Currently, when making a product, designers, manufacturers and individuals have to choose between a flexible, light weight material and un-flexible, relatively solid material. Flexible fabric could include natural materials, such as cotton, wool, hemp, and linen, and manufactured materials, such as polyester, rayon, and spandex. In certain situations, designers may desire a fabric with more tensile strength and abrasion resistance, therefore a designer may employ a fabric like material, such as a foil, mesh, or screen. These materials may be lightweight and flexible, but lack properties of a more rigid material.
However, when manufacturing certain products, it may desirable to employ a material that has rigid properties: strong, hard, dense, inflexible, and compressive strength. For example, depending on the desired properties, a designer may select steel or other metal, hardened plastic, or wood. These rigid materials may be strong and hard, but lack properties of a more flexible material.
It would be desirable to have a fabric that has some properties of flexible light weight material properties and also has the properties of substantially rigid materials.
There are situations where it is preferable an exterior fabric be strong, but not too strong, so as to provide access, contact, or effect of a liner material contained behind or within the exterior fabric. For example, there are situations where it is desirable that an exterior fabric is breathable or porous so that the environment would have contact with the liner material. The selection of the exterior fabric directly impacts the environment's interaction with the liner material; thus, if the exterior fabric is too strong or too dense, for example, then the fabric would be less breathable or porous and therefore hinder access to the liner material. Alternatively, there are situations where an exterior fabric is used to convey liner material, and at an appropriate point, the exterior fabric releases the liner material. If the exterior fabric is to strong, then it will not release the liner material, if it is too weak, then the exterior fabric may securely contain the liner material.
In another aspect, there are situations where an exterior fabric bolsters the effect of its liner material. For example, when creating body armor it is desirable that the exterior fabric be strong, dense, and resilient to ideally support and not hinder the effects of a strong, resilient liner material.
Thus, it would be desirable to have a fabric that has an exterior fabric that bolsters the desired effect of the interior liner material.
a) depicts a cross sectional view of a portion of lined fabric in accordance with a first exemplary embodiment of the invention;
b) depicts a plan view of a portion of lined fabric in accordance with a first exemplary embodiment of the invention;
a) depicts an application of the lined fabric in accordance with an exemplary embodiment of the invention;
b)-(e) depict a portion of the application of
a)-(c) depict fabric material in accordance with alternate aspects of the invention;
a)-(c) depict cell arrangement in fabric material in accordance with alternate aspects of the invention;
a)-(b) depicts cell composition in fabric material in accordance with alternate aspects of the invention;
a) depicts another application of the lined fabric in accordance with an exemplary embodiment of the invention;
b)-(e) depict a portion of the application of
a)-(b) depict implementations of the lined fabric;
In the following detailed description, reference is made to the accompanying drawings, which form a part hereof, and in which are shown by way of illustration specific exemplary embodiments of the invention. These embodiments are described in sufficient detail to enable those of ordinary skill in the art to make and use the invention, and it is to be understood that structural, logical, or other changes may be made to the specific embodiments disclosed without departing from the spirit and scope of the present invention.
The invention seeks to address a deficiency between light weight, flexible materials and rigid materials. The invention discloses a lined fabric that has substantially characteristics of a rigid material while maintaining the flexibility and versatility of a fabric.
The invention also discloses a fabric that has an exterior fabric that bolsters the desired effect of the interior liner material.
a) depicts a cross sectional view of a portion of lined fabric 101 in accordance with a first exemplary embodiment of the invention. The lined fabric 101 includes several elements: a first fabric material 102, a second fabric material 104, a liner material 103, and fastening material 107. The portion of the lined fabric 101 depicted in
A cell 109 of the lined fabric 101 is comprised of a portion of the lined fabric 101 bounded by neighboring fastening materials 107. Thus, each cell 109 includes a portion of the lined fabric 101: a portion of a first fabric material 102, a portion of the second fabric material 104, a portion of the liner material 103, and a portion of the fastening material 107.
b) depicts a plan view of a portion of lined fabric 101. In an exemplary approach, the lined fabric 101 would be provided in sheets which would be cut and assembled through the use of patterns, similar to a conventional fabric. The lined fabric 101 shows sixteen (16) cells 109, having liner material 103, and fastening material 107. Although not shown, there may exist areas in the lined fabric 101 without cells, for example, border areas, generally formed by the first fabric 102 and the second fabric 104 without any liner material 103.
