This disclosure relates generally to phase change ink jet printers, the solid ink sticks used in such ink jet printers, and the load and feed apparatus for feeding the solid ink sticks within such ink jet printers.
Solid ink or phase change ink printers conventionally receive ink in a solid form, either as pellets or as ink sticks. The solid ink pellets or ink sticks are typically inserted through an insertion opening of an ink loader for the printer, and the ink sticks are pushed or slid along the feed channel by a feed mechanism and/or gravity toward a heater plate in the heater assembly. The heater plate melts the solid ink impinging on the plate into a liquid that is delivered to a print head for jetting onto a recording medium.
The correct loading and feeding of ink sticks has typically been accomplished by incorporating loading features, such as, for example, keying, guiding, alignment, orientation and/or sensor actuating features, into the exterior surface of an ink stick. The loading features may comprise protrusions and/or indentations that are located in different positions on an ink stick for interacting with key elements, guides, supports, sensors, etc. located in complementary positions in the ink loader. In addition, loading features may include ink stick shapes and/or features that aid a user in visually identifying the ink stick or correctly orienting the ink stick for insertion. For instance, ink sticks may include a surface that has been marked with a visually recognizable symbol such as color slot identifier, logo, or shop keeping unit (SKU) designation.
The loading features of ink sticks have typically been focused on multiple axis interfaces with the ink loader: at least one axis corresponding to insertion and at least one other axis corresponding to feed, with the former axis typically transverse to the latter. For instance, keying and orientation features of an ink stick may be oriented along an insertion axis while support/guidance and sensor features may be oriented along a feed axis.
The manufacturing of ink sticks having multi-axis loading features may be limited by fabrication technology. For instance, previous ink sticks have been manufactured with a formed tub and flow fill process. In this method, the ink stick composition is heated to a liquid state and poured into a tub having an interior shape corresponding to the desired finished ink stick shape. Shapes and features created in this fashion, however, are generally restricted to the bottom and side surfaces of the ink stick. Compression or injection molding may expand the manufacturing capability to allow the formation of ink sticks of nearly unlimited shapes with features on all surfaces. The tooling for such ink sticks, however, may become prohibitively expensive, and the resulting ink sticks may be difficult to remove from the tooling. Benefits to more complex ink shape opportunities exist and can be encouraged as solutions to these manufacturing problems are addressed.
In one embodiment, an ink stick for use in a phase change ink imaging device comprises an ink stick body having a leading surface, a trailing surface, and a top surface. The top surface has a front edge that is rearwardly offset from a top edge of the leading surface, and a back edge that is at least partially rearwardly offset from the top of the trailing surface. A leading canted face extends between the top edge of the leading surface and the front edge of the top surface. A trailing canted face extends between the top edge of the trailing surface and the back edge of the top surface. The back edge includes a key that is complementary to an insertion opening key of an ink loader.
In another embodiment, a method of feeding ink sticks in an ink loader of a phase change ink imaging device comprises inserting a first ink stick into a feed channel of an ink loader. A second ink stick is then inserted into the feed channel. A trailing downwardly canted surface of the first ink stick is then abutted with a leading upwardly canted surface of the second ink stick. The abutted ink sticks are then urged toward a melt end of the ink loader.
In yet another embodiment, a set of ink sticks for use in a phase change ink imaging device comprises a first and second ink stick. The first and second ink sticks each have a leading surface, a trailing surface, and a top surface, the top surface having a front edge that is rearwardly offset from a top edge of the leading surface, and a back edge that is at least partially rearwardly offset from the top of the trailing surface. A leading canted face extends between the top edge of the leading surface and the front edge of the top surface. A trailing canted face extends between the top edge of the trailing surface and the back edge of the top surface of the top surface. The back edge includes a key that is complementary to an insertion opening key of an ink loader. The leading canted face of the first stick includes a nomenclature mark identifying a first insertion opening, and the key of the first ink stick is complementary to the insertion opening key of the first insertion opening. The leading canted face of second ink stick includes a nomenclature mark corresponding to a second insertion opening, and the key of the second ink stick is complementary to the insertion opening key of the second insertion opening.
