1. Field of the Invention
The present invention relates in general to solid oxide electrolytic devices, including solid oxide fuel cells (SOFC's), solid-oxide-based gas separation electrolyzers, and novel interconnect structures in such devices. In particular, the invention relates to the use of chrome-containing alloys in these devices, and the use of protective layers deposited to prevent corrosion, degradation, and/or increased electrical resistivity of the alloys.
2. Description of the Related Art
Solid state devices based on high-temperature (>600° C.) solid oxide electrolyte behavior have become increasingly important for a variety of applications. Such devices are of interest as viable options for power generating fuel cells, as well as for producing pure oxygen, hydrogen, and other such gases that may be produced through dissociation of oxygen-bearing gases.
Oxygen-ion-conducting, “solid oxide” fuel cells and gas separation devices of the prior art have been actively pursued, due to several fundamental advantages this type of device provides over other fuel cell and gas separation technologies. These advantages include high efficiency, internal reforming, and high-quality heat production for combined heat and power (CHP) applications. The understanding that a thinner solid oxide electrolyte provides efficient operation at temperatures low enough to enable much advantages in wider materials selection, but still high enough for internal reforming, has motivated interest in providing solid oxide fuel cells (SOFC) with lower thickness, preferably into the thin film regime (conventionally less than 10 micrometers).
Traditional bulk electrolyte-supported SOFC plants are known to require excessive warm-up times (>5 hours). Planar SOFC efforts have, in recent years, been dominated by anode-supported cells, which provide for thinner electrolytes and cost-effective production methods. However, whereas assertions have been made concerning thermo-mechanical robustness of SOFC stacks comprising solid cast and sintered (e.g., tape-cast) anode-supported SOFC stacks, efforts in such planar SOFC devices have not made substantial in-roads in lowering cost, substantially improving inadequate device reliability, or providing for fast-response applications.
In efforts to lower operating temperature, increase efficiency, and lower materials costs, there has been much work expended to realize ever thinner solid oxide electrolyte layers as formed on a sintered porous substrate, comprising essentially either a micro-porous ceramic or metal fit, wherein such structures are formed by various thick film methods including co-extrusion of tape-cast elements, electrophoretic deposition, and some high-rate vapor deposition methods. While such laminated electrode/electrolyte structures have been pursued with various fabrication strategies, including e-beam evaporation, these remain in the thick film regime (>10 micrometers), and are typically impracticable at thicknesses less than about 20 microns.
Other efforts have in the SOFC field have investigated thin film solid-oxide fuel cells (TF-SOFC) devices wherein the structure fabricated is conducive to greatly reduced electrolyte thickness' well under 10 micrometers thickness, where vapor deposition means are uniquely capable. Efforts to use vapor-deposited thin films as a free-standing thin film electrolyte supported by a regular grid structure were first reported in the 1990's by Jankowski et al, and disclosed in U.S. Pat. No. 5,753,385, wherein the formation of free-standing solid oxide electrolytes on an underlying silicon grid structure was realized through utilizing MEMS processes and tools, wherein these MEMS processes are essentially those adopted from the modular processes and tools developed within the semiconductor IC industry for creating patterned layers on a semiconductor wafer.
In the Jankowski (LLNL) work and subsequent work by other groups that comprise variations of utilizing a MEMS tool-set, such processes are very much derived from the silicon processes of the IC industry, wherein accordingly, it is not practical, or else is highly uneconomical, to attempt a non-rectilinear geometry except as the direct image of a lithography process. More particularly, while lithography is capable of creating an arbitrary mask image in a silicon wafer, material removal means are fairly limited to those methods for etching silicon, wherein the material removal is anisotropic with relation to the crystallographic planes of the silicon wafer. In addition, the cost of silicon wafers and the related silicon wafer processes, such as DRIE, are not economically feasible for producing competitive cost-per-watt SOFC devices. Additionally, whereas one can form relatively isotropic sacrificial layers on a silicon wafer that can then be isotropically etched, this added complexity only renders this approach to TF-SOFC, through MEMS processes, even less attractive as a cost-effective manufacturing approach.