On the border of a cell 109, a first fabric material 102 may be in contact with a portion of the second fabric material 104 depending on the selection of fastening material 107. If, for example, the fastening material 107 is a type of thread then stitching the thread causes first fabric material 102 to be contact the second fabric material 104. If, in another example, if the fastening material 107 is a type of glue then the first fabric material 102 is substantially in contact with the second fabric material 104 through the glued fastening material placed between the materials. In an aspect of the invention, liner material 103 is not fastened to either of fabric materials 102, 104, and is contained within a cell 109 by the borders of the cell 109 formed by fastening fabric material 102 to fabric material 104. The movement of the liner material 103 within a cell 109 may be dependent on the correlation of the characteristics of the liner material 103 to the characteristics of the cell 109. For example, if the size of the liner material 103 is smaller than the size of the cell 109, then the liner material 103 will likely be able to move around within the cell 109. For example, if the size of the liner material 103 is approximately the same size as cell 109, then the liner material 103 will not be likely be to move around within the cell 109, as the liner material 103 is likely to be snug within the cell 109. In another aspect of the invention, liner material 103 is fastened to either or both of fabric materials 102, 104 by any conventional fastening means.
a) depicts an application of the lined fabric 101 in accordance with an exemplary embodiment of the invention.
In this example, the explosive device is substantially cylindrically shaped. Thus, it must be determined how best to wrap the device in a cover with the lined fabric 101. It is likely that the design for the shape of the cover would be broken into constituent parts. As the device is shaped like a cylinder, it is reasonable to fashion a cover by making a top, bottom, and side, where the top and bottom are circular and substantially the same, and the side is substantially rectangular. The lined fabric is fashioned into a cover, e.g., a fragmentation sleeve 200, appearing to be a cylindrical object as seen in
b) depicts a plan view of the top of the fragmentation sleeve of
c) depicts a plan view of the side of the fragmentation sleeve of
d) depicts a plan view of the bottom of the fragmentation sleeve of
e) depicts, in perspective view, an outline of a cylindrically shaped explosive device 270 having a height of its side 277 and a circumference of its top and bottom being 275.
The fragmentation sleeve 200 is formed by first creating the lined fabric 208, lined fabric 209, and the lined fabric 213. Thus, a first and second fabric material and the liner material for each of the lined fabric 208, lined fabric 209, and the lined fabric 213. For each lined fabric, the first and second fabrics are laid out, the liner material appropriate placed, and the fastener system applied to form the appropriate cells. The lined fabric is then cut to appropriate shape and size. The top 210 is made from lined fabric 209, the bottom 230 is made from lined fabric 213 and side 212 is made from lined fabric 208. Thus, a top 210, a side 212, and bottom 230 have been created.
The fragmentation sleeve 200 is then formed by fastening the right edge 226 to left edge 225 along its length, fastening the circumference 215 of the top to the top edge 227 of the side 212 and fastening the circumference 235 of the bottom 230 to the bottom edge 228 of the side 212. The fragmentation sleeve 200 can be formed around the explosive device 270 well in advance of use. In another approach, the fragmentation sleeve 200 can be partially formed in advance, e.g., leaving the bottom only partially fastened, thus permitting the explosive device 270 to be inserted later and then the bottom fastened (or not). In yet another approach, the fragmentation sleeve 200 is formed in the field, e.g., attaching sides and the tops and bottom using Velcro™ or other quick fastening system, thus permitting the explosive device 270 to be wrapped by the sleeve 200 in the field.
