This disclosure relates generally to power control systems and devices and, in particular, solid-state circuit interrupter devices and systems for disrupting power loads under fault conditions or hazardous conditions.
Electrical circuit interrupters are an essential component in electrical distribution systems and are often positioned between an incoming high-current utility supply circuit and lower current branch circuits within a given building or home structure to protect branch circuit conductors and electrical loads from being exposed to over-current conditions. There are several types of over current conditions including overload conditions and fault conditions. An overload condition is defined as operation of equipment in excess of its normal, full-load rating, or a branch circuit in excess of its ampacity which, when the overload persists for a sufficient period of time, would cause damage or dangerous overheating. Fault conditions comprise unintended or accidental load conditions that typically produce much higher over-current conditions than do overloads, depending on the impedance of the fault. A fault producing the maximum over-current condition is referred to as a short-circuit or a “bolted fault.”
Conventional circuit interrupters are electromechanical in nature and have electrical contacts that are physically separated by either manual intervention of an operator lever or automatically upon the occurrence of a fault condition or prolonged over current condition, in which cases the circuit interrupter is deemed to be “tripped.” The separation of the electrical contacts of a circuit breaker can be performed electromagnetically or mechanically, or a combination of both.
A significant problem with conventional circuit interrupters is that they are slow to react to fault conditions due to their electromechanical construction. Conventional circuit interrupters typically require at least several milliseconds to isolate a fault condition. The slow reaction time is undesirable since it raises the risk of hazardous fire, damage to electrical equipment, and arc-flashes, which can occur at the short-circuit location when a bolted fault is not isolated quickly enough. An arc-flash is an electrical explosion of the electrical conductors that create the short-circuit condition. The energy release in arc-flash can produce temperatures exceeding 35,000° F. at the terminals, resulting in rapidly vaporizing metal conductors, blasting molten metal, as well as expanding plasma that is ejected outwards with extreme force. Therefore, arc-flashes are extremely hazardous to life, property and electrical equipment, particularly in industrial and residential applications where the risk of a gas leak is significant.
In addition to being slow at isolating faults, conventional circuit interrupters exhibit large variations in both the time to trip and the current trip limit in response to a fault or prolonged over-current conditions. This variation is predominately due to the limitations of the electromechanical design of the circuit breaker device and the influence of physical factors such as mounting stresses and temperature variation. The variations in the time to trip and the current trip limit can themselves vary from device to device even when the devices are of the same type, the same rating, and the same manufacturer.
Conventional circuit interrupters provide high isolation capability once they have been tripped. However, their slow reaction times, lack of precision and high degree of variability are all very undesirable characteristics. Not only do the slow reaction times result in inadequate protection against the possibilities of arc flashes, but the high degree of variability and lack of precision make coordination between multiple circuit interrupters in a complex system almost impossible.
As a protection device, a circuit interrupter must be able to isolate a fault from the utility supply circuit even when the fault current greatly exceeds the circuit interrupter trip current rating and, thereby, protect against being an internal single point of failure. The Ampere Interrupting Capacity (AIC) rating of a circuit interrupter indicates the maximum fault current (in amperes) that the circuit interrupter device will safely clear when a fault is applied at the load side of the circuit interrupter device. The AIC rating of a circuit interrupter device denotes the maximum fault current that can be interrupted by the circuit interrupter device without failure of the circuit interrupter device. The AIC rating demands an extremely high level of short-circuit protection and domestic circuit interrupters are often rated at an AIC of 10,000 amperes or more.
Embodiments of the disclosure include solid-state circuit interrupter devices and systems for interrupting power from a source to a load. For example, in one embodiment, a circuit interrupter, comprises a solid-state switch and a mode control circuit. The solid-state switch is serially connected between a line input terminal and a load output terminal of the circuit interrupter, and is configured to be placed in one of (i) a switched-on state to provide an electrical connection in an electrical path between the line input terminal and the load output terminal, and (ii) a switched-off state. The mode control circuit is configured to implement a first control mode and a second control mode to control operation of the circuit interrupter. The first control mode is configured to generate a self-bias turn-on threshold voltage for the solid-state switch during power-up of the circuit interrupter, while maintaining the solid-state switch in the switched-off state until the self-bias turn-on threshold voltage is generated. The second control mode is configured to disrupt the self-bias turn-on threshold voltage and place the solid-state switch into the switched-off state.