In yet another embodiment, multiple sets of ink sticks of different lengths but otherwise having a similar shape provide differentiation between model or series sets such that a common loader can be used with simple modification to the insertion opening length.
For a general understanding of the present embodiments, reference is made to the drawings. In the drawings, like reference numerals have been used throughout to designate like elements.
In the particular printer shown, the ink access cover 20 is attached to an ink load linkage element 22 so that when the printer ink access cover 20 is raised, the ink load linkage 22 slides and pivots to an ink load position. The interaction of the ink access cover and the ink load linkage element is described in U.S. Pat. No. 5,861,903 for an Ink Feed System, issued Jan. 19, 1999 to Crawford et al., though with some differences noted below. As seen in
The feed channel 28 receives ink sticks inserted along an insertion axis or in an insertion direction L at the insertion end of the feed channel through keyed opening 24A. A color printer typically uses four colors of ink (yellow, cyan, magenta, and black). Ink sticks 30 of each color may be inserted through a corresponding keyed opening 24A-D and received in a corresponding feed channel 28A-D. The key plate 26 and keyed openings 24A-D are oriented substantially perpendicular to the insertion direction to provide access to the feed channels. The feed channel has sufficient longitudinal length that multiple ink sticks may be inserted into the feed channel. Each feed channel delivers ink sticks along a feed axis or feed direction F of the channel to the corresponding melt plate 32 at the melt end of the feed channel. The melt end of the feed channel is adjacent the melt plate 32. The melt plate 32 melts the solid ink stick into a liquid form. The melted ink typically drips or flows through a gap 33 between the melt end of the feed channel and the melt plate, and into a liquid ink reservoir (not shown). Although the insertion and feed directions are shown substantially straight and perpendicular to each other, the directions need not be straight nor do they need to be perpendicular. For example, the insertion and feed directions, or axes, may be angled or parallel with respect to each other.
Ink sticks may include a number of features that aid in correct loading, guidance and support of the ink stick when used. These features may comprise protrusions and/or indentations that are located in different positions on an ink stick for interacting with key elements, guides, supports, sensors, etc. located in complementary positions in the ink loader. Similarly, ink sticks may include surfaces that are positioned, angled and/or otherwise configured to aid a user in visually identifying the ink stick, orienting the ink stick correctly for insertion and selecting the correct keyed opening for insertion. These surfaces may include marks and/or symbols such as color slot identifier, logo, or shop keeping unit (SKU) designation.
Referring now to
Referring to
The base portion 40 of the ink stick body also includes a bottom surface 74. The bottom surface 74 of the base portion 40 and the top surface 54 of the canted upper portion 50 may be substantially parallel to one another. The ink stick body also has two lateral side surfaces 78, 80. The lateral side surfaces 78, 80 may be substantially parallel one another and substantially perpendicular to the top and bottom surfaces 54, 74. The top, bottom and lateral surfaces of the ink stick body, however, need not be flat, nor need they be parallel or perpendicular to one another. The ink stick is configured to fit into the feed channel with the two lateral side surfaces 54, 74 of the ink stick body oriented along the longitudinal feed direction F of the feed channel.