With regards to using, instead, metal substrates and interconnects, it has been found in the prior art that chrome and chrome-containing metallic alloys, referred to variously as superalloys, bimetals, “Met-X”, Siemens “Plansee”, “CRF” and the like, provide an economical and suitable material for the metallic components of such solid oxide electrolytic devices as solid oxide fuel cells (SOFC's) and oxygen generators. Problems exist, however, in preventing the chrome in such alloys from diffusing and/or becoming oxidized in the high-temperature (>800 C), oxygen-rich environments common to such devices. Degradation of the device structure, due to chrome oxidation and/or diffusion, can result in failure of the device, due to failure of an integral seal, an increase in internal resistance, or contamination of device components.
It has been found in the prior art that use of certain electrically conductive multicomponent oxides, typically of a defective perovskite structure, can be deposited on these alloys to form a diffusion barrier that blocks, at least initially, sublimation of Cr into the gaseous environment of the device. Also, metals may be deposited onto the Cr alloy component, the component annealed in oxygen environment to form a conducting oxide phase containing Cr, wherein the Cr-containing oxide phase is then found to be an effective diffusion barrier, as well. This latter approach is taught in U.S. Pat. No. 6,054,231 to Virkar and England. In Virkar, the proposed use of such a chrome-containing barrier layer was to essentially act as a sink for trapping the Cr as it diffused out of the Cr-based alloy component. However, since the oxide phase of Virkar does not actually stop Cr diffusion, Cr eventually diffuses to the gas/solid interface, where it can sublime, albeit, at a slower rate than were the oxide barrier layer not present. This latter sort of a barrier is not an ideal solution for stopping degradation in the relevant devices, since it does not stop Cr diffusion, but only impedes it. At the same time, the use of these thick-film, multi-component oxides present complex reproducibility issues. In part, it is found in the present invention that such thick-film barrier thicknesses (>10 um), as well as their suitable deposition methods, will tend to result in a coating/substrate system that is not mechanically sound, and will result in fracturing and stress-induced diffusion across the thick films of these prior art accounts. These conducting oxides were previously deposited by methods that provide quite thick films, usually of thicknesses greater than 25 um, in order to provide a sufficiently long lifetime for device operation. As reported by workers using such an approach, this proved to be quite expensive in materials usage.
Additionally, the formation of such defective oxides that contain chrome oxide have been found, in the present invention, to result in a material that can be easily modified at its surface in the relevant device environments. The combination of high temperatures and electrical fields found in SOFC's and OGS' devices can readily alter the valence states existing at the surface of such electrically conducting oxides, so that various reduction and diffusion processes are activated, resulting in eventual degradation of the diffusion-barrier quality of the oxide material.
In accordance with the preferred embodiments, the present invention provides a structure for use in such solid oxide electrolytic devices as solid oxide fuel cells (SOFC's) and solid-state oxygen generator systems (OGS'). Some of the novel aspects of the disclosed structure are provided by the ability to utilize various Cr-containing alloys in the relevant devices, without degradation of the device performance due to unwanted reactions or diffusion processes occurring between the alloy and the remaining device structure. More particularly, it has been discovered that the dual diffusion barrier approach, as disclosed in earlier U.S. patent application Ser. No. 09/968,418, by the present applicant, can prove particularly advantageous when implemented using the particular material structure disclosed herein.
The present invention provides an interconnect structure for use in solid oxide electrolytic devices, which interconnect may be used to join chrome-containing components to adjacent structures of the device, and more particularly, as an electrically conductive interconnect between chrome-containing components and adjacent electrode or electrolyte structures. The structure disclosed separates and seals the various chrome-containing components of the device from oxidizing environments present within such devices, and, in so doing, prevents device degradation. While the failure mechanisms that degrade performance in these high-temperature devices can be complex and interdependent, the disclosed interconnect structure is found to prevent, for example, Cr and oxygen from uniting to form a high-resistivity, Cr2O3 layer, as well as to prevent the undesirable diffusion of Cr—due to either gaseous or solid state diffusion—to other surfaces and interfaces within the device. The invention further provides a novel solid oxide electrolytic device structure that may be utilized for either solid oxide fuel cells (SOFC's) or solid state oxygen generators (OGS'). This novel device structure utilizes the diffusion-barrier properties of the disclosed interconnect to implement a solid metal support structure for electrolytic membranes in these same devices.