In a preferred approach, the lined fabric 209, the lined fabric 208, and the lined fabric 213 are formed from the same type of first fabric material, second fabric material and first liner material, have the same size cells, and are fastened with the same fastener material, although the invention is not so limited.
In an exemplary application, a fragmentation sleeve was created using automobile headliner material for the lined fabric, steel squares for the liner material and cotton thread (used to sew the material together) as the fastener. If the headliner is made of cotton, then the tensile strength of the material is easily known. The tensile strength of the cotton is generally known to be approximately between 3.0-6.0 g/d.
In another approach, the headliner material is constructed of polyester material layer coupled with a foam backing material layer. Exemplary material specifications for a polyester material layer are provided in Table 1, below, and exemplary specifications for a foam backing material layer are provided below in Table 2. Although an exemplary aspect of the invention is described with respect to using automotive headliner material, the invention is not so limited and any appropriate material can be used.
The steel squares, from ⅛ inch steel sheets, were chosen as having the desired effect of fragmentation. A preferred size of the squares being ¼ inch by ¼ inch. A preferred size of a cell being ½ inch by ½ inch. The material was selected for the fabric material because it appropriately holds the steel under normal conditions, and because the material does not significantly absorb the kinetic energy from an explosive device thereby permitting most of the blast force to be received by the steel square. Further, the headliner material does not significantly prevent the steel square from being forcefully expelled from the lined fabric as a result of the blast. Low cost, ease of access to raw material, and flexible nature of the material are factors that were also taken into consideration in the selection of the fabric material.
Thus, a fragmentation sleeve has been created from lined fabric. The selection of the exterior materials, the first and second fabric materials, securely carry and provide the liner materials to the explosive device, however, when the explosive device explodes, the fabric materials do not significantly impede the force of the explosive device from reaching the liner material, nor does the fabric materials significantly impede the liner material from being expelled through the fabric material.
The lined fabric, and more specifically the cells of the lined fabric, works as a delivery system for the delivery of liner material, e.g., the steel square. Thus, the selection of the different elements of the lined fabric and the arrangement of those elements should be done with the goal of being a delivery system. For example, if the first fabric layer is too strong or resilient, then it will impede the steel from having its desired effect. Thus, an external kinetic energy force, e.g., from an explosive device, easily passes through a first fabric of the lined fabric towards the liner material, probably rupturing the first fabric, and in turn the external kinetic energy force exerts its energy on the liner material, e.g., the steel square, and the remaining kinetic energy force, as mostly likely delivered through the liner material, ruptures the second fabric and easily passes through the second fabric of the lined fabric. However, without the application of the kinetic energy force, the liner material remains within the lined fabric.
Thus, this example of the invention discloses a lined fabric that has substantially characteristics of a rigid material while maintaining the flexibility and versatility of a fabric. The flexibility of the fabric enabled the lined fabric to be lined around a cylindrically shaped object, e.g., the cylindrically shaped explosive device, and still provide the rigid material, e.g., the liner material being the steel squares.
The selection and arrangement of the elements is dependent on the desired results, availability of materials, or other limitations. For example, if it is desired that the lined fabric 101 is to be washable, then elements are selected appropriate for that goal. For example, a cotton material could be used for fabric material 102 and fabric material 104. For a washable rigid material, a hard plastic or composite material could be used for liner material 103. For a washable fastening material, a cotton thread can be employed.
In a preferred approach, the advantages and disadvantages of each of the elements, viewed both in isolation and in combination, are taken into consideration. For example, in consideration of a first fabric material 102 there is a preferred characteristic of being flexible. In addition or along with that consideration, other various factors might be included, including, but not limited to: cost, availability, flexibility, durability, color, thickness, odor resistance, mildew resistance, water resistance, porous-ness, filtration factors, thermal conductivity, magnetic properties, EMF/radio frequency properties (e.g., conductance, capacitance, transmittance), and flammability. The material choices are almost limitless: for example, cotton, wool, linen, burlap, polyester, spandex, rayon, meshes, netting, and hemp. In an approach, the first fabric material is the same material throughout.