In one embodiment, the canted surface 60 of the ink stick 30 may be formed at an angle that is at least 45° relative to the longitudinal axis of the ink stick. This angle allows nomenclature, such as color slot identification, logo, sku, etc., to be formed by a mold tool that separates from front to back along the longitudinal axis of the ink stick. By providing a canted surface 60 at the top/front of the ink stick, a printer operator may be aided in visually identifying the correct orientation of the ink stick for insertion. An additional feature that may reduce the possibility of incorrectly inserting an ink stick of one color into a feed channel intended for a different color is to include a visually recognizable symbol or nomenclature mark 88 on the canted surface 60 of the ink stick. The mark may comprise any symbol that may convey meaning, such as alphanumeric characters, feed direction arrow(s) and the like. The mark may provide a variety of information, such as the printer model for which the ink sticks are intended, or additional color information. Brand names, logos, shop keeping unit numbers (SKU's), etc. may also be formed on the canted surface. It should be noted that the canted face at the front of the stick could have an inset, such as one complementary to the rear projected key feature, such that the face would not be uniformly planer. Face edges may be stepped in this case and all such configurations and variations, though not illustrated, are considered inclusive in this invention. Loader and stick orientation references infer at least a somewhat horizontal feed direction but it should be noted that a more vertical orientation is also contemplated for the present concepts as is insertion into the feed channel parallel to feed.
Referring to
In another embodiment, the leading canted surface 60 and the trailing canted extension 70 are angled substantially the same to facilitate the nesting of adjacent ink sticks in an ink loader. As can be seen in
The ink stick may include insertion keying elements for interacting with the keyed openings 24A, 24B, 24C, 24D of the key plate 26 to ensure that only ink sticks intended for a specific feed channel are inserted into the feed channel. Key elements comprise a feature of a particular predetermined size, shape, and location on the outer perimeter of the ink stick body that extend at least partially the length of a side surface generally parallel to the insertion direction L of an ink loader. The ink stick key element may comprise protrusions or indentations that extend at least partially from the top to bottom surface of the ink stick substantially parallel to the insertion axis of the ink loader. Insertion key elements are shaped and positioned to match a complimentary key formed in the perimeter of the keyed opening in the key plate.
Each color for a printer may have a unique arrangement of one or more key elements in the outer perimeter of the ink stick to form a unique cross-sectional shape for that particular color ink stick. The combination of the keyed openings in the key plate and the keyed shapes of the ink sticks insure that only ink sticks of the proper color are inserted into each feed channel. A set of ink sticks is formed of an ink stick of each color, with a unique key arrangement for ink sticks of each color.
In one embodiment, the canted extension 64 of the ink stick 30 is configured to serve as an insertion key element. As can be seen in
Although the insertion keying system described above involved using a keyed extension extending from the trailing end, other configurations of insertion keying may be used. The insertion keying elements, however, are advantageously formed in the leading and/or trailing ends of the ink stick when sticks are to be nested against one another in a feed stack. Insertion keying elements may be placed at any point or number of points around the periphery of the stick that can be influenced by an insertion opening.
Insertion keying may also be used to differentiate ink sticks intended for different models of printers. One type of insertion key may be placed in all the keyed openings of feed channels of a particular model printer. Ink sticks intended for that model printer contain a corresponding insertion key element. An insertion key of a different size, shape, or position may be placed in the keyed openings of the feed channels of different model printers, similar to stick length differentiation previously described. For example, series keying may be incorporated by changing the length, width and/or placement of the canted extension on ink sticks intended for different models of printers.
In another embodiment, the series keying scheme may include “one way” or compatibility keying features in order to accommodate progressive product differentiation. For example, world markets with various marketing approaches, pricing, color table preferences, etc. have created a situation where multiple ink types or formulations may exist in the market simultaneously. Thus, ink sticks may appear to be substantially the same but, in fact, may be intended for different phase change printing systems due to factors such as, for example, date or location of manufacture; geographic variation including chemical or color composition based on regulations or traditions or special market requirements, such as “sold” ink vs. contractual ink supply, North American pricing vs. low cost markets, European color die loading vs. Asian color die loading, etc.
