Reason for Rejection dated Feb. 8, 2013. |
JP 2010-532299 filed Apr. 30, 2010 Official Action dated Apr. 23, 2012. |
JP 2016-533038 filed May 20, 2016 Office Action dated Oct. 11, 2018. |
JP App. No. 2003-565569 filed Feb. 7, 2003, Translated Decision of Refusal dated Dec. 24, 2009. |
JP App. No. 2003-565569 filed Feb. 7, 2003, Translated Official Action dated May 28, 2009. |
JP App. No. 2003-565569 filed Feb. 7, 2003, Translated Official Action dated Nov. 7, 2008. |
Kapoian et al. Dialysis as Treatment of End-Stage Renal Disease, Chapter 5: Dialysis Access and Recirculation, © 1999. |
Kaupke, et al., Perforation of the Superior Vena Cava By a Subclavian Hemodialysis Catheter: early detection by angiography, The International Journal of Artificial Organs, 1992, vol. 15, No. 11, pp. 666-668. |
Kelber, et al., Factors Affecting Delivery of High-Efficiency Dialysis Using Temporary Vascular Access, American Journal of Kidney Diseases, 1993, vol. 22, No. 1, pp. 24-29. |
Lubrizol, “Lubrizol's Family of TPUs” Brochure (2005), 9 pages. |
Lumsden, et al., Hemodialysis Access in the Pediatric Patient Population, The American Journal of Surgery, 1994, vol. 168, p. 197. |
Lund, “Percutaneous Translumbar Inferior Vena Cava Cannulation and other Alternative Vascular Access Techniques” in Venous Interventional Radiology with Clinical Perspectives, Savader et al., eds. pp. 251-261, Apr. 10, 2000. |
Lund, et al., Percutaneous Translumbar Inferior Vena Cava Cannulation for Hemodialysis, American Journal of Kidney Diseases, 1995, vol. 25, No. 5, pp. 732-737. |
Maki, D., Pathogenesis, Prevention, and Management of Infections Due to Intravascular Devices Used for Infusion Therapy, in Infections Associated with Indwelling Medical Devices, Bisno et al, eds, American Society for Microbiology, 1989, pp. 161-177. |
Malviya et al., “Vascular Access in Gynecological Cancer Using the Groshong Right Atrial Catheter”, Gynecological Oneology 33, 313-316 (1989). |
Mauro, et al., Radiologic Placement of Long-term Central Venous Catheters: A Review, JVIR, 1993, vol. 4, No. 1, pp. 127-137. |
McGee, et al., Accurate placement of central venous catheters: A prospective, randomized, multicenter trial, Critical Care Medicine, 1993, vol. 21, No. 8, pp. 1118-1123. |
Medcomp, For Access via the Internal Jugular Vein . . . The Medcomp TESIO Catheter is the Solution: The Short and Long Term Solution to Subclavian Venin Stenosis and Difficult Access Problems, Brochure, 4 pages. 1991. |
Medcomp® Brochure , “Ash Split Cath™ XL”, Dec. 2001, PN 2291. |
Medcomp® Brochure , “Ash Split Cath™”, Guidewire Weave Insertion Technique, Jan. 2002, PN 2296. |
Medcomp® Brochure , “Ash Split Cath™”, Jul. 2001, PN 2114. |
Medcomp® Brochure , “Ash Split Cath™”, Nov. 1997, PN 2050. |
Medcomp® Brochure , “Ash Split Cath® II”, Aug. 2002, PN 2334. |
Medcomp® Brochure , “Magna™ High Flow Catheter”, Mar. 2002, PN 2321. |
Moss et al., Use of Silicone Dual-Lumen Catheter with a Dacron Cuff as a Long Term Vascular Access for Hemodialysis Patients, Amer J Kidney Diseases, vol. XVI, No. 3, pp. 211-215, Sep. 1990. |
Moss, et al., Use of a Silicone Catheter With a Dacron Cuff for Dialysis Short-Term Vascular Access, American Journal of Kidney Diseases, 1988, vol. XII, No. 6, pp. 492-498. |
Myers, R.D. et al., New Double-lumen Polyethylene Cannula for Push-pull Perfusion of Brain Tissue in Vivo, Journal of Neuroscience Methods, pp. 205-218, vol. 12, 1985. |
Northsea, C., Using Urokinase to Restore Patency in Double Lumen Catheters, ANNA Journal 1994, vol. 21, No. 5, pp. 261-273. |
OriGen, OriGen Biomedical Dual Lumen Catheter, from <http://origen.net/catheter.html>, downloaded May 13, 2009, 4 pages (reprinted for submission on Jul. 21, 2011). |
Parsa, et al., Establishment of Intravenous Lines for Long-term Intravenous Therapy and Monitoring, Surgical Clinics of N. Am. 1985, vol. 65, No. 4, pp. 835-865. |
Parsa, et al., Vascular Access Techniques, Textbook of Critical Care, W.B. Saunders, Philadelphia, PA (1989), pp. 122-127. |
Pasquale, et al., Groshong® Versus Hickman® Catheters, Surgery, Gynecology & Obstetrics, 1992, vol. 174, pp. 408-410. |
Passaro, et al., Long-term Silastic Catheters and Chest Pain, Journal of Parenteral and Enteral Nutrition, 1994, vol. 18, No. 3, pp. 240-242. |
Patel et al., “Sheathless Technique of Ash Split-Cath Insertion”, 12 JVIR 376-78 (Mar. 2001). |
Paulsen, et al., Use of Tissue Plasminogen Activator for Reopening of Clotted Dialysis Catheters, Nephron, 1993, vol. 64, pp. 468-470. |
PCT/US15/40463 filed Jul. 14, 2015 International Search Report and Written Opinion dated Dec. 18, 2015. |
PCT/US2003/003751 filed Feb. 7, 2003 Preliminary Examination Report dated May 5, 2004. |
PCT/US2003/003751 filed Feb. 7, 2003 Search Report dated Jul. 3, 2003. |
PCT/US2004/005102 filed Feb. 19, 2004 Preliminary Report Patenability dated Aug. 29, 2005. |
U.S. Appl. No. 16/384,481, filed Apr. 15, 2019 Non-Final Office Action dated Sep. 14, 2021. |
Number | Date | Country | |
---|---|---|---|
20190167888 A1 | Jun 2019 | US |
Number | Date | Country | |
---|---|---|---|
61085748 | Aug 2008 | US | |
61036848 | Mar 2008 | US | |
60983032 | Oct 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14930526 | Nov 2015 | US |
Child | 16270044 | US | |
Parent | 14032858 | Sep 2013 | US |
Child | 14930526 | US | |
Parent | 13657604 | Oct 2012 | US |
Child | 14032858 | US | |
Parent | 12414467 | Mar 2009 | US |
Child | 13657604 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12253870 | Oct 2008 | US |
Child | 12414467 | US |