The present invention overcomes the problems encountered in the prior art through the use of a thin film, complementary dual-layer, high-temperature sealing structure. The dual-layer structure disclosed utilizes at least two different material layers.
A first layer comprises a Cr-containing conductive oxide (CCCO) that is, in the first preferred embodiment, formed through the reaction of a vapor-deposited, multicomponent oxide of the group consisting of, but not limited to, various manganites, manganates, cobaltites, chromites, molybdenates, lanthanites, and other oxides that, when deposited as a thin film (<10 micrometers), can form an electrically conductive Cr-containing oxide phase that is stable with respect to an underlying Cr-containing alloy support structure at device operation temperatures (600-800° C.). The first CCCO layer is preferably formed through the reaction of a dense oxide film with an underlying alloy substrate. For the most rugged device operating characteristics, the Cr-alloy structure is of a composition that provides a good thermal expansion match to the solid oxide electrolyte used in the device, such as the materials previously discussed in the background of the invention. However, the dual-layer diffusion barrier disclosed is also found to be effective on much more economical Cr-containing alloys, such as many of the commercially available martensitic and ferritic steels. Also, due to novel aspects of the disclosed device structure, such relatively economical alloys, with less well-matched coefficients of thermal expansion (C.T.E.'s), may be implemented as the bulk components of the electrolytic device.
The CCCO layer is operational in the presently disclosed interconnect structure because it is subsequently coated with a second layer of protective material that provides no effective chemical potential for causing the diffusion of Cr out of the CCCO. The second layer is deposited onto the first layer so as to separate and protect the first layer from the degrading effects of exposure to the gaseous/galvanic environment of the electrolytic device. Platinum metal is found to provide such protective characteristics in the present invention, with an economically viable thickness (<0.5 micrometers). Whereas Cr-Pt intermetallics will normally form quite easily at the high temperatures used in solid oxide electrolytic devices, the Cr bonding in the CCCO is sufficient to prevent such an intermetallic from forming, except perhaps at the immediate CCCO/Pt interface. The second layer is also composed of a second material that does not allow potentially degrading gases from contacting or diffusing to the CCCO, thereby comprising a gas diffusion barrier (GDB). The GDB layer also prevents the occurrence of a three-phase boundary between metal electrode, the CCCO layer, and the gas environment of the electrolytic device interior. The prevention of such a three-phase boundary is found to further prevent activation of undesirable diffusion processes.
The second, GDB, layer is also of relatively high electrical conductivity, so that overall resistance of the device is lowered. When proper deposition methods and materials are utilized to produce high-integrity sealing layers, the invention allows for use of electrically conductive Cr-containing materials that would degrade under normal operating conditions for the relevant devices. For example, such defective oxide, electrically conductive materials as those typically used in the first layer will typically possess more than one possible valency in oxygen bonding, wherein unwanted diffusion of various components of the defective oxide may be activated by the galvanic environment of the device. In the invention's preferred embodiment, the interconnect structure of the present invention may be scaled to a relatively thin (e.g., 2,000 angstroms) aspect, utilizing a minimum of materials, while still providing useful (105 hours) device lifetimes and stable, reproducible performance. Such scales easily allow fabrication of the resulting electrolytic device within precision tolerances.
