The present invention relates to a solid oxide fuel cell and a method for producing the same.
In order to provide a solid oxide fuel cell at a low cost, it has been proposed that a support is prepared from a sintered compact made of forsterite (see Japanese Patent Application Publication No. 2005-93241). Additionally, JP-A 2005-93241 discloses that since forsterite has a similar thermal expansion coefficient to that of the electrolyte, this makes it possible to prevent cracks and gas leakage in the fuel cell.
[Patent Literature 1] Japanese Patent Application Publication No. 2005-93241
However, the followings have been found out. Specifically, when a solid oxide fuel cell using forsterite as the support material is operated for an extended period, components of the support are degraded by a chemical change, so that the power generation performance is decreased in some cases. The cause has been examined, and the action mechanism is presumably as follows.
The support contains forsterite crystals as the main component, but also contains MgO, SiO2, and oxides derived from impurities. The fuel cell is operated at a temperature exceeding 500° C. for an extended period. In this event, when the support is exposed to a reducing atmosphere of hydrogen gas, not the forsterite crystals but the SiO2 component is reduced to SiO, which evaporates from the support and is deposited on a low temperature portion of a gas flow path, particularly near a discharge port of the module. This blockage of the flow path consequently decreases the performance.
The present inventors who have discovered the aforementioned phenomena have found that commercially-available forsterite raw materials generally contain CaO as impurities. In addition, the inventors have found that the phenomena can be suppressed by adjusting the content of CaO present as the impurities. The present invention has been made based on these findings. Specifically, the present invention relates to a solid oxide fuel cell comprising a fuel electrode, a solid electrolyte, and an air electrode, each of which is sequentially laminated on a surface of a porous support. The porous support contains forsterite, and further has a calcium element (Ca) content of more than 0.2 mass % but not more than 2 mass % in terms of CaO. When the porous support contains Ca in the predetermined concentration, the formation of SiO in a reducing atmosphere is prevented. This makes it possible to obtain a porous support, which is chemically stable even when the fuel cell is operated for an extended period. This is presumably because Si and Ca form a relative stable complex oxide during firing of the porous support.
Ca reacts with not the forsterite crystals but Si during firing of the porous support, forming α-CaSiO3 (pseudowollastonite). Generally, when exposed to an operation temperature of approximately 700° C. for an extended period, α-CaSiO3 changes to β-CaSiO3 (wollastonite). Ca in the aforementioned concentration prevents the strength of the porous support from being adversely influenced by a volume change associated with the transition, so that an excellent durability can be demonstrated.
In the present invention, the solid electrolyte preferably contains lanthanum-gallate-based oxide, and the solid electrolyte more preferably contains lanthanum-gallate-based oxide doped with Sr and Mg. With the lanthanum-gallate-based oxide (preferably LSGM), electrical power can be generated in an operation temperature range as low as 600° C. to 800° C., making it hard for a chemical change to occur in the porous support.
Moreover, the solid electrolyte is preferably represented by the general formula La1-aSraGa1-b-cMgbCocO3, where 0.05’a≦0.3, 0<b<0.3, and 0≦c≦0.15.
In the present invention, the porous support is preferably composed of a laminate having at least two layers. Reducing the amount of Ca in the surface of the porous support can prevent the diffusion of the dopant of the lanthanum-gallate-based oxide during firing (in the process of producing the cell). If it is possible to prevent the diffusion of the dopant, the crystal structure of the electrolyte can be maintained, so that the power generation performance is stable for a long period.
Further, the present invention relates to a method for producing a solid oxide fuel cell including a fuel electrode, a solid electrolyte, and an air electrode, each of which is sequentially laminated on a surface of a porous support, the method including forming the porous support by firing a compact containing forsterite and having a Ca content of more than 0.2 mass % but not more than 2 mass % in terms of CaO. Moreover, the compact preferably includes at least two layers, each having different Ca contents, and at least one of the layers other than a layer at the fuel electrode side has a Ca content of more than 0.2 mass % but not more than 2 mass % in terms of CaO. This enables the Ca concentration to have a gradation, and hence can prevent the diffusion of Ca out of the support during the firing.
The present invention makes it possible to provide a fuel cell capable of suppressing a reduction in the power generation performance associated with an operation performed for an extended period, the fuel cell having an excellent durability.
