A method for continuous column blasting rock for coal mining purposes and the like includes at least one hollow gas-filled core component arranged vertically collinearly within a vertical bore hole and seated on a first layer of a particulate explosive charge. The core component has a transverse cross-sectional dimension that is less than the diameter of the bore hole, with a first annular portion of the particulate explosive charge arranged concentrically about the core component, said first layer and said first annular portion being in contact to define a continuous explosive column. The volume of the core component is generally 10 percent to 25 percent of that of the explosive column.
The simplest form of blast hole loading is a single column of blasting agent, initiated from the bottom or middle with a cast booster. Single column loading is preferable so long as there are no constraints for powder factor (blasting agent per foot) or constraints on vibration concerns are at issue, it is often necessary to load blast holes using the “decking method” or typical air gap method. Under the “decking method,” layers of air or inert material are positioned throughout the column requiring a separate cast booster for each blasting agent layer. While accomplishing a reduction in powder factor, the blast is less efficient since each individual layer is working on its own versus a single, continuous column of blasting agent. Decking also increases the cost as additional detonators and cast boosters are required.
It is well known in the patented prior art to provide air gaps within vertical explosive charges deposited in a bore hole.
In the Kang patent No. 6,330,860, a rock blasting method is disclosed wherein a series of aligned boreholes are charged with explosives and air tubes arranged in a predetermined pattern. The air tube is formed as a cylindrical flexible tube that is fitted within the bore hole so as to provide a “quantitative air decking” in every charged borehole. Sympathetic detonation is used to continue the explosive reaction throughout the borehole due to the separation in the explosive. The diameter of the air tube is the same as or smaller than that of the boreholes so that the inflated air tube can be easily inserted into the bore holes.
In the Fitzgibbon patent Nos. 4,913,233, 4,919,203, and 5,273,110, inflatable devices or air bags are tightly mounted in engagement with the walls of the boreholes, thereby to support the layers of the explosive charge.
In the Lingens, et al., patent No. 3,782,283, vertically spaced cavities are provided in an explosive device for causing, upon detonation, the defined disintegration of the casing of the explosive device. In the explosive cartridge of the Lawrence patent No. 2,622,528, a plurality of longitudinally spaced cavities are provided that define a column made up of alternating solid sections and annular sections.
The present invention was developed to improve the blasting results produced by a given quantity of explosive charge in a safe, cost-effective manner.
A primary object of the present invention is to provide an improved method for blasting rock for coal mining and the like, wherein a core component having a longitudinal axis is arranged collinearly within a vertical bore hole, the core component being seated upon a first particulate explosive layer and having a transverse cross-sectional dimension that is less than the bore hole diameter, thereby to permit an annular portion of the particulate explosive to be deposited concentrically about the core component, the annular explosive portion being in engagement with the first explosive layer to define a continuous explosive column, the volume of the core component being about 10 percent to 25 percent of that of the explosive column.
According to another object of the invention, a plurality of the core components may be collinearly arranged in longitudinally spaced relation in the vertical bore hole, each core component being concentrically surrounded by an annular explosive portion seated on a layer in such a manner as to form a continuous explosive column in the bore hole.
According to a preferred embodiment of the invention, the hollow core components are cylindrical and are filled with compressed air that is introduced during the manufacture of the hollow core component. Preferably, the container is formed from tubular stock of a heat sealable synthetic plastic material by means of pinching the tubular stock by heat seal means at locations spaced longitudinally of the tubular stock, thereby to define the hollow core components.
A further object of the invention is to provide a core component that comprises an air-filled paperboard tube having end caps, the diameter of said paperboard tube being less than the diameter of the bore hole and the volume of the tube being about 10 percent to 25 percent of the explosive column. In another embodiment, the core component is formed by folding a cardboard blank having end closure flaps, thereby to define an air-filled device that assists in the detonation of the explosive charge.
According to a further object of the invention, the solid continuous explosive column is supported in the bore hole by an inert filler base, and a top stem of inert filler material closes the top of the bore hole over the string of vertically spaced core components.
Typically, the procedure for drilling and blasting of geologic formations is designed to meet or match the most difficult rock strata in the formation. Functionally then, that rock type determines the borehole diameter and hole spacing necessary to ensure adequate breakage for excavation or processing. In many mining operations, the strata to be blasted is made up of multiple layers of various types of rock with a wide range of hardness and/or density. This often times means that boreholes are positioned such that if the hardest seam is adequately broken then other softer formations are over shot.
Though explosives density can be changed in the hole, the single greatest determining factor in explosives energy is pounds of blasting agent per foot of column as determined by the available hole diameter. The use of core component of the present invention allows the blaster to vary the size of the explosive column by inserting smaller diameter pre-inflated core components at specific or random locations.