In another embodiment, a circuit interrupter comprises a solid-state switch, an air-gap electromagnetic switch, a switch controller, a zero-crossing sensor, and a current sensor. The solid-state switch and the air-gap electromagnetic switch are connected in series between a line input terminal and a load output terminal of the circuit interrupter. The switch controller is configured to control operation of the solid-state switch and the air-gap electromagnetic switch. The zero-crossing sensor is configured to detect zero crossings of a supply power waveform input to the line input terminal of the circuit interrupter. The current sensor is configured to sense a current flowing in the electrical path between the line input terminal and the load output terminal, and detect a fault condition. In response to detection of a fault condition by the current sensor, the switch controller is configured to generate switch control signals to (i) place the solid-state switch into a switched-off state and (ii) place the air-gap electromagnetic switch into a switched-open state after the solid-state switch is placed into the switched-off state. The switch controller utilizes zero-crossing detection signals output from the zero-crossing sensor to detect a zero-crossing event of the supply power waveform and place the air-gap electromagnetic switch into the switched-open state in response to the detected zero-crossing event.
Other embodiments will be described in the following detailed description of embodiments, which is to be read in conjunction with the accompanying figures.
Embodiments of the disclosure will now be described in further detail with regard to solid-state circuit interrupter devices and systems for interrupting power from a source to a load based on the detection of fault conditions (e.g., short-circuit faults, over-current faults, ground faults, arc faults, etc.) and the detection of hazardous environmental conditions (e.g., flooding, chemical spills, gas leaks, etc.). It is to be understood that same or similar reference numbers are used throughout the drawings to denote the same or similar features, elements, or structures, and thus, a detailed explanation of the same or similar features, elements, or structures will not be repeated for each of the drawings. In addition, the terms “about” or “substantially” as used herein with regard to percentages, ranges, etc., are meant to denote being close or approximate to, but not exactly. For example, the term “about” or “substantially” as used herein implies that a small margin of error is present, such as 1% or less than the stated amount. The term “exemplary” as used herein means “serving as an example, instance, or illustration”. Any embodiment or design described herein as “exemplary” is not to be construed as preferred or advantageous over other embodiments or designs.
The circuit interrupter 100 comprises an AC switch 105 and a controller 110. The AC switch 105 comprises a TRIAC or a silicon controlled rectifier (SCR). The TRIAC switch 105 is a three terminal electronic device that conducts current in both directions under control of the controller 110. The TRIAC is often found in conventional wall-mounted dimming switches. The controller 110 is representative of many possible control embodiments whether they be logic gates, a microcontroller, or an electromechanical control such as the bi-metal bending strips utilized in conventional circuit breakers. The controller 110 can apply a control signal to a gate (G) of the TRIAC switch 105 for phase angle modulation and to turn the TRIAC switch 105 on and off. The phase angle control of the TRIAC switch 105 allows control of the average current flowing into the load 20, and is commonly used for controlling the speed of a motor, dimming lights, or controlling electric heaters, etc.
A disadvantage of the circuit interrupter 101 shown in
The first controller 110 controls current flow by applying a control signal simultaneously to switches 135 and 140, while the second controller 111 controls current flow by applying a control signal simultaneously to switches 165 and 170. During positive half cycles of the AC supply voltage waveform of the AC mains 10, current flows (i) in the hot line path through the switch 135 and the diode 130 and (ii) in the neutral line path through the switch 170 and the diode 145. On the other hand, during negative half cycles of the AC supply voltage waveform of the AC mains 10, current flows (i) in hot line path through the switch 140 and the diode 125 and (ii) in the neutral line path through the switch 165 and the diode 150. This configuration of simultaneously controlling AC switches on both line and neutral is referred to as double-pole switching and may be applied to two lines of differing phase from a single AC energy source. Double pole switching of line and neutral is a common AC switching technique in the life saving applications of ground-fault circuit interrupters. The circuit interrupter 103 has similar disadvantages as the circuit interrupter 102 discussed above, but enhanced by the fact that the circuit interrupter includes 4 additional discrete components with the additional diodes 145 and 150 increasing power dissipation.