A solid oxide fuel cell of the present invention includes a fuel electrode serving as an inner electrode, a solid electrolyte, and an air electrode serving as an outer electrode, each of which is sequentially laminated on the surface of a porous support. The fuel cell of the present invention is not limited to have particular shapes. The fuel cell may have for example a cylindrical shape, a planar shape, a hollow planar shape in which multiple gas flow paths are formed, or other similar shapes. Since the porous support of the fuel cell of the present invention is an insulating support, horizontal stripe type is preferable in which multiple power-generating elements are formed in series on one porous support. Here, the power-generating elements mean a laminate having a fuel electrode, a solid electrolyte, and an air electrode, each being sequentially laminated.
In the fuel cell of the present invention, the porous support contains forsterite, and further contains calcium (Ca). The Ca concentration in the porous support is more than 0.2 mass % but not more than 2 mass % in terms of the oxide CaO. The porous support is a sintered compact containing forsterite (Mg2 SiO4) crystals, crystalline and/or amorphous MgO, crystalline and/or amorphous SiO2, and other glassy materials and impurities. Ca is present as the “other glassy materials and impurities.” Nonetheless, by adjusting the raw material of the porous support in such a manner that Ca is contained within the above-described range, the content percentage of SiO2 in the porous support can be lowered presumably.
In the fuel cell of the present invention, the porous support preferably contains a Mg element and a Si element in total of 90 mass %, preferably 95 mass %, more preferably 98 mass % or more, in terms of MgO and SiO2. In the fuel cell of the present invention, it is more preferable that the porous support has a sum of peak intensities of first diffraction lines (i.e., diffraction lines having the highest intensity) of the crystal components other than forsterite crystal of 5 or less, wherein the peak intensity of a first diffraction line of the forsterite crystal obtained by X-ray diffraction is 100.
The porous support may have a Ca content of 0.2 mass % or less in terms of CaO in a surface region at the power-generating elements side. Herein, the “surface region” means a region that covers a depth of approximately 100 μm from the surface. The Ca content in such a surface region can be measured, for example, by XRF. The XRF measurement sample is prepared as follows. Specifically, the laminated surface of the fuel cell is mechanically striped, and the surface of the exposed porous support is mechanically ground up to the depth of approximately 100 μm to obtain the sample of XRF. Moreover, when the sample is quantified by XRF, JCRM R 901 talc powder which is a certified reference material by the Ceramic Society of Japan is used to create a one point calibration curve for the XRF.
The Ca concentration distribution in the porous support may be uniform, or may have a gradation toward the surface of the porous support at the power-generating elements side. Alternatively, the porous support may be a laminate having two or more layers, each having different Ca contents. When the porous support has a gradation of Ca concentration distribution toward the surface of the porous support at the power-generating elements side, or when the porous support is a laminate having two or layers, the Ca content in regions other than the surface region at the power-generating elements side may exceed 0.2 mass % in terms of CaO. The porous support is obtained by preparing a compact having a Ca content within a predetermined range, and then firing the compact. The porous support is preferably obtained by preparing a compact by mixing a raw material containing Ca element, the concentration of which is higher than the above-described range, and forsterite with a raw material containing Ca element, the concentration of which is lower than the above-described range, and forsterite so that the compact can have a Ca content within the predetermined range, and then firing the compact.
The fuel electrode may be made of NiO/zirconium-containing oxide, NiO/cerium-containing oxide, or the like. Here, the NiO/zirconium-containing oxide means one obtained by uniformly mixing NiO with a zirconium-containing oxide in a predetermined ratio. The NiO/cerium-containing oxide means one obtained by uniformly mixing NiO with a cerium-containing oxide in a predetermined ratio. The zirconium-containing oxide in the NiO/zirconium-containing oxide includes zirconium-containing oxides doped with one or more of CaO, Y2O3, and Sc2O3, and the like. The cerium-containing oxide in the NiO/cerium-containing oxide includes ones represented by the general formula Ce1-yLnyO2, where Ln is any one of or a combination of two or more of La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Sc, and Y, 0.05≦y≦0.50. Note that since NiO is reduced under a fuel atmosphere and turned into Ni, the mixture becomes Ni/zirconium-containing oxide or Ni/cerium-containing oxide. The fuel electrode may be composed of a single layer or multiple layers. In the case where the fuel electrode as the inner electrode includes multiple layers, Ni/YSZ (yttria-stabilized zirconia) is used for a layer at the porous support side while Ni/GDC (Gd2O3-CeO2) (=fuel electrode catalyst layer) is used for a layer at the electrolyte side.