In another approach the first fabric material is a combination of materials.
Although the above is described with respect to the first fabric material, the principles apply to second fabric material as well. The selection and arrangement of a fabric used for first fabric material can be the same or different from the fabric used for second fabric material.
The selection of liner material is almost limit-less. In a preferred approach, a liner material is substantially rigid, at least being relatively more rigid than, the fabric layers. In addition or along with that consideration, various other factors are taken into consideration, including, but not limited to: cost, availability, flexibility, durability, color, thickness, odor resistance, mildew resistance, water resistance, porous-ness, filtration factors, thermal conductivity, magnetic properties, EMF/radio frequency properties (e.g., conductance, capacitance, transmittance), and flammability. Design selection may also include consideration of the physical characteristics of the liner material: shape, size, smoothness/roughness, and weight.
The selection of fastening material is almost limit-less. There is a preferred characteristic that the fastening material 107 is substantially, and reliably fastens fabric layer at the desired locations of fabric layer. In addition or along with that consideration, various other factors are considered, including, but not limited to: cost, availability, flexibility, durability, color, thickness, odor resistance, mildew resistance, water resistance, porous-ness, filtration factors, thermal conductivity, magnetic properties, EMF/radio frequency properties (e.g., conductance, capacitance, transmittance), and flammability. The spectrum is extremely wide, for example, from sewing thread to an epoxy to quick fastening materials (e.g., Velcro™).
The assembled lined fabric, having the cells, would be provided in sheets which would be cut and assembled as per a pattern like a traditional fabric.
As noted above, consideration is not only focused on the individual properties of the elements but must also on the combined properties of the elements in light of the desired goal. For example, some liner materials do not work well with certain fasters or alternatively, some fasteners' work better with some liner materials.
Along with the selection of the elements, consideration must be applied to the arrangement of the elements with respect to a desired goal and work within limitations. For example, a decision includes consideration of the characteristics of the lined fabric, which includes the arrangement, organization, and the composition of, e.g., what elements constitute, of the cells.
One lined fabric characteristic is whether the arrangement of cells is substantially uniform through the lined fabric, as depicted in
Furthermore, the composition of the cells must also be decided. For example, should all of the cells have substantially the same composition or different composition?
In yet another approach, at least some of the cells have a plurality of similar or different liner material, e.g., lead shot. See
In another aspect, the gap around the liner material within the cell can also be varied. The difference in the composition of cells can be based on variety of factors, including but not limited to, location on the fabric. Additionally, in another aspect, the invention discloses, although not depicted, using alternating layers so that the flexibility and rigidity properties better cover the entire area of the fabric. This could be especially advantageous in certain armoring and shielding applications of the fabric.
As noted above, the use of a lined fabric with explosive systems could increase the effectiveness and yield when applied. However, the addition of the fragmentation material in the lined fabric would not be permanent thus providing flexibility in a situation as to whether to apply this lined fabric or not. In this case, a material is desired that is both flexible as a fabric and offer high density, hardness and tensile strength as well as increasing the explosive effect of the kinetic energy force, e.g., ordnance. In this effect, tool steel is selected to be used for the liner material, at the very least, to increase effect of the kinetic energy. In an approach ⅛ tool steel is used for liner material. A cotton blend is selected as a lightweight, inexpensive material that should not detract or minimize the kinetic energy, e.g., the explosive effect. However, application of the invention is only limited by the selection and arrangement of elements.
In an example, a lined fabric can be used for body armor, where the fabric material is selected to minimize ballistic and/or weapon penetration, e.g. Kevlar, and the liner material is selected to minimize ballistic and/or weapon penetration, e.g., ceramic materials, composite materials. Cell arrangement, cell composition, and fastening systems are also chosen to further, or at least not hinder, the goal to minimize ballistic and/or weapon penetration.