Exemplary embodiments of the disclosure as shown in
In the exemplary embodiment of
The first and second mode control circuits 220 and 222 are configured to implement multiple control modes for the solid-state interrupter 200 including (i) a self-bias turn-on threshold voltage control mode and (ii) a forced turn-off control mode. In some embodiments, the self-bias turn-on threshold voltage control mode utilizes a self-biasing circuit to generate a target turn-on threshold voltage level for the solid-state switches 210 and 212, while preventing the solid-state switches 210 and 212 from turning on before the target self-bias turn-on threshold voltage level is reached and applied to the solid-state switches 210 and 212 to turn-on the solid-state switches 210 and 212.
As explained in further detail below, a self-bias network is configured to delay the application of a gate voltage to the gate terminals of the solid-state switches 210 and 212 which delay is long enough to prevent premature “turn-on” of the switches 210 and 212 before the self-bias turn-on threshold voltage level is generated. Indeed, the premature turn-on of the solid-state switches 210 and 212 would prevent the generation of the self-bias turn-on threshold voltage to the target voltage level. The self-bias turn-on threshold voltage control mode is supported by the first and second bias branch circuits with an opposite cycle arrangement comprised of the diodes 240 and 242 and the resistors 250 and 252.
In some embodiments, the forced turn-off control mode of the first and second mode control circuits 220 and 222 is configured to force a turn-off of the solid-state switches 210 and 212 in response to the detection of certain events including, but not limited to, detection of fault events, detection of hazardous environmental conditions, remote commands for circuit interruption, etc. As explained in further detail below, the forced turn-off control mode can be initiated on commands by, e.g., direct hardware fault sensing and control, and/or through a galvanically isolated control input based on, but not limited to, optical, magnetic, capacitive, and RF isolation technologies.
In some embodiments, the first and second current sensors 230 and 232 are configured to sense a magnitude of current flowing to and from the load 20 and generate current sense data that is utilized by the first and second mode control circuits 220 and 222 to identify fault events such as short-circuit fault events, over-current fault events, arc fault events, etc. In response to the detection of such fault events, the first and second current sensors 230 and 232 are configured to trigger the force turn-off mode which results in the first and second solid-state switches 210 and 212 being turned-off. The first and second current sensors 230 and 232 may be implemented using various types of sensing techniques and circuits, including, but not limited to, sensing techniques that are based on sense resistors, current transformers, Hall-effect sensors, or the internal impedance (drain-source resistance) of the solid-state switches 210 and 212. The mode control circuits 220 and 222 can be implemented using various types of control architectures based on, e.g., logic gates, microcontrollers, electromechanical control devices, etc.
In normal operation of the solid-state interrupter 200, during positive half-cycles of the supply voltage waveform of the AC mains 10, the first mode control circuit 230 applies the generated self-bias turn-on threshold voltage to the gate terminal of the first solid-state switch 210 to turn on the first solid-state switch 210. In this configuration, the positive current flows from the line hot 11 through the first solid-state switch 210 to the load 20, and current returns to the line neutral 12 through the forward-biased intrinsic diode 212-1 of the second solid-state switch 212. On the other hand, during negative half-cycles of the supply voltage waveform of the AC mains 10, the second mode control circuit 222 applies the generated self-bias turn-on threshold voltage to the gate terminal of the second solid-state switch 212 to turn on the second solid-state switch 212. In this configuration, the negative current flows from the line neutral 12 through the second solid-state switch 212 to the load 20, and current returns to the line hot 11 through the forward-biased intrinsic diode 210-1 of the first solid-state switch 210.
For example, for the self-bias turn-on threshold voltage control mode, the comparators 350 and 352 will output a control voltage which is sufficient to activate the control switches 360 and 362 and effectively short the gate-to-source of the first and second solid-state switches 210 and 212. The solid-state switches 210 and 212 are maintained in a switched-off state for a sufficient amount of time to generate the self-bias turn-on threshold voltages for the solid-state switches 210 and 212.
For example, during a positive half cycle of the AC supply voltage waveform of the AC mains 10, current flows from the line hot 11 to the line neutral 12 through the second branch circuit (comprising the diode 242 and the resistor 252), the capacitor 312, and the body diode 212-1. This current flow causes a voltage across the capacitor 312 to increase until the capacitor voltage reaches a target self-bias turn-on threshold voltage level across the capacitor 312 which represents a clamping voltage (i.e., reverse breakdown voltage of the Zener diode 322, referred to as Zener voltage). In other words, the Zener voltage of the Zener diode 322 limits the maximum level of the self-bias turn-on threshold voltage (VGS) which is generated to turn on the second solid-state switch 212.