The air electrode may be made of a lanthanum-cobalt-based oxide such as La1-xSrxCoO3 (where x=0.1 to 0.3) or LaCo1-xNixO3 (where x=0.1 to 0.6), a lanthanum-ferrite-based oxide (La1-mSrmCo1-nFenO3 (where 0.05<m<0.50, 0<n<1)) which is a solid solution of (La, Sr)FeO3 and (La, Sr)CoO3, or the like. The air electrode may be composed of a single layer or multiple layers. In the case where the air electrode as the outer electrode includes multiple layers, La0.6Sr0.4Co0.2Fe0.8O3 (=air electrode catalyst layer) is used for a layer at the electrolyte side while La0.6Sr0.4Co0.8Fe0.2O3 (=air electrode) is used for the outermost layer.
In the fuel cell of the present invention, the solid electrolyte may be made of lanthanum-gallate-based oxide, stabilized zirconia doped with one or more of Y, Ca, and Sc, or the like. The solid electrolyte includes preferably lanthanum-gallate-based oxide doped with Sr and Mg, more preferably lanthanum-gallate-based oxide (LSGM) represented by the general formula La1-aSraGa1-b-cMgbCocO3, where 0.05≦a≦0.3, 0<b<0.3, and 0≦c≦0.15. A layer of the solid electrode may be provided at the fuel electrode side as a reaction prevention layer that includes ceria doped with La (Ce1-xLaxO2 (where 0.3<x<0.5)). The reaction prevention layer is preferably made of Ce0.6La0.4O2. The solid electrolyte may be composed of a single layer or multiple layers. In the case where the solid electrolyte includes multiple layers, a reaction prevention layer such as Ce0.6La0.4O2 is used between the fuel electrode and a layer of the solid electrolyte made of LSGM.
A method for producing the solid oxide fuel cell of the present invention is not particularly limited. The solid oxide fuel cell of the present invention can be produced, for example, as follows.
A solvent (such as water or alcohol) is added to a raw-material powder containing forsterite to prepare a green body. In this event, an optional component such as a dispersant, a binder, an anti-foaming agent, or a pore-forming agent may be added. The green body thus prepared is molded, dried, and then pre-fired (800° C. or higher but lower than 1100° C.) to obtain a porous support. For molding the green body, a sheet molding method, a press molding method, an extrusion method, or the like is employed. In the case of a porous support in which gas flow paths are formed, an extrusion method is preferable. When the porous support forming multiple layers is molded, in addition to a method of “multilayer extrusion” in which the multiple layers are integrally extruded, a method in which the upper layer is formed by coating or printing can also be employed. The coating methods include a slurry coating method in which a raw material slurry is applied, a tape casting method, a doctor blade casting method, a transferring method, and the like. The printing method includes a screen printing method, an inkjet method, and the like.
The inner electrode, the solid electrolyte, and the outer electrode can be obtained as follows. Specifically, to each raw-material powder, a solvent (such as water or alcohol) and a molding additive such as a dispersant or a binder are added to prepare a slurry. The slurry is applied, dried, and then fired (1100° C. or higher but lower than 1400° C.). The slurry can be applied by the same method that can be employed for the coating with the upper layer of the porous support including multiple layers. The firing may be performed every time each layer of the electrodes and solid electrolyte is formed, but “co-firing” in which the multiple layers are fired at once is preferably performed. In addition, in order not to degrade the electrolyte by the diffusion of the dopant or the like, the firing is preferably performed in an oxidizing atmosphere. More preferably, a gas mixture of air +oxygen is used, and the firing is performed in such an atmosphere that the oxygen concentration is 20 mass % to 30 mass % both inclusive. When a fuel electrode is used as the inner electrode and an air electrode is used as the outer electrode, it is preferable that the fuel electrode and the electrolyte be co-fired, and then the air electrode be formed and fired at a temperature lower than the co-firing.
A solid oxide fuel cell system using the solid oxide fuel cell of the present invention is not limited to have particular structures. The production thereof, other materials, and the like may be publicly-known ones.
The fuel cell module 2 includes a housing 6. The housing 6 with an insulating material 7 has a sealed space 8 therein. Note that it is acceptable not to provide the insulating material. A fuel cell assembly 12 for carrying out the power-generating reaction using fuel gas and oxidizer (air) is disposed in a power-generating chamber 10, which is the lower part of this sealed space 8. This fuel cell assembly 12 is furnished with ten fuel cell stacks 14 (see
In the sealed space 8 of the fuel cell module 2, a combustion chamber 18 is formed above the aforementioned power-generating chamber 10. In the combustion chamber 18, residual fuel gas and residual oxidizer (air) not used in the power-generating reaction are combusted to produce exhaust gas. Above the combustion chamber 18, a reformer 20 for reforming fuel gas is disposed. The reformer 20 is heated by the heat of combustion of the residual gas to a temperature at which reforming reaction can take place. Above the reformer 20, an air heat exchanger 22 is disposed, which receives the heat of the reformer 20 to heat air and which reduces a decrease in the temperature of the reformer 20.