In another example, a lined fabric can be used for insulation, where the fabric material is selected to form a weather seal, e.g. Gore-Tex™, and the liner material is selected has insulation properties, e.g., batting, down, polyester. Cell arrangement, cell composition, and fastening systems are also chosen to further, or at least not hinder, the goal to provide insulation.
In an example, a lined fabric can be used for filtration, where the fabric material is selected to allow some level of pourous-ness, e.g. cotton, and the liner material is selected to filter elements, e.g., activated charcoal. Cell arrangement, cell composition, and fastening systems are also chosen to further, or at least not hinder, the goal to provide filtration.
In an example, a lined fabric can be used for electromagnetic shielding, where the fabric material is selected to resist or absorb EMF, e.g. wire mesh, and the liner material is selected to resist or absorb EMF, e.g., graphite composite materials. Cell arrangement, cell composition, and fastening systems are also chosen to further, or at least not hinder, the goal to create an electromagnetic shield.
In an example, a lined fabric can be used for power generation, where the outside facing the solar energy source fabric material is selected to permit transmission of those energy waves, e.g. acetate, and the liner material is selected to collect the solar energy, e.g., solar panels. Cell arrangement, cell composition, and fastening systems are also chosen to further, or at least not hinder, the goal to provide power.
In an example, a lined fabric can be used for flotation, where the fabric material is selected preferably retains little or no water, e.g. large pored nylon, and the liner material is selected to float, e.g., closed cell foam. Cell arrangement, cell composition, and fastening systems are also chosen to further, or at least not hinder, the goal to provide floatation.
In another example, a lined fabric is used for protection of a device. For example, the lined fabric includes shape charges as the liner material, or at least part of the liner material of a lined fabric. In a preferred approach, the shape charges are used to focus a kinetic energy force to one side of the lined fabric. In this approach, a lined fabric can be draped partially over or around or substantially cover an object. The focus of the liner material's kinetic energy is directed to the direction of the material layer closer to the object. When triggered, the force of the kinetic energy in the liner material is substantially directed towards the object and minimal kinetic energy is directed away from the object. Thus, the object is substantially affected by the kinetic energy, but the area surrounding the object is not. Thus, a lined fabric can be used as a force contained blast. In another approach, the lined fabric is used a theft deterrent system, such that when theft of a device, which is at least partially covered by the lined fabric, is attempted, the shaped charges are triggered, ideally destroying the covered object, and as a result, thwarting the theft of the object.
For example, in reference with
Although this application is described with reference to a cylindrically shaped cover and object being covered, the invention is not so limited. For example, the cover can be substantially rectangularly shaped, e.g., a blanket, and placed over at least part of an object, where the object may or may not be rectangularly shaped.
Different from the invention described above with respect to a fragmentation cover, when a lined fabric is used as source of kinetic energy, as is conventionally known, it may be necessary to couple, e.g., electronically, the liner material, for the purposes of triggering. This can be accomplished by any appropriate conventionally known approach.
a) depicts an application of the lined fabric, as an augmentation sleeve, in accordance with another exemplary embodiment of the invention. A lined fabric is used for supplementing or augmenting a device intended on controlling the behavior of a person(s) or animals, e.g., crowd or pet control.
The augmentation sleeve is placed on/over an explosive device, with the second fabric material being in contact with the explosive device. When the explosive device explodes the force of the explosion is carried through the backside of the augmentation sleeve, through the second fabric material to the lined material and the lined material is expelled from the lined material, most likely by rupturing and passing through the first fabric material. Thus, a goal of the fabric is to have the liner material be expelled from the augmentation sleeve, where the augmentation sleeve is secure enough to maintain the liner material, but not too secure such that fabric does not significantly affect kinetic energy being received by the liner material, and such that it does not significantly affect the liner material from rupturing the augmentation sleeve and being expelled through it.