The benefit of the method of the present invention is to allow maximum energy in the hardest formation and then adjusting the explosive load per foot to reduce the energy in softer rock layers. This explosive conservation system can benefit the blasting operation in numerous ways. The key to the concept is the insertion of pre-inflated or pre-formed devices of various materials including but not limited to rigid or flexible poly tubing, pipe or cardboard as well as heat sealed shaped 1.2 to 10.0 mil pvc, polypropylene or other flexible sheet or tube materials of significantly smaller diameter than the borehole.
When inserted in the explosive column, the smaller diameter core component allows the bulk explosives to build up around the void created by its shape, thus never interrupting the solid column propagation of the charge. Since the column of bulk explosive is not interrupted, the continuous propagation is not dependent on reintroduction of priming, therefore the only limiting factor of the number of core components introduced into the bore hole is the desired pounds of blasting agent per foot of column as determined by the available hole diameter.
The core component does not create a plug or gap in the borehole insofar as the explosive column is continuous.
In accordance with the present invention, the blasting products are selected and applied based on variables including but not limited to rock type, depth of borehole, vibration control, proximity of dwellings or utilities and cost. Charged blast holes typically are so designed to meet the needs of the hardest rock or most stringent vibration criteria. Variability from this objective is then limited by the borehole diameter and explosive type and density. By placing a preformed geometric shape into the bulk explosive column representing a profile from 10 percent to 25 percent of the available volume, benefits may be achieved in economy, environmental effects and blast results. The preformed geometric shape of the core component charged with atmosphere air may be cylindrical, rectangular, triangular or other shapes having three dimensions. The preformed geometric shape may be either rigid in construction or flexible and inflated with atmosphere air, inert gases or blast enhancing gases such as oxygen, acetylene, or other fuels. The core component may be of various lengths either more or less than the length of the explosive column. Furthermore, the core component may be divided into separate units and distributed either evenly or at random locations throughout the borehole.
Other objects and advantages of the invention will become apparent from a study of the following specification when viewed in the light of the accompanying drawings, in which:
Referring first more particularly to
In accordance with a characterizing feature of the invention, the outer diameter d1 of the core component is less than the diameter D1 of the bore hole, and the volume of the core component is about 10 percent to 25 percent of the column defined by the explosive layers 8a and 8b. It is important to note that the particulate explosive material is deposited in the bore hole 2 in such a manner as to define a continuous solid explosive column extending from the bottom inner layer 6 and the top stem 14.
Referring to
Referring now to a second embodiment of the invention illustrated in
According to the embodiment of
In accordance with the present invention, the core components can be placed at either pre-planned or random locations in the continuous explosive column. In the illustrated embodiment of
By the use of the core components, up to 15 percent of the average explosive load may be replaced. This method allows the hardest rock to be shot with the maximum amount of explosive, while the blaster can selectively reduce the change in areas of the formation that adequately fragment with a lesser amount of energy.
The invention offers the advantages of reducing the overall powder factor, reduction in cost and delay decking, helps to control flying rock, and improves equipment and labor efficiency. The invention permits optimum loading without additional priming, and results in a reduction of vibration without the changing of bit size.
Flexibility is provided to the blasting operation regardless of the drill equipment available or the mining conditions. Besides the obvious savings in the use of the blasting agent, the present invention provides improved blasting results versus traditional air gapping methods. Vibration is controlled by the use of the core components, since the blasting operations reduce the pounds per delay in critical situations without introducing more decks or inert materials. The core component is constructed of cylindrical polypropylene heat sealed on both ends, pre-cut to length and available in a range of diameters and thickness. Each core component tube is pre-inflated prior to delivery to the borehole, or it can be inflated at the borehole site via an individual inflation valve. Inflation at the borehole improves efficiency for shipping, storage, and usage.
The amount of explosives required to blast overburden may be reduced by providing an axial air gap in the explosive column and not requiring the reintroduction of priming or being dependent on the limits of sympathetic detonation. Also, the number of separate delay detonators needed per hole to comply with vibration regulations may be reduced by creating or occupying space in borehole and thereby better distributing the explosive column throughout the borehole. The bulk explosives may be placed closer to the surface of the ground by reducing the amount of explosives in terms of pounds per foot and then allow for the fragmentation of rock close to the surface while reducing the likelihood of fly rock from the blast. The over break in adjacent areas may be reduced by reducing the amount of explosives loaded in the last rows of holes. The efficiency of the hole loading equipment and labor is improved by extending the capacity of the delivery equipment by causing the same volume of explosives to charge more boreholes.
While in accordance with the provisions of the Patent Statutes the preferred forms and embodiments of the invention have been illustrated and described, it will be apparent to those skilled in the art that various changes may be made without deviating from the inventive concepts set forth above.
This application is a continuation of application Ser. No. 10/388,738 filed Mar. 17, 2003.
Number | Date | Country | |
---|---|---|---|
Parent | 10388738 | Mar 2003 | US |
Child | 11266510 | Nov 2005 | US |