It is discovered in the present invention that the methods and thick film structures of the prior art utilizing these conductive oxides were not effective diffusion barriers for the desired application and give unsatisfactory device lifetimes and performance. Surprisingly, however, it has been found, in the present invention, that thin films of thicknesses 100× thinner than those previously used actually provide a more effective diffusion barrier compared to those prior art thick films, when such thin films are incorporated into the dual layer, complementary interconnect structure disclosed herein, and deposited—rather than by non-vapor-deposition methods such as plasma spray, thermal spray coating and spray pyrolisis—by true vacuum vapor deposition methods. The use of vapor deposition techniques is preferred to achieve sufficiently dense films. When the electrically conductive Cr-containing oxide phase is formed as thin film, which is of thickness less than 10 um, and is subsequently coated with a thin film—again, less than 10 um—of a suitable GDB material, the resulting structure may then be subjected to prolonged use as an interconnect in the solid oxide device.
Subsequently, the disclosed dual diffusion barrier is used in a novel solid oxide electrolytic device design that may serve in either a fuel cell or a gas separation device. Rather than using nickel or various porous substrates, the diffusion barrier allows for an electrode support structure to be composed of a Cr alloy component covered with the disclosed thin film interconnect structure. As a result, instead of porous ceramics, bulk, industrially available alloys may be used as either a cathodic or anodic support structure in the device. The resulting metallic support structure of the preferred embodiments is in a sheet form that is patterned with a plurality of small through-holes, which holes provide access to a deposited thin or thick film of the solid oxide electrolyte, the latter which spans and seals one side of the planar support structure. The perforated support structure then provides a first electrode of the device. The opposite side of the solid oxide electrolyte film is then patterned with a second electrode, which is deposited so as to provide a second, counter-electrode structure with a through-hole pattern similar to that of the first electrode. Optionally, a porous conducting over layer may then be deposited over either first or second electrode grids to provide additional three-phase boundaries in the electrode/electrolyte/gas system, to provide various reforming functions, or to provide other functionality relevant to device operation. In one preferred embodiment, the porous material is vapor deposited platinum black, though it may be any of the non-bulk porous electrode materials used in the prior art.
As a result of small through-hole size and stress relieving structures incorporated in the thin film electrolyte, macroscopic strain and stress is substantially avoided in the disclosed device, so that thermal expansion coefficients do not need to be as precisely matched as is required in the case of more macroscopic electrolytic membranes. The ability to use materials of less well-matched C.T.E. is also due to the higher stresses sustainable by vapor deposited thin/thick film structures of the present invention, as opposed to bulk ceramic structures or films created from sprayed nanocrystalline particles. The resulting electrode/electrolyte assembly, which exists on and incorporates the electrode support structure, may then be easily integrated into a variety of SOFC or OGS geometries. Because all bulk components of the disclosed device structure are coated with the disclosed interconnect structure, the disclosed device requires only relatively trivial high temperature seals between the similar alloys that comprise its bulk components.
The thin film solid oxide membrane is disclosed in the first preferred embodiments as yttria-stabilized zirconia (YSZ). However, the solid oxide electrolyte may comprise any of the solid electrolytes used in the art. In addition, a novel thin film electrolyte structure is disclosed which is a stabilized cubic ceria structure that is terminated at its interface with 10-100 nm of YSZ. The resulting thin film electrolyte provides increased chemical stability over prior ceria electrolytes, while not significantly reducing oxygen diffusion rates.
Accordingly, it is an object of the present invention to provide an interconnect structure which is suitable for the high temperature environment of solid oxide fuel cells and electrolyzers.
Another object of the present invention is to provide an interconnect structure for use with solid oxide electrolytes which enables stable, long-term operation of such devices under normal operating conditions.
Yet another object of the present invention is to allow the use of chrome-containing alloys in solid oxide electrolyte devices, while preventing oxidation of the chrome during operation.
Another object of the present invention is to provide a means for preventing diffusion of chrome and other active metal from metallic components of solid oxide electrolytic devices
Another objective of the present invention is to provide a hydrogen-tight seal for use to in solid electrolyte devices.
Still another objective of the present invention is to provide an economical and compact sealing solution for solid oxide electrolyte devices.