Next, the auxiliary unit 4 includes a pure water tank 26 for holding water from a water supply source 24 such as waterworks and filtering the water into pure water, and a water flow rate regulator unit 28 for regulating the flow rate of water supplied from the reservoir tank. The auxiliary unit 4 further includes a gas shutoff valve 32 for shutting off fuel gas such as municipal gas supplied from a fuel supply source 30, a desulfurizer 36 for desulfurizing the fuel gas, and a fuel gas flow rate regulator unit 38 for regulating the flow rate of the fuel gas. Furthermore, the auxiliary unit 4 includes an electromagnetic valve 42 for shutting off air as an oxidant supplied from an air supply source 40, a reforming air flow rate regulator unit 44 and a power-generating air flow rate regulator unit 45 for regulating the flow rate of air, a first heater 46 for heating reforming air supplied to the reformer 20, and a second heater 48 for heating power-generating air supplied to the power-generating chamber. The first and second heaters 46 and 48 are provided to efficiently raise temperature at startup, but may be omitted.
Next, the fuel cell module 2 is connected to a hot-water producing device 50. The hot-water producing device 50 is supplied with exhaust gas. The hot-water producing device 50 is supplied with municipal water from the water supply source 24. This municipal water is turned into hot water by the heat of the exhaust gas and supplied to a hot water reservoir tank in an unillustrated external water heater. Moreover, the fuel cell module 2 is provided with a control box 52 for controlling the supply flow rate of the fuel gas and the like. Further, the fuel cell module 2 is connected to an inverter 54. The inverter 54 serves as an electrical power extraction unit (electrical power conversion unit) for supplying electrical power generated by the fuel cell module to the outside.
Next, with reference to
A pure water guide pipe 60 for introducing pure water and a reformed gas guide pipe 62 for introducing fuel gas to be reformed and reforming air are attached to an upstream end of the reformer 20. Within the reformer 20, a vaporizing section 20a and a reforming section 20b are formed in sequence starting from the upstream side. The reforming section 20b is filled with a reforming catalyst. The fuel gas and air introduced into the reformer 20 and blended with water vapor are reformed by the reforming catalyst filled into the reformer 20.
A fuel gas supply pipe 64 is connected to a downstream end of the reformer 20. The fuel gas supply pipe 64 extends downward and further extends horizontally within a manifold 66 formed under the fuel cell assembly 12. Multiple fuel supply holes 64b are formed in a bottom surface of a horizontal portion 64a of the fuel gas supply pipe 64. Reformed fuel gas is supplied into the manifold 66 from the fuel supply holes 64b.
A lower support plate 68 having through holes for supporting the above-described fuel cell stacks 14 is attached to the top of the manifold 66, and fuel gas in the manifold 66 is supplied into the fuel cell unit 16.
Next, the air heat exchanger 22 is provided over the reformer 20. The air heat exchanger 22 includes an air concentration chamber 70 upstream of the exchanger and two air distribution chambers 72 downstream of the exchanger. The air concentration chamber 70 and the air distribution chambers 72 are connected through six air flow conduits 74. Here, as shown in
Air flowing in the six air flow conduits 74 of the air heat exchanger 22 is pre-heated by rising combustion exhaust gas from the combustion chamber 18. An air guide pipe 76 is connected to each of the air distribution chambers 72. The air guide pipe 76 extends downward. The lower end of the air guide pipe 76 communicates with a lower space in the power-generating chamber 10 to introduce pre-heated air into the power generating chamber 10.
Next, an exhaust gas chamber 78 is formed below the manifold 66. As shown in
Next, referring to
In addition, a current collector 102 and an external terminal 104 are attached to the fuel cell unit 16. The current collector 102 is integrally formed by a fuel electrode connecting portion 102a, which is electrically connected to the inner electrode terminal 86 attached to an inner electrode layer 90 serving as the fuel electrode, and by an air electrode connecting portion 102b, which is electrically connected to the entire external perimeter of an outer electrode layer 92 serving as the air electrode. The air electrode connecting portion 102b is formed of a vertical portion 102c extending in the vertical direction along the surface of the outer electrode layer 92, and multiple horizontal portions 102d extending in the horizontal direction from the vertical portion 102c along the surface of the outer electrode layer 92. The fuel electrode connecting portion 102a extends linearly in an upward or downward diagonal direction from the vertical portion 102c of the air electrode connecting portion 102b toward the inner electrode terminals 86 positioned in the upper and lower directions on the fuel cell unit 16.