Next, during a negative half cycle of the AC supply voltage waveform of the AC mains 10, current flows from the line neutral 12 to the line hot 11 through the first branch circuit (comprising the diode 240 and the resistor 250), the capacitor 310, and the body diode 210-1. This current flow causes a voltage across the capacitor 310 to increase until the capacitor voltage reaches target turn-on threshold voltage level across the capacitor 310 which represents a clamping voltage (Zener voltage) of the Zener diode 320. In other words, the Zener voltage of the Zener diode 320 limits the maximum level of the self-bias turn-on threshold voltage (VGS) which is generated to turn on the first solid-state switch 210.
In this exemplary embodiment, the target threshold voltage level for the solid-state switches 210 and 212 is limited by the Zener voltages of the Zener diodes 320 and 322 such that the Zener diodes 320 and 322 serve as a solid-state clamp to limit the turn-on threshold voltage. In this regard, the self-bias turn-on threshold voltage control mode is input-line voltage independent, as the level of the self-bias turn-on threshold voltage is limited by the solid-state clamp.
As noted above, in the exemplary mode control framework of
As noted above, the mode control circuits 220 and 222 implement a forced turn-off control mode using the circuit components 340, 342, 370, 372, and 380. In particular, during operation of the solid-state circuit interrupter 300, the switches 370 and 372 can be activated by one of the sensors 380 to effectively shunt the gate-to-source terminals and turn-off the solid-state switches 210 and 212. The sensors 380 can include one or more of various types of sensors. For example, in some embodiments, the sensors 380 include a current sensor which is configured to measure a voltage drop across the sense resistors 340 and 342 and determine a magnitude of current flowing in the hot line path and neutral line paths between the AC mains 10 and the load 20 based on the measured voltage drops across the current sense resistors 340 and 342. In some embodiments, the sense resistors 340 and 342 have very small resistance values (e.g., on the order of 10× less than 1 milli-Ohm), and as such the voltage potential across the sense resistors 340 and 342 is negligible but yet sufficient for current sensing. The operational amplifiers 350 and 352 are configured with sufficient gain to be able to drive the respective control switches 360 and 362, even with a relatively small voltage input corresponding to the voltage drops across the sense resistors 340 and 342.
In other embodiments, the sensors 380 include one or more sensors that are configured to sense environmental conditions. For example, the sensors 380 can include one or more of (i) a chemical sensitive detector that is configured to detect the presence of hazardous chemicals, (ii) a gas sensitive detector that is configured to detect the presence of hazardous gases, (iii) a temperature sensor that is configured to detect high temperatures indicative of, e.g., a fire; a (iv) a piezoelectric detector that is configured to detect large vibrations associated with, e.g., explosions, earthquakes, etc., (v) a humidity sensor or water sensor that is configured to detect floods or damp conditions, and other types of sensors that are configured to detect for the presence or occurrence of hazardous environmental conditions that would warrant circuit interruption.
In some embodiments, the control switches 370 and 372 comprise optical transistors (e.g., phototransistor, etc.) or other types of optically controlled switches which receive signals from complementary light emitting diodes (LED) that are controlled by, e.g., a sensor device or a microcontroller. This optical coupling between the sensors 380 and the control switches 370 and 372 essentially provides galvanic isolation between the force turn-off control circuit and the switching circuit of the solid-state circuit interrupter 300. In other embodiments, galvanic isolation can be implemented using magnetic, capacitive, or radio frequency (RF) isolation technologies.
In other embodiments, the control switches 370 and 372 can be activated in response to remote commands (e.g., alarm signals) received from a local or remote controller that is configured to detect faults, or remote commands received from an individual that can control operation of the solid-state circuit interrupter 300 through smart technologies implemented using, for example, an Internet-of-Things (IoT) wireless computing network, wherein the solid-state circuit interrupter 300 comprises a smart wireless IoT device.
The solid-state interrupter 400 further comprises a mode control circuit 405 which comprises a first capacitor 410, a Zener diode 420, resistors 430, 440, 450, and 452, a second capacitor 454, a first control switch 460, a second control switch 470, and sensors 480. The first and second bias branch circuits are connected to an input node N1 of the mode control circuit 405. The mode control circuit 405 shown in
For example, for the self-bias turn-on threshold voltage control mode, the resistors 450 and 452 and the capacitor 454 will generate a voltage at node N2 which is sufficient to activate the first control switch 460 and effectively short the gate-to-source of the first and second solid-state switches 401 and 402. The voltage at node N2 will maintain the solid-state switches 401 and 402 turned-off for a delayed time period which corresponds to the RC time constant of the resistor 452 and the capacitor 454.