Still another objective of the present invention is to provide an economical and compact electrical interconnect for solid oxide electrolyte devices.
Yet another object of the present invention is to provide a dual layer structure which serves as both a chrome barrier and an oxygen barrier at typical solid oxide electrolytic temperatures (e.g., 800 C).
Another object of the invention is to provide a novel fuel cell design that utilizes only bulk, machineable metal alloys as support structures.
Another object of the present invention is to provide an oxygen generator that utilizes only bulk, machineable metal alloys as support structures.
Another object of the present invention is to provide a thin film solid oxide fuel cell structure which does not utilize porous bulk ceramics, or nickel, as a support structure.
Another object of the present invention is to provide a general-use, high-temperature corrosion/diffusion barrier for Cr-containing ferrous alloys.
Another object of the present invention is to eliminate the need for high temperature, bulk ceramic seals in solid oxide electrolytic devices.
Another object of the present invention is to provide a thin film solid oxide electrolytic device that possesses the low-temperature benefits of ceria-based electrolytes, with the chemical stability of zirconia-based electrolytes.
Other objects, advantages and novel features of the invention will become apparent from the following description thereof.
The following description and
In the first preferred embodiment the CCCO layer is most easily formed by first depositing 100-10,000 nanometers of an electrically conducting manganate, such as (Lax Sr1-x)MnO (LSM), on the surface of the Cr alloy component by such energetic deposition means as sputtering. Subsequently, the component is rapidly annealed with a first anneal to form an intermediate phase between the LSM coating and the Cr in the underlying alloy, thus producing a LaSrCrMnO (LSCM) CCCO layer. It is sufficient to perform the first anneal in air, with a fast ramp (typically less than 15 minutes) to 950° C., where the component is held for about fifteen minutes, depending on the composition and thickness, before cooling back down to room temperature in about fifteen minutes. This fast anneal allows for the LSCM CCCO layer to form without substantial formation of a Cr2O3 layer at the alloy-LSCM interface. Subsequently, the Pt GDB layer is deposited onto the LSCM layer, after which the resulting component is subjected to a second anneal similar to the first anneal. The second anneal is preferred to equilibrate the resulting heterostructure before subsequent processing, as well as to promote adhesion within the thin film stack. In the first preferred embodiment, both CCCO layer and Pt layer are less than one micrometer in thickness, with the Pt layer found most effective at thicknesses between 0.1 and 0.5 micrometers.
In the preferred embodiment, dense and stoichiometric materials for the dual-layer interconnect structure (2) of
An alternative embodiment of the present invention provides for additional layers to be included in the dual-layer interconnect structure (2) for added functionality.
It is to be understood that the precise materials utilized are but a preferred embodiment of the invention. For example, other electrically conducting, Cr-containing oxides other than LaSrCrMnO may also be found to serve the role of the CCCO layer in the present invention. In some cases, the GDB layer may also be composed of metallic layers other than Pt. Similar performance may also be obtained through the use of metallic compositions including Pt, Au, Ni, Mo, and Nb. However, in the case of single-element metals, Pt is preferred, in the present disclosure, to provide the required degree of both adhesion and oxygen resistance.
