The present invention relates generally to a solid propellant grain.
Solid rocket propellants are used in many different rocket motors, especially for military applications. The solid propellant is ignited and creates a combustion zone on the propellant grain surface. The generated combustion gases create thrust via gas mass flow through the rocket nozzle, which provides propulsion for the solid rocket motor. Thrust over time (“thrust profile”) is typically controlled by selection of desirable solid propellant burn rates and the geometry of the solid propellant grain. High thrust levels or complex thrust profiles usually require unique grain configurations such that the burning surface area coupled with propellant regression can achieve the desired gas mass flow. Achieving such grain surface areas requires internal passageways through the solid propellant, resulting in more free volume and less solid propellant within the confines of the combustion chamber. Such solid propellant grains result in low loading densities and reduced ranges.
One alternative is the end-burning solid propellant grain, where the propellant can fill virtually the entire combustion chamber. This has the highest loading density of any solid propellant grain, but also has the lowest initial surface area since just the flat end is exposed toward the rocket nozzle. Typical end-burning solid rocket motors result in long burn times but very low mass flow rate. Many rocket motors require much higher thrust levels to meet mission requirements.
Previously known attempts to increase the mass flow rate and thrust of end-burning solid rocket motors required embedding thermally conductive wires within the solid propellant, with one end of the wires in contact with initial burning surface. Thus, upon ignition of the rocket propellant, the heat from the combustion zone is thermally conducted by the wires into the rocket propellant, which creates localized conical combusting surface areas around the wires and results in increased mass flow and thrust. Thus the high loading density of the end-burning grain can achieve a greater thrust profile without a reduction in the mass of the total rocket propellant except, of course, for the minor mass of the embedded wires.
The previously known art of embedding thermally wires in solid propellant, however, is quite limited in the pattern of the embedded wires. The wires are usually straight, extending longitudinally through the rocket propellant, which was necessary since the propellant is cast into a mold of the desired shape of the propellant grain. Consequently, during solid propellant casting, the wires were maintained in a straight line under tension to assure the location and pattern of the embedded wires. Otherwise, if the wires drifted out of position then the overall performance of the rocket propellant could be jeopardized.
The present invention provides a solid propellant grain which overcomes the above mentioned disadvantages of the previously known solid propellant grains.
In brief, the solid propellant grain of the present invention comprises a solid propellant that is formulated in the conventional fashion. The ingredients will vary, but any conventional rocket propellant may be used with the present construction.
Preferably, a membrane comprising of a flexible polymer will have a thermally conductive coating, such as a metallic foil, on one or both sides of the sheet. Thermally conductive pathways are etched into a desired pattern by removing portions of the metal foil using chemical etching, milling, or the preferred technique for the materials being used. The actual thermally conductive pattern may assume any of numerous forms dependent upon the propellant grain application.
Once the thermally conductive pattern is formed on the polymer sheet, the polymer sheet is positioned in the mold when the propellant is cast into its desired shape. The sheet may be embedded within the interior of the rocket propellant, used to surround the rocket propellant and, as needed, multiple flexible sheets may be embedded into a single propellant grain.
During the casting operation, the flexible sheets maintain the position of the thermally conductive pattern throughout the rocket propellant. Consequently, upon completion of casting of the rocket propellant into its mold, the position of the sheets, and thus the position of the thermally conductive patterns, is both established and known.
In operation, the thermally conductive patterns transfer heat from the combustion zone of the rocket propellant through the interior of the propellant grain thus increasing the rate of combustion. This, in turn, increases the mass flow rate from the combusting propellant grain thus providing greater propulsion for the rocket motor. Furthermore, since the flexible sheet consumes very little interior volume, the increase in the mass flow rate is obtained without a reduction of the actual mass of useful rocket propellant.
A better understanding of the present invention will be had upon reference to the following detailed description when read in conjunction with the accompanying drawing, wherein like reference characters refer to like parts throughout the several views, and in which:
With reference first to
The rocket propellant 22 may be of any conventional construction and fabricated in any conventional manner. Once positioned within a rocket, one face or one surface 24 is ignited to initiate the combustion of the propellant grain 20.
With reference still to
A thermally conductive pattern 28 is formed on the sheet 26. This heat conductive pattern 28 can be formed from a metal foil, which typically exhibit highly thermally conductive properties. For example, the thermally conductive pattern 28 may be formed from silver, copper, aluminum, and so forth. In certain embodiments, the thermally conductive pattern 28 is symmetrical, in certain embodiments, the thermally conductive pattern 28 is symmetrical about the vertical axis of sheet 26.
Thermally conductive pattern 28 can be formed on membrane 26 by applying a metal foil or other similar materials across one or both sides of the membrane 26 in any conventional fashion. The conductive layer on the membrane 26 is then etched, or otherwise patterned, to remove the unwanted portions and leave the heat conductive pattern 28 on the membrane 26.
With reference now particularly to
With reference now to
For example, with reference now to
In
In
With reference now to
With reference now to
With reference to
Consequently, it can be seen that the flexible membrane 26 provides a support for the thermally conductive pattern during the casting operation of the rocket propellant. As such, the design of the thermally conductive pattern 28 is virtually unlimited thus allowing the rocket designer to achieve the desired thrust profile for a particular rocket.
Having described our invention, however, many modifications will become apparent to those skilled in the art to which it pertains without deviation from the spirit of the invention as defined by the scope of the appended claims.
The invention described herein may be manufactured, used, and licensed by or for the United States Government.
Number | Name | Date | Kind |
---|---|---|---|
3116692 | Rumbel et al. | Jan 1964 | A |
3126701 | Henderson | Mar 1964 | A |
3387329 | Godfrey | Jun 1968 | A |
3434426 | De Dapper | Mar 1969 | A |
3509822 | Burton | May 1970 | A |
4180535 | Rhoades | Dec 1979 | A |
4756251 | Hightower, Jr. | Jul 1988 | A |
5854439 | Almstrom | Dec 1998 | A |
20090229245 | Koreki | Sep 2009 | A1 |
Entry |
---|
N. Kubota, M. Ichidat, and T. Fujisawa. “Combustion Processes of Propellants with Embedded Metal Wires”, AIAA Journal, vol. 20, No. 1 (1982), pp. 116-121. |
K.H.; Lee, K. & Chang, S.Y. “The enhancement of regression rate of hybrid rocket fuel by various methods”, AIAA Paper 2005-0359, Reno, Nevada, 2005. |
Number | Date | Country | |
---|---|---|---|
20170096968 A1 | Apr 2017 | US |