A liner material is selected dependant on the desired result. The shape and other characteristics of the liner material is selected dependant on the desired result; the shape and/or other characteristics may increase or decrease a desired effect, e.g., a rounded shape reduces the likelihood of serious injury. These combinations of features, and other features, are also referred to as an injury reduction feature. For example, in one approach, steel squares are selected with specific design feature, e.g., rounded edges, to reduce the likelihood of serious injury from bodily contact, made from one eighth (⅛) inch sheet steel, cut in one-quarter (¼) inch pieces are used as liner material and are imbedded in a lightweight fabric; one steel square in each cell. In another approach, dense yet flexible augmentation piece is used instead of sheet steel. For example, rubber, tungsten impregnated rubber, or plastic squares are used, instead of the sheet steel as the liner material; rubber or plastic balls or pellets are also alternatives. In yet another approach, the liner material is, or includes, a gel or coating as an ablative or force spreading feature to spread out impact across an intended target's body. In an approach, a single piece of liner material is selected to be placed in a cell. In yet another approach, a plurality of pieces of liner material is placed in a cell, where the pieces may be similar or different in material, shape, and size. As is known, hard rubber has a density of 1.2×103 kg/m3.
As described with respect to
b) depicts a plan view of the top of the augmentation sleeve of
c) depicts a plan view of the side of the augmentation sleeve of
d) depicts a plan view of the bottom of the augmentation sleeve of
e) depicts, in perspective view, an outline of a cylindrically shaped explosive device 770 having a height of its side 777 and a circumference of its top and bottom being 775.
The augmentation sleeve 700 is formed by first creating the lined fabric 708, lined fabric 709, and the lined fabric 713. Thus, first and second fabric material and the liner material for each of the lined fabric 708, lined fabric 709, and the lined fabric 713 are selected. For each lined fabric, the first and second fabrics are laid out, the liner material appropriate placed, and the fastener system applied to form the appropriate cells. The lined fabric is then cut to appropriate shape and size. The top 710 is made from lined fabric 709, the bottom 730 is made from lined fabric 713 and side 712 is made from lined fabric 708. Thus, a top 710, a side 712, and bottom 730 have been created.
The augmentation sleeve 700 is then formed by fastening the right edge 726 to left edge 725 along its length, fastening the edge 715 of the top to the top edge 727 of the side 712 and the fastening the edge 735 of the bottom 730 to the bottom edge 728 of the side 712. The augmentation sleeve 700 can be formed around the explosive device 700 well in advance of use. In another approach, the augmentation sleeve 700 can be partially formed in advance, e.g., leaving the bottom only partially fastened, thus permitting the explosive device 770 to be inserted later and then the bottom fastened (or not). In yet another approach, the augmentation sleeve 700 is formed in the field, e.g., attaching sides and the tops and bottom using Velcro™ or other quick fastening system, thus permitting the explosive device 770 to be wrapped by the sleeve 700 in the field.
In a preferred approach, the lined fabric 709, the lined fabric 708, and the lined fabric 713 are formed from the same type of first fabric material, second fabric material and first liner material, have the same size cells, and are fastened with the same fastener material, although the invention is not so limited.
When using the augmentation sleeve with a flash bang type explosive device, as with any other kinetic device, the design and selection of an augmentation device should consider the direction/vector of the force generated by the explosive device. For example, a standard explosive device emanates force that is substantially normal to the exterior surface of the explosive device and the force is delivered from substantially over the entire device. Flash bang devices generally operate differently. In an approach, when detonated, the body of the explosive device remains intact. The body of the explosive device is tube-shaped with apertures along the sides that emit the light, sound, and any concussion force of the explosion. Thus, the explosive force of device is on delivered from certain locations. In a preferred approach, an augmentation sleeve used with a flash bang device has the plurality of cells containing the liner material that substantially coincide with the line up with the apertures of the flash bang.