It is also to be understood that the compositions suggested are nominal, as small compositional variations due to doping or contamination would typically not compromise the operation of the invention. It is also to be understood that, while diffusion of chrome and oxygen have been found, in the present invention, to be the dominant mechanism of failure in the devices discussed, the disclosed sealing structure of
The underlying Cr alloy in
The electrode support structure (17) of
After application of the disclosed diffusion barrier, using the preferred platinum termination layer, the electrode support structure of
In accordance with the first preferred embodiments, once the platinum-terminated structure of
Alternatively, the sacrificial material used may be any of the wide variety of suitable sacrificial materials used in the manufacture of similarly scaled devices, such as those used in microelectronics packaging, MEMS fabrication, or sensor design. Accordingly, the sacrificial material may be one of a variety of resins, epoxies, or easily etched glasses or metals. The sacrificial material may be sufficiently planarized by a release mold, controlled wetting, or by lapping, but in any case, results in the surface of the first side of the electrode support structure becoming a continuous surface, as represented in
The choice of sacrificial material will depend upon the solid oxide electrolyte to be subsequently deposited, and the chosen procedure by which the desired solid oxide phase (e.g., cubic zirconia) is attained. In the case that the electrode support structure and impregnated sacrificial material are to be maintained at a high temperature (>300° C.) during vapor deposition of the solid oxide electrolyte film, then the choice of sacrificial materials becomes restricted, since sacrificial organic compounds will degrade, and many sacrificial metals, such as Cu and Sb, begin to diffuse into the platinum GDB layer of the preferred support structure (17). For deposition temperatures below Tg, certain low temperature glasses that possess a C.T.E. well-matched to that of the electrolyte may be used. For example, in the case of YSZ, Schott glass FK5, with Tg of 466° C., provides such properties, and is easily removed by buffered hydrofluoric solutions.
A solid oxide electrolyte and electrode structure are fabricated in the active region (11) of the electrode support structure, and are obtained through the deposition and patterning of thin- and/or thick-film device materials. These device materials include the solid oxide electrolyte as well as a material for a second electrode structure that acts as a counter-electrode to the support structure. These device materials are deposited onto the active region (11) of the electrode support structure (17), which device materials may be deposited from either the first side (16) or the second side (18) of the planar support structure.
In the preferred embodiments, the solid oxide electrolytic material may be deposited at relatively low temperatures, and, after removal of the sacrificial material, annealed at high temperatures to achieve the desired phase. For example, YSZ can be deposited in a nanocrystalline (cubic), slightly compressively stressed, form at room temperature, using on-axis, unbalanced “Type II” magnetrons of the magnetron sputtering art. These nanocrystalline films may then be transformed into more fully crystallized (by x-ray diffraction analysis) cubic zirconia films by way of annealing these films at 800° C. in wet oxygen. Such temperatures are, as already discussed, easily accommodated by the disclosed supporting electrode structure. The electrolytic oxide should typically be deposited so as to be stress-free or somewhat compressively stressed, so that the electrolytic oxide film will remain after removal of the sacrificial material and will withstand device temperatures with alloy support structures composed of slightly larger C.T.E (coefficient of thermal expansion) than that of the electrolyte.
Alternatively, deposition of the solid oxide electrolyte (20) may be performed at elevated substrate temperatures, so that a larger-grained polycrystalline phase may be acquired as-deposited. Such elevated temperatures typically require that the sacrificial material be inorganic.
The solid oxide electrolyte material is deposited on this first side of the planarized support structure (17), with holes filled by sacrificial material, so that the electrolyte is deposited as a substantially sheer film that seals the first side (16) of the support structure on which it is deposited. In this way, the solid oxide electrolyte (20), which hermetically and electrically separates the electrode support structure from a subsequently deposited counter-electrode structure, is formed. In the first preferred embodiments, this solid oxide electrolyte to is deposited for a resulting electrolyte thickness corresponding to a thin film (<10 um). The sacrificial material (15) may then be etched away to provide a resulting structure that allows access to either side of the solid oxide electrolyte film (20), in
While various materials have been found to provide desirable oxygen diffusivity, the solid oxide electrolyte of an alternative embodiment is a multilayer film that is formed by depositing yttria stabilized zirconia (YSZ) as the first and last layer of the resulting solid oxide electrolyte film. In this way, the stability of YSZ is obtained at the interface of the electrolyte/gas/electrode boundary, where less stable electrolytes, such as stabilized CeO2, are found to reduce and deteriorate. In the preferred embodiment, YSZ is first sputter deposited in a multi-magnetron chamber possessing both a YSZ source and a CeO2 source. The first 100 nm of the electrolyte is deposited as YSZ, at which point, the CeO2 is deposited to provide the majority of the electrolyte thickness, which is typically less than 10 micrometers. The electrolyte deposition process then switches back to YSZ to terminate the electrolyte layer (20) with about 100 nm of YSZ. However, the electrolyte may be fabricated using different solid oxide electrolytes, laminated structures, or solid solutions of one or more solid oxide electrolytes.