Furthermore, the inner electrode terminals 86 at the top and bottom ends of the two fuel cell units 16 positioned at the end of the fuel cell stack 14 (at the front and back sides on the left edge in
Next, referring to
Since the inner electrode terminals 86 attached to the top and bottom ends of the fuel cell 84 have the same structure, the inner electrode terminal 86 attached to the top end will be specifically described here. A top portion 90a of the inner electrode layer 90 includes an outside perimeter surface 90b and a top end surface 90c which are exposed to the electrolyte layer 94 and the outer electrode layer 92. The inner electrode terminal 86 is connected to the outside perimeter surface 90b of the inner electrode layer 90 through a conductive seal material 96, and connected directly to the top end surface 90c of the inner electrode layer 90 and thereby electrically connected to the inner electrode layer 90. A fuel gas flow path 98 communicating with the fuel gas flow path 88 of the inner electrode layer 90 is formed in a center portion of the inner electrode terminal 86. The fuel cell of the present invention is used as the fuel cell 84.
Next, a startup mode of the fuel cell system FCS will be described. First, the reforming air flow rate regulator unit 44, the electromagnetic valve 42, and a mixer 47 are controlled so as to increase the amount of reforming air, and the air is supplied to the reformer 20. Moreover, the power-generating chamber 10 is supplied with power-generating air through the air guide pipe 76 by controlling the power-generating air flow rate regulator unit 45 and the electromagnetic valve 42. Furthermore, the fuel gas flow rate regulator unit 38 and the mixer 47 are controlled so as to increase the supply of fuel gas, and the gas to be reformed is supplied to the reformer 20. The gas to be reformed and the reforming air transferred to the reformer 20 are then transferred into the fuel cell units 16 from the respective through holes 69 through the reformer 20, the fuel gas supply pipe 64, and the gas manifold 66. The gas to be reformed and the reforming air transferred into each fuel cell unit 16 pass through the fuel gas flow path 88 from the fuel gas flow path 98 formed at the bottom end of the fuel cell unit 16, and flow out of the fuel gas flow path 98 formed at the top end of the fuel cell unit 16. After that, ignition is brought about by the ignition device 83, and combustion operation is performed on the gas to be reformed, which flows out of a top end of the fuel gas flow path 98. Thus, the gas to be reformed is combusted in the combustion chamber 18, and the partial oxidation reforming reaction (POX) takes place.
Then, an auto-thermal reforming reaction (ATR) takes place, provided that the temperature of the reformer 20 reaches approximately 600° C. or higher, and that the temperature of the fuel cell assembly 12 exceeds approximately 250° C. In this event, a premixed gas of gas to be reformed, reforming air and steam is supplied to the reformer 20 by the water flow rate regulator unit 28, the fuel gas flow rate regulator unit 38, and the reforming air flow rate regulator unit 44. Subsequently, a steam reforming reaction (SR) takes place, provided that the temperature of the reformer 20 reaches 650° C. or higher, and that the temperature of the fuel cell assembly 12 exceeds approximately 600° C.
By the switching of the reforming steps in accordance with the proceeding of the combustion step after the ignition as described above, the temperature in the power-generating chamber 10 gradually rises. When the temperature of the power-generating chamber 10 reaches a predetermined power-generating temperature below the rated temperature (approximately 700° C.) at which the fuel cell module 2 can be stably operated, the electrical circuit including the fuel cell module 2 is closed. Thus, the fuel cell module 2 starts electrical generation, and current flows in the circuit, so that the electrical power can be supplied to the outside.
The present invention will be described in more details based on the following Examples. Note that the present invention is not limited to these Examples.
A forsterite powder containing 1.0 mass % CaO was adjusted to have an average particle diameter of 0.7 μm. After 100 parts by weight of the powder was mixed with 20 parts by weight of a solvent (water), 8 parts by weight of a binder (methyl cellulose-based water-soluble polymer), and 15 parts by weight of a pore-forming agent (acrylic resin particles having an average particle diameter of 5 μm) using a high-speed mixer, the mixture was kneaded with a kneader and deaerated with a vacuum kneader. Thus, a green body for extrusion was prepared. Here, the average particle diameter was measured according to JIS R 1629, and expressed in a 50% diameter (the same applies hereinafter).