In an exemplary application, an augmentation sleeve was created using automobile headliner material for the lined fabric, steel squares for the liner material and cotton thread (used to sew the material together) as the fastener. The ⅛ inch steel squares were chosen as having the desired effect of augmentation. A preferred size of the squares being ¼ inch by ¼ inch. A preferred size of a cell being ½ inch by ½ inch. The headliner material was selected for the fabric material because it appropriately holds the steel under normal conditions, and because headliner does not significantly absorb the kinetic energy from an explosive device thereby permitting most of the blast force to be received by the steel square. Further, the headliner material does not significantly prevent the steel square from being forcefully expelled from the lined fabric as a result of the blast. Low cost, ease of access to raw material, and flexible nature of the material are factors that were also taken into consideration in the selection of the fabric material.
In a preferred approach, a cloth mesh/netting is used as the fabric material. The cloth mesh is strong enough to retain the liner material until the kinetic energy source is detonated, but not too strong that the cloth mesh does not significantly impede the transmission of the pyrotechnics and/or the sound, e.g., the acoustic pulse, generated by the kinetic energy source.
Thus, an augmentation sleeve has been created from lined fabric. In this situation, the selection of the exterior materials, the first and second fabric materials, securely carry and provide the liner materials to the kinetic energy source, however, when the kinetic energy source is detonated, the fabric materials do not significantly impede the force of the explosive device from reaching the liner material, nor does the fabric materials significantly impede the liner material from being expelled through the fabric material.
The lined fabric, and more specifically the cells of the lined fabric, works as a delivery system for the delivery of liner material, e.g., the steel square. Thus, the selection of the different elements of the lined fabric and the arrangement of those elements should be done with the goal of being a delivery system. The selection and arrangement of the elements is dependent on the desired results, availability of materials, or other limitations. In a preferred approach, the advantages and disadvantages of each of the elements of the lined fabric are considered, viewed both in isolation and in combination.
Thus, this example of the invention discloses a lined fabric that has substantially characteristics of a rigid material while maintaining the flexibility and versatility of a fabric. The flexibility of the fabric enabled the lined fabric to cover a cylindrically shaped object, e.g., the cylindrically shaped explosive device, and still provide the rigid material, e.g., the liner material being the steel squares. An advantage of the augmentation sleeve is that a decision is made, in the field, the type of augmentation desired, if any, and selects an appropriate augmentation sleeve that should satisfy the intended results with a selected kinetic energy source. For example, for crowd control, a lined fabric is selected having liner material comprised of hard rubber balls (e.g., for reducing injury on target impact), liner fabric comprised of a cloth mesh (e.g., to retain the liner material until the kinetic energy of the kinetic energy source occurs, but not to significantly hinder the transmission of pyrotechnics), and a flash bang device as a kinetic energy source.
In another approach, liner material is chosen to provide an additional flash and/or bang. For example, additional pyrotechnic material is used as liner material, preferably encapsulated, in a lined fabric used to fashion an augmentation sleeve. When it is decided in context of a situation that additional flash is required in addition to the standard flash of a flash bang, an augmentation sleeve is attached having additional pyrotechnic material and then deploys the combined device. Similarly, in context, it is decided that additional “bang” is required, and therefore an augmentation sleeve is attached having additional sound producing material to augment the acoustic pulse and then deploys the combined device. Liner material can also be used to deliver other issues as well, including, but not limited to tear gas. In alternative, the augmentation sleeve is designed to be detonated in advance or behind the explosive device. Thus, for example, creating a second flash or bang.
In yet another approach, there is a desired effect of having a marking substance that will mark, e.g., with paint or some other approach, individuals and/or things within range of the explosive device when detonated. This desired effect is helpful for law enforcement purposes and litigation/injury analysis later. For example, an augmentation device includes paint or ink pellets as liner material in the lined fabric of an augmentation sleeve. The pellets can also be used in conjunction with other liner material in the lined fabric.
Depending on the selection and arrangement of lined fabric and its constituent parts used in an augmentation sleeve, it is important to consider the storage, movement and implementation of the augmentation sleeve. For example, a liner material or lined fabric is sensitive to its environment, e.g. heat, sparks, etc., thus requiring careful storage. The storage may be, for example, a temperature and/or humidity controlled environment. The storage may also include electrostatic discharge precautions.