During this RC time constant delay period, and during a negative half cycle of the AC supply voltage waveform of the AC mains 10, current flows from the line neutral 12 to the line hot 11 through the first branch circuit (comprising the diode 240 and the resistor 250), the capacitor 410, and the body diode 401-1. This current flow causes a voltage across the capacitor 410 to increase until the capacitor voltage reaches target turn-on threshold voltage level across the capacitor 410 which represents a clamping voltage (i.e., Zener voltage of Zener diode 420). In other words, the Zener voltage of the Zener diode 420 limits the maximum level of the self-bias turn-on threshold voltage (VGS) which is generated to turn on the first and second solid-state switches 401 and 402.
In this exemplary embodiment, the target threshold voltage level is limited by the Zener voltage (i.e., reverse breakdown voltage) of the Zener diode 420 such that the Zener diode 420 serves as a solid-state clamp to limit the turn-on threshold voltage. In this regard, the self-bias turn-on threshold voltage control mode is input-line voltage independent, as the level of the self-bias turn-on threshold voltage is limited by the solid-state clamp. During a positive half cycle of AC supply voltage waveform of the AC mains 10, the diode 242, the resistor 252, and the capacitor 410 will trickle charge across the Zener diode 420 to maintain the turn-on threshold voltage (i.e., the Zener voltage) for the first and second solid-state switches 401 and 402.
As noted above, in the exemplary mode control framework of
As noted above, the mode control circuit 405 implements a forced turn-off control mode using the circuit components 440, 470 and 480. In particular, during operation of the solid-state circuit interrupter 400, the switch 470 can be activated by one of the sensors 480 to effectively shunt the gate-to-source terminals and turn-off the solid-state switches 401 and 402. The sensors 480 can include one or more of various types of sensors. For example, in some embodiments, the sensors 480 include a current sensor which is configured to measure a voltage drop across the sense resistor 440 and determine a magnitude of current flowing in the hot line path between the line hot 11 and the load hot 21 based on the measured voltage drop across the current sense resistor 440. In some embodiments, the sense resistor 440 has a resistance value that is less than 1 milli-Ohm. As such, the voltage potential across the sense resistor 440 is negligible but yet sufficient for current sensing. A difference between ground potential of the sense resistor 440 and the sensing circuit is small and will be mutually compensated due to the bi-directional current flow through the sense resistor 440.
In other embodiments, the sensors 480 include one or more sensors that are configured to sense environmental conditions. For example, the sensors 480 can include one or more of (i) a chemical sensitive detector that is configured to detect the presence of hazardous chemicals, (ii) a gas sensitive detector that is configured to detect the presence of hazardous gases, (iii) a temperature sensor that is configured to detect high temperatures indicative of, e.g., a fire; a (iv) a piezoelectric detector that is configured to detect large vibrations associated with, e.g., explosions, earthquakes, etc., (v) a humidity sensor or water sensor that is configured to detect floods or damp conditions, and other types of sensors that are configured to detect for the presence or occurrence of hazardous environmental conditions that would warrant circuit interruption.
In some embodiments, the switch 470 comprises an optical transistor (e.g., phototransistor, etc.) or other types of optical switches, which receives signals from a complementary light emitting diode (LED) that is controlled by a sensor device or microcontroller. This optical coupling between the sensors 480 and the switch 470 essentially provides galvanic isolation between the force turn-off control circuitry and the switching circuit of the solid-state circuit interrupter 400. In other embodiments, galvanic isolation can be implemented using magnetic, capacitive, or radio frequency (RF) isolation technologies.
In other embodiments, the switch 470 can be activated in response to remote commands (e.g., alarm signals) received from a local or remote controller that is configured to detect faults, or remote commands received from an individual that can control operation of the solid-state circuit interrupter 400 through smart technologies implemented using, for example, an IoT wireless computing network, wherein the solid-state circuit interrupter 400 comprises a smart wireless IoT device.