A forsterite powder containing 0.02 mass % CaO was adjusted to have an average particle diameter of 0.7 Then, 20 parts by weight of the powder, 100 parts by weight of a solvent (ethanol), 2 parts by weight of a binder (ethyl cellulose), and 1 part by weight of a dispersant (nonionic surfactant) were fully stirred with a ball mill to prepare a slurry.
A NiO powder and a 10YSZ (10 mol % Y2 O3-90 mol % ZrO2) powder were wet-mixed in a weight ratio of 65:35 to prepare a dry powder. The average particle diameter was adjusted to be 0.7 μm. Then, 40 parts by weight of the powder was mixed with 100 parts by weight of a solvent (ethanol), 2 parts by weight of a binder (ethyl cellulose), and 1 part by weight of a dispersant (nonionic surfactant). After that, the resultant mixture was fully stirred to prepare a slurry. Note that “10 mol % Y2O3-90 mol % ZrO2” means that the concentrations of a Y atom and a Zr atom are respectively 10 mol % and 90 mol % based on a total amount of the Y atom and the Zr atom.
A mixture of NiO and GDC 10 (10 mol % Gd2 O3-90 mol % CeO2) was prepared by co-precipitation and then heat treated. Thus, a fuel electrode catalyst layer powder was obtained. The mixing ratio of NiO and GDC 10 was 50/50 by weight. The average particle diameter was adjusted to be 0.5 μm. Then, 20 parts by weight of the powder was mixed with 100 parts by weight of a solvent (ethanol), 2 parts by weight of a binder (ethyl cellulose), and 1 part by weight of a dispersant (nonionic surfactant). After that, the resultant mixture was fully stirred to prepare a slurry. Note that “10 mol % Gd2O3-90 mol % CeO2” means that the concentrations of a Gd atom and a Ce atom are respectively 10 mol % and 90 mol % based on a total amount of the Gd atom and the Ce atom.
The material used for a reaction prevention layer was 10 parts by weight of a powder of the aforementioned cerium-based oxide (LDC40, that is, 40 mol % La2 O3-60 mol % CeO2). The powder was mixed with 0.04 parts by weight of a Ga2 03 powder as a sintering additive, 100 parts by weight of a solvent (ethanol), 2 parts by weight of a binder (ethyl cellulose), and 1 part by weight of a dispersant (nonionic surfactant). After that, the resultant mixture was fully stirred to prepare a slurry. Note that “40 mol % La2O3-60 mol % CeO2” means that the concentrations of a La atom and a Ce atom are respectively 40 mol % and 60 mol % based on a total amount of the La atom and the Ce atom.
The material used for a solid electrolyte layer was an LSGM powder having a composition of La0.9Sr0.1Ga0.8Mg0.2O3. Then, 40 parts by weight of the LSGM powder was mixed with 100 parts by weight of a solvent (ethanol), 2 parts by weight of a binder (ethyl cellulose), and 1 part by weight of a dispersant (nonionic surfactant). After that, the resultant mixture was fully stirred to prepare a slurry.
The material used for an air electrode was a powder having a composition of La0.6Sr0.4Co0.2Fe0.8O3. Then, 40 parts by weight of the powder was mixed with 100 parts by weight of a solvent (ethanol), 2 parts by weight of a binder (ethyl cellulose), and 1 part by weight of a dispersant (nonionic surfactant). After that, the resultant mixture was fully stirred to prepare a slurry.
Using the green body and the slurries obtained as described above, a solid oxide fuel cell was prepared by the following method.
The green body for porous support was extruded to prepare a cylindrical compact. The compact was dried at room temperature, and then heat treated at 1050° C. for 2 hours. Next, a high purity forsterite layer was formed by slurry coating, and heat treated at 1050° C. for 2 hours to prepare a porous support. On the porous support, a fuel electrode layer, a fuel electrode catalyst layer, a reaction prevention layer, and a solid electrolyte layer were formed in that order by slurry coating. This layered assembly was co-fired at 1300° C. for 2 hours. Next, masking was performed on the cell so that the area of an air electrode may be 17.3 cm2, and the air electrode layer was formed on the surface of the solid electrolyte layer and fired at 1100° C. for 2 hours. It should be noted that the porous support had an outside diameter of 10 mm and a thickness of 1 mm after co-firing, and the high purity forsterite layer had a thickness of 50 μm. In the prepared solid oxide fuel cell, the fuel electrode layer had a thickness of 100 μm, the fuel electrode catalyst layer had a thickness of 10 μm, the reaction prevention layer had a thickness of 10 μm, the solid electrolyte layer had a thickness of 30 μm, and the air electrode had a thickness of 20 μm. In addition, the outside diameter of the porous support was measured using a micrometer at a portion where no film was formed. Each thickness was obtained by: cutting the cell after a power generation test on the system, observing the cross section with a SEM at any magnification from 30 to 2000, and then dividing by 2 the sum of the maximum value and the minimum value of the thickness. The cutting point was a central portion of the region where the air electrode was formed.