The electrode-supported electrode/electrolyte assembly (30) of the preferred embodiments, in
It may be noted that the electrode support structure, in
After the electrolytic oxide film is deposited and the sacrificial material is removed from the through-holes of the electrode support structure, a Pt counter-electrode structure (21) may then be deposited on the side of the electrolytic oxide film opposite to the supporting electrode. This may be deposited by any of the thin/thick film techniques of the prior art, such as sputtering, evaporation, or screen printing. The patterning the counter-electrode structure, in the case that it is the more difficult to etch Pt metal, may be performed by the variety of the dry etching methods developed for Pt electrodes in ferroelectric non-volatile memory industry, though the relatively coarse features of the present electrode structures may be achieved simply through shadow masks.
The alloy structure (1) of the electrode support structure in
It may be noted that, while the electrode support structure comprises an anode in later preferred embodiments disclosed in the present invention, either the electrode support structure (17) or the deposited counter-electrode structure (21) of the electrode/electrolyte assembly may comprise the anode of a resulting device. In either case, the resulting electrode/electrolyte assembly of the preferred embodiments incorporates the following sequence of layers: thin film platinum layer/thin film CCCO layer/bulk alloy/thin film CCCO layer/thin film platinum layer/thin film solid oxide electrolyte layer/thin film platinum layer.
In an alternative embodiment of the invention, the electrode/electrolyte structure need not be substantially planar, as in
Such a non-planar shape, in
In device designs incorporating materials possessing well-matched C.T.E.'s, the first porous electrode structure (23) may be used in place of the sacrificial material (15) as a surface on which to deposit the solid oxide electrolyte. In the latter case, the through-holes would first be filled, preferably by screen printing, with a precursor form of the first porous electrode material. Sintering of the precursor/support structure would then result in a permanent porous electrode in place of the sacrificial material (15) in
A cross-sectional view of a solid oxide electrolytic OGS device is shown in
In the preferred embodiments of
The sealing surfaces of the OGS device, in
As is typical for OGS' and SOFC's that utilize metallic support structures, the cathode-side and anode side gas manifolds, in
Because the planar sides of the manifolds and electrode/electrolyte assembly are each planarized to optical tolerances, electrical contact between the gas manifolds and the electrodes of the electrode/electrolyte assembly can be readily provided by both the sealing connection of the mating surfaces, as well as by the contact of the gas manifold ribs, (58) in
When, as in the preferred embodiments of
In the case of either parallel or serial electrical connection of the individual cells, providing the required electrically insulating or conducting connections between the various bulk metal components of
The device enclosure defines an enclosure space (40) that provides a return path for gas exiting the cathode-side manifolds through peripheral channels (41). An axis of circular symmetry (57) indicates rotational symmetry for elements in
Since the counter-electrode structure (21), in
It may be noted, in
A cross-sectional view of a multi-cell SOFC stack is shown in
As in the case of the previous OGS device of
In addition to the structural embodiments of
The particular structures of the cathode-side gas manifold (35), in
It is also to be understood that the structures of
Although the present invention has been described in detail with reference to the embodiments shown in the drawing, it is not intended that the invention be restricted to such embodiments. It will be apparent to one practiced in the art that various departures from the foregoing description and drawings may be made without departure from the scope or spirit of the invention.
This application claims benefit of and is a divisional of U.S. patent application Ser. No. 11/980,242, filed Oct. 29, 2007 now in issuance, which is a continuation of U.S. patent application Ser. No. 10/411,938, filed Apr. 10, 2003, and claims benefit of priority date of U.S. provisional application No. 60/371,891, filed Apr. 10, 2002.
Number | Date | Country | |
---|---|---|---|
Parent | 11980242 | Oct 2007 | US |
Child | 12931421 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10411938 | Apr 2003 | US |
Child | 11980242 | US |