The isolation circuit 510 serves to shunt the load 20 from unwanted leakage current flow from the AC mains 10 though the switched-off solid-state switches 401 and 402. The isolation circuit 510 comprises a controller 520, MOSFET devices 530 and 540 and associated body diodes 530-1 and 540-1. During a turn-off period of the solid-state switches 401 and 402, the controller 520 commands the MOSFET switches 530 and 540 to turn on and thereby shunt the unwanted leakage and prevent such leakage current from flowing into the load 20. The effect of bypassing or shunting leakage current away from the load 20 serves as an equivalent to a galvanic isolation technique which implements with an air-gap between the AC mains 10 and the load 20. In this configuration, the isolation circuitry 510 serves as a pseudo air-gap.
While the explicit current sensors 230 and 232 are omitted in the solid-state circuit interrupter 700, a fault detection sensor within one or both of the mode control circuits 710 and 712 can utilize the internal drain-source resistance (RDs-ON) of the solid-state switches 210 and 212 to determine an amount of current flow in the line hot or line neutral legs, and then deactivate the switches 210 and 212 in response to the detection of fault conditions (e.g. short-circuit or over-current faults), and activate the isolation circuit 510 to shunt leakage current from the load 20 during the time when the solid-state switches 210 and 212 are maintained in a switched-off state.
In some embodiments, the mode control circuits 710 and 712 can implement a self-bias turn-on threshold voltage mode utilizing a free-standing isolated AC-DC power supply with floating voltage output that serves as a turn-on threshold voltage to bias the solid-state switches 210 and 212. In other embodiments, a self-bias turn-on threshold voltage mode can be implemented using galvanic isolation devices such as capacitive, RF, and optical isolation devices.
In some embodiments as shown in
The creation of an air gap in the line path between the line hot 11 and load hot 21 provides complete isolation of the AC mains 10 from the load 20, as it prevents the flow of current from the line hot 11 to the load hot 21. The air-gap electromagnetic switch 820 may be disposed on either the line side (as shown in
The AC-to-DC converter circuitry 830 is configured to provide DC supply power to various circuitry and elements of the sold-state circuit interrupter 800 including the zero-crossing sensor 840, the switch controller 870, and optionally the current sensor 850 and other sensors 860 (depending on the configuration of such sensors 850 and 860). The AC-to-DC converter circuitry 830 is configured to remain powered during faults when the switches 810 and 820 are respectively switched-Off and switched-Open states. In some embodiments, the AC-to-DC converter circuitry 830 comprises sufficient storage capacitance to power the DC subsystems immediately following a utility outage such that relevant power outage or short-circuit information may be obtained and stored by the switch controller 870 as the utility power collapses, and then wirelessly transmitted to a remote node, device, or system using a radio frequency transceiver (not shown) which is either coupled to the switch controller 870 or integrated with the switch controller 870.
The zero-crossing sensor 840 is configured to monitor the voltage and/or current at a target point along the hot line path through the solid-state circuit interrupter 800 and detect zero current and/or zero voltage crossings of the AC supply voltage waveform of the AC mains 10. For example, as shown in
The current sensor 850 is configured to detect a magnitude of current being drawn by the load 20 in the hot line path through the solid-state circuit interrupter 800. The current sensor 850 can be implemented using any suitable type of current sensing circuit including, but not limited to, a current-sensing resistor, a current amplifier, a Hall Effect current sensor, etc. The current sensor 850 is coupled to the switch controller 870 by one or more data acquisition and control lines 850-1.
The sensors 860 include one or more optional sensors that are configured to detect for possible hazardous environmental conditions (e.g., chemical, gas, humidity, water, temperature, light, etc.) and generate sensor data that is indicative of potentially hazardous environmental conditions. The sensors 860 are coupled to the switch controller 870 by one or more data acquisition and control lines 860-1.
The switch controller 870 operates in conjunction with the zero-crossing sensor 840, the current sensor 850 and the sensors 860 to perform functions such as detecting fault conditions (e.g., short-circuit faults, over-current faults, arc faults, ground faults, etc.), detecting hazardous environmental conditions (e.g., gas leaks, chemical spills, fire, floods, etc.), and to provide timing control for the opening and closing of the switches 810 and 820 in response to detected fault conditions or hazardous environmental conditions, to thereby avoid creating electrical arcs in the air-gap electromagnetic switch 820. The switch controller 870 generates gate control signals that are applied to the gate terminal (G) of the solid-state switch 810 to place the solid-state switch 810 into a switched-on or a switched-off state. In some embodiments, the switch controller 870 generates a gate control signal to place the solid-state switch 810 into a switched-off state in response to fault conditions such as short-circuit faults, over-current faults, and other faults or hazards that are detected by the switch controller 870 as a result of analyzing sensor data obtained from the current sensor 850 and/or the other sensors 860.