Using the obtained solid oxide fuel cell, power generation test was conducted. Current was collected on the fuel electrode side by pasting and baking a current collecting metal to an exposed portion of the fuel electrode with a silver paste. Current was collected on the air electrode side by applying a silver paste to the surface of the air electrode and then pasting and baking a current collecting metal to an end of the air electrode with the silver paste.
The conditions for power generation were as follows.
Fuel gas: a gas mixture of (H2+3% H2O) and N2 (the mixing ratio was H2:N2=7:4 (vol:vol))
Fuel utilization: 75%
Oxidant gas: air
Operation temperature: 700° C.
Current density: 0.2 A/cm2
Under these conditions, the power generation test was conducted. The electromotive force: OCV (V) and the initial potential (V0) after 0 hours of the operation as well as the potential (V5000) after 5000 hours of the continuous operation were measured. The durability was expressed by a value obtained by dividing the potential after the 5000-hour continuous operation by the initial potential and multiplying the quotient by 100 (V5000*100/V0). Table 1 shows the result.
Solid oxide fuel cells were prepared in the same manner as in Example 1, except that the forsterite powders used for the green bodies for porous support had a CaO content of 0.5, 0.25, 1.5, and 2.0 mass %, and the power generation test was conducted. Table 1 shows the result.
A solid oxide fuel cell was prepared in the same manner as in Example 1, except that the forsterite powder used for the green body for porous support had a CaO content of 5.0 mass %, and the power generation test was conducted. Table 1 shows the result.
A solid oxide fuel cell was prepared in the same manner as in Example 1, except that the forsterite powder used for the green body for porous support had a CaO content of 0.1 mass %, and the power generation test was conducted. Table 1 shows the result.
The material used for a solid electrolyte layer was a 10YSZ (10 mol % Y2O3-90 mol % ZrO2) powder. Then, 40 parts by weight of the lOYSZ powder was mixed with 100 parts by weight of a solvent (ethanol), 2 parts by weight of a binder (ethyl cellulose), and 1 part by weight of a dispersant (nonionic surfactant). After that, the resultant mixture was fully stirred to prepare a slurry. Note that “10 mol % Y2O3-90 mol % ZrO2” means that the concentrations of a Y atom and a Zr atom are respectively 10 mol % and 90 mol % based on a total amount of the Y atom and the Zr atom.
The material used for a second solid electrolyte layer was the aforementioned GDC 10 (10 mol % Gd2O3-90 mol % CeO2) powder. Then, 10 parts by weight of the GDC 10 powder was mixed with 100 parts by weight of a solvent (ethanol), 2 parts by weight of a binder (ethyl cellulose), and 1 part by weight of a dispersant (nonionic surfactant). After that, the resultant mixture was fully stirred to prepare a slurry. Note that “10 mol % Gd2O3-90 mol % CeO2” means that the concentrations of a Gd atom and a Ce atom are respectively 10 mol % and 90 mol % based on a total amount of the Gd atom and the Ce atom.
Using the same green body for porous support as that used in Example 2 having a CaO content of 0.5 mass %, the slurry for high purity forsterite layer, the slurry for fuel electrode layer, the slurry for fuel electrode catalyst layer, the slurry B for solid electrolyte layer, the slurry for second solid electrolyte layer, and the slurry for air electrode, a solid oxide fuel cell was prepared by the following method.