Compatibility keying may be implemented to ensure that ink stick configurations that are intended to be used with one or more phase change ink platforms, based on marketing approaches, ink formulations, geographic regulations, etc., are used only with those platforms. As an example, an ink formulation for one printer series may be compatible with a second printer series, but ink formulated specifically for the second printer series may not be compatible with the first printer series. Similarly, ink sticks intended for North American markets may be compatible with all printing platforms while ink sticks intended for low cost markets may not be compatible with North American printing platforms. This flexibility in one way keying accommodation allows for the intended multiple product use of some ink while appropriately preventing unintended alternate model use, such as convenience of accepting higher market price ink in a later model while preventing the lower market price ink of the later model from fitting into an earlier model. One way or compatibility keying configurations are defined by same color ink stick shapes that are very similar but differ to the extent that corresponding key plate insertion openings can be somewhat different so that alternate but similar shapes may be admitted or selectively excluded based on the size or configuration difference providing the compatibility keying.
Compatibility keying may be incorporated in a number of ways such as, for example, by varying the number of key features and/or varying a geometric characteristic of the key features or varying one or more dimensions of the ink stick or any combination. By varying the number and/or characteristics of key features, compatibility keying may be extended beyond two platform differentiation. Therefore, many combinations of one way compatibility keying are possible across a wide range of acceptance and exclusion sets.
Referring to
Thus, essentially identical sticks can be provided in sets with varying lengths where keying features and their position relative to one of the leading or trailing ends are common to the sets, length being the only differentiator. These sets result in one way compatibility where the longer stick would not fit into the shorter opening but the shorter stick would fit into the longer opening. Incremental length changes as described can extend into multiple sets, such as three, four or more, limited only by reasonable length change resolution that provides desired exclusion and by the shortest and longest stick lengths influenced by manufacturability, market pricing objectives and so forth. Incremental length ink sets are optimally provided for by the present easily fabricated canted face stick configuration but can also be an implementation in many other ink designs so this feature is not limited to canted face sticks.
The ink stick may also include loading features that are along the feed axis. For instance, the ink stick of
The ink stick may be provided with more than one lower guide element for interacting with more than one guide rail in a feed channel. Moreover, the lower guide element may be recessed into the bottom surface of the ink stick body. A guide rail may be provided in the feed channel that is raised to function with such a recessed lower guide element. The guide rail and the lower guide element may be formed with compatible shapes, and may for example have complementary shapes.
Alternatively or in addition to the lower guide element 90, ink sticks may be provided with guide/support elements 98 formed in the lateral surfaces of the ink stick. For example, referring to
The ink sticks, such as the one described above, that include nomenclature surfaces and loading features may be manufactured using an injection molding or compression molding process. Because the ink stick may be designed without features that are transverse to the longitudinal axis, or parting axis, of the ink stick, i.e. undercuts, the ink stick may be formed using a single-axis molding process. This configuration allows for molding without slides or core pulls thereby decreasing the complexity and cost of manufacturing ink sticks.
The ink stick may be formed using a single-axis molding tool 100 such as that shown in
Those skilled in the art will recognize that numerous modifications can be made to the specific implementations described above. Those skilled in the art will recognize that the interface elements may be formed into numerous shapes and configurations other than those illustrated. Therefore, the following claims are not to be limited to the specific embodiments illustrated and described above. The claims, as originally presented and as they may be amended, encompass variations, alternatives, modifications, improvements, equivalents, and substantial equivalents of the embodiments and teachings disclosed herein, including those that are presently unforeseen or unappreciated, and that, for example, may arise from applicants/patentees and others.
Number | Name | Date | Kind |
---|---|---|---|
5223860 | Loofbourow et al. | Jun 1993 | A |
5442387 | Loofbourow et al. | Aug 1995 | A |
D478621 | Jones | Aug 2003 | S |
6648435 | Jones | Nov 2003 | B1 |
6672716 | Jones | Jan 2004 | B2 |
6679591 | Jones | Jan 2004 | B2 |
6761443 | Jones | Jul 2004 | B2 |
6840613 | Jones | Jan 2005 | B2 |
Number | Date | Country |
---|---|---|
1359014 | Nov 2003 | EP |
1935650 | Jun 2008 | EP |
Number | Date | Country | |
---|---|---|---|
20080225096 A1 | Sep 2008 | US |