In another aspect, an augmentation sleeve is designed with an injury reduction feature. For example, an augmentation sleeve incorporates a trajectory control feature, which may be structural features such as a base or design of the sleeve or positioning of the sleeve relative to the gas generator or explosive device e.g., flash bang, which directs the fragments no higher than the average person's chest—avoiding head and eye injuries.
In another approach, a base structure, e.g., a foam insert/body or other semi-rigid or rigid material insert/body, is used in which an explosive device, for example, a gas generator, is inserted which helps position an augmentation sleeve. For example, as depicted with respect to
In another approach, as depicted with respect to
In yet another application as depicted with respect to
With respect to repelling the trespass of unwanted visitors/boarders at sea, e.g., pirates, augmentation sleeves 940 covering explosive devices 945 are connected partially or substantially around the perimeter of a ship, as depicted in
In an approach, the augmentation sleeve is considered to have two parts or “sides,” which together form the entire sleeve. Although referred to as a side, the name is not limiting to a specific location, size, or portion of the augmentation sleeve. A first side contains a liner material that is to be expelled upon detonation of an associated explosive device. This is the side that is generally directed towards the location of potential trespassers or other unwanted guests. A second side is comprises a fabric material and/or liner material that reduces the force of the exploded explosive device; thus, limiting an explosive force in that direction. The second side is generally directed towards the location of wanted guests and hosts.
In yet another approach to discouraging pirates, augmentation sleeves are employed over explosive devices, which in turn are fastened to a curtain, e.g., netting. The explosive embedded curtain can be fired/dragged over a pirate ship and then selectively detonated.
In yet another application as depicted with respect to
In a further application, an augmentation sleeve uses a charge carrying device as liner material. For example, a liner material is a charged capacitor or electrical prongs coupled by long (e.g., two to four meters) wires to a charge source; the long wires are included in the pocket of the lined fabric with the liner material. The charge source is, for example, contained in the augmentation sleeve and coupled to the wires of respective charge carrying devices in the augmentation sleeve, thus providing a source of electric energy when desired. Thus, in an application, an augmentation sleeve is placed over a source of kinetic energy, such as a stun grenade, and when the grenade is detonated, the charge carrying liner material is projected in proximity to the stun grenade. If a person is within the proximity at that time, then the charge carrying liner material contacts the person and preferably maintains contact with the person. Shortly thereafter or contemporaneously with the contact, the electric energy source provides an electric charge through the wires, through the charge carrying liner material to the person and thus the person receives an electric shock. The specific attributes of the charge carrying liner material, the wires, and the electric energy source are variable and should be selected with its desired results in mind.
While the invention has been described and illustrated with reference to specific exemplary embodiments, it should be understood that many modifications and substitutions can be made without departing from the spirit and scope of the invention. For example, various combinations of the above examples, although expressly disclosed, can be made without departing from the spirit and scope of the invention. For example, although the discussion above describes certain types of explosive devices, the invention is not so limited, and augmentation sleeves can be used, possibly with appropriate modifications to the augmentation, with many explosive devices. For example, an augmentation device is used with a depth charge. Accordingly, the invention is not to be considered as limited by the foregoing description but is only limited by the scope of the claims.
This invention claims the benefit of U.S. Provisional Application No. 61/582,569, filed Jan. 3, 2012 and is a continuation-in-part of U.S. patent application Ser. No. 13/016,925, filed on Jan. 28, 2011, the contents of which is hereby incorporated by reference in its entirety.
The invention described herein was made in the performance of official duties by employees of the Department of the Navy and may be manufactured, used, or licensed by or for the United States Government for any governmental purpose without payment of any royalties thereon.
Number | Date | Country | |
---|---|---|---|
61582569 | Jan 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13016925 | Jan 2011 | US |
Child | 13732695 | US |