The green body for porous support used in Example 2 was extruded to prepare a cylindrical compact. The compact was dried at room temperature, and then heat treated at 1050° C. for 2 hours. Next, using the slurry for high purity forsterite layer, a high purity forsterite layer was formed by slurry coating, and heat treated at 1050° C. for 2 hours to prepare a porous support. Further, a fuel electrode layer, a fuel electrode catalyst layer, a solid electrolyte layer, and a second solid electrolyte layer were formed in that order by slurry coating. This layered assembly was co-fired at 1300° C. for 2 hours. Next, masking was performed on the cell so that the area of an air electrode may be 17.3 cm2, and the air electrode layer was formed on the surface of the second solid electrolyte layer and fired at 1100° C. for 2 hours. It should be noted that the porous support had an outside diameter of 10 mm and a thickness of 1 mm after co-firing, and the high purity forsterite layer had a thickness of 50 μm. In the prepared solid oxide fuel cell, the fuel electrode layer had a thickness of 100 μm, the fuel electrode catalyst layer had a thickness of 10 μm, the solid electrolyte layer had a thickness of 30 μm, the second solid electrolyte layer had a thickness of 5 μm, and the air electrode had a thickness of 20 μm. In addition, the outside diameter of the porous support was measured using a micrometer at a portion where no film was formed. Each thickness was obtained by: cutting the cell after a power generation test on the system, observing the cross section with a SEM at any magnification from 30 to 2000, and then dividing by 2 the sum of the maximum value and the minimum value of the thickness. The cutting point was a central portion of the region where the air electrode was formed. The power generation test was conducted on the obtained solid oxide fuel cell in the same manner as in Example 1. Table 2 shows the result.
A forsterite powder containing 2.6 mass % CaO was adjusted to have an average particle diameter of 1.3 μm. After 100 parts by weight of the powder was mixed with 20 parts by weight of a solvent (water), 7 parts by weight of a binder (methyl cellulose), 0.4 parts by weight of a lubricant (fatty acid ester), and 10 parts by weight of a pore-forming agent (acrylic resin particles having an average particle diameter of 5 μm) using a high-speed mixer, the mixture was kneaded with a kneader and deaerated with a vacuum kneader. Thus, a green body for extrusion was prepared. Here, the average particle diameter was measured according to JIS R 1629, and expressed in a 50% diameter.
Using the green body for porous support prepared using the forsterite powder containing 2.6 mass % CaO, the slurry for fuel electrode layer, the slurry for fuel electrode catalyst layer, the slurry B for solid electrolyte layer, the slurry for second solid electrolyte layer, and the slurry for air electrode, a solid oxide fuel cell was prepared by the following method.
The green body for porous support was extruded to prepare a cylindrical compact. The compact was dried at room temperature, and then heat treated at 1100° C. for 2 hours to prepare a porous support. On the porous support, a fuel electrode layer, a fuel electrode catalyst layer, a solid electrolyte layer, and a second solid electrolyte layer were formed in that order by slurry coating. This layered assembly was co-fired at 1300° C. for 2 hours. Next, masking was performed on the cell so that the area of an air electrode may be 17.3 cm2, and the air electrode layer was formed on the surface of the second solid electrolyte layer and fired at 1100° C. for 2 hours. It should be noted that the porous support had an outside diameter of 10 mm and a thickness of 1 mm after co-firing. In the prepared solid oxide fuel cell, the fuel electrode layer had a thickness of 100 μm, the fuel electrode catalyst layer had a thickness of 10 μm, the solid electrolyte layer had a thickness of 30 μm, the second solid electrolyte layer had a thickness of 5 μm, and the air electrode had a thickness of 20 μm. In addition, the outside diameter of the porous support was measured using a micrometer at a portion where no film was formed. Each thickness was obtained by: cutting the cell after a power generation test on the system, observing the cross section with a SEM at any magnification from 30 to 2000, and then dividing by 2 the sum of the maximum value and the minimum value of the thickness. The cutting point was a central portion of the region where the air electrode was formed. The power generation test was conducted on the obtained solid oxide fuel cell in the same manner as in Example 1. Table 3 shows the result.
The fractured surface of the solid oxide fuel cell was observed using a scanning electron microscope (S-4100 manufactured by Hitachi, Ltd.) at an accelerating voltage of 15 kV with secondary electron images at magnifications from 100 to 10000 to evaluate the shape of the structure of the solid electrolyte layer.
Moreover, after the cut surface of the solid oxide fuel cell was polished, the surface was subjected to elemental analysis using EPMA (Shimadzu electron probe microanalyzer EPMA-8705 manufactured by Shimadzu Corporation), and observed to judge whether or not the structural elements of the solid electrolyte layer were uniformly distributed.
A “Excellent” indicates that the solid electrolyte was made of dense 10YSZ crystals, and apparently no formation of an interlayer was found between the porous support and the fuel electrode.
A “Good” indicates that the solid electrolyte was made of 10YSZ crystals, but an interlayer was observed.
A “Poor” indicates that Ca diffused, so that the 10YSZ crystal phase was not dense.
Number | Date | Country | Kind |
---|---|---|---|
2012-203134 | Sep 2012 | JP | national |
2013-178375 | Aug 2013 | JP | national |