The switch controller 870 can be implemented using a processor that is configured to process sensor data and implement switch control timing protocols as discussed herein for controlling the switches 810 and 820. In addition, the switch controller 870 can implement circuitry for converting the sensor data into proper formats that are suitable for processing by the processor. The switch controller 870 can include an RF transceiver to wirelessly communicate with a remote node, device, system, etc., to support remote monitoring and detection of fault conditions and receiving remote commands for controlling the solid-state circuit interrupter 800. The processor may comprise a central processing unit, a microprocessor, a microcontroller, an application-specific integrated circuit (ASIC), a field programmable gate array (FPGA), and other types of processors, as well as portions or combinations of such processors, which can perform processing functions based on software, hardware, firmware, etc. In other embodiments, the solid-state circuitry of the various components (e.g., 830, 840, and 870) of the circuit interrupter 800 can be implemented on a single die as a system-on-chip.
To prevent the generation of electrical arcs between the electrical contacts of the electromagnetic switch 820, the switch controller 870 is configured place the solid-state switch 810 into a switched-off state before placing the air-gap electromagnetic switch 820 into a switched-open or switched-closed state. However, in the configuration of
In this instance, if the air-gap electromagnetic switch 820 is opened during the negative half cycle of the AC power supply waveform, the flow of negative current would generate electrical arcs between the electrical contacts of the air-gap electromagnetic switch 820. To avoid creating such electrical arcs, the switch controller 870 is configured to configured to place the solid-state switch 810 in a switched-off state and then track sensor data obtained from the zero-crossing sensor 840 to determine the polarity of the AC voltage and/or current on the line side (e.g., line hot 11) of the solid-state interrupter 800, and open the air-gap electromagnetic switch 820 when the polarity of the AC voltage and/or current on the line side is determined to be positive (e.g., the AC supply voltage waveform is in a positive half cycle). When the switch controller 870 determines, at a given time, that the polarity of the AC voltage and/or current on the line side is negative (e.g., the AC supply voltage waveform is in a negative half cycle), the switch controller 870 will not open the air-gap electromagnetic switch 820, but rather defer opening the air-gap electromagnetic switch 820 until the next instance of a positive transition zero crossing as detected by the zero-crossing sensor 840. The switch timing control implemented by the switch controller 870 will now be discussed in further detail with reference to
As noted above, after the solid-state switch 810 is switched-off, the switch controller 870 will process sensor data received from the zero-crossing sensor 840 to determine when there is little or no current flow in the line hot path, and then generate a control signal to open the air-gap electromagnetic switch 820 to fully disconnect power to the load 20, while preventing or otherwise mitigating possible electrical arc formation in the air-gap switch 820.
For example, assume that the solid-state switch 810 is switched-off in the time period between T0 and T1 in
It is to be understood that the exemplary voltage waveforms 9A and 9B represent a load 20 having a power factor of about one (1) where is it is assumed that AC voltage waveform and the current drawn by the load 20 are in phase. In such instance, the zero voltage crossings are assumed to be zero current crossings. However, in instances where the load 20 has a power factor that is less than 1 (e.g., capacitive or inductive load), the voltage waveform and current drawn by the load 20 will be out of phase. In this regard, the zero-crossing sensor 840 can include a zero current crossing detector to determine zero current crossings, or positive transitioning zero current crossings, of a current waveform on the line side of the switches 820 and 810 to ensure that no positive current is flowing in the line hot path before opening the air-gap electromagnetic switch 820.
The switch controller 870 waits to detect a proper zero crossing (block 1002) before closing the air-gap electromagnetic switch 820 (block 1004). While it is ideal to wait for a voltage and/or current zero cross event prior to closing the air-gap electromagnetic switch 820, one of ordinary skill in the art will understand that this is not a mandatory condition for closure. The zero-crossing event can be a positive transitioning zero-crossing event or a negative transitioning zero-crossing event. As noted above, in some embodiments, it is preferable to close the air-gap electromagnetic switch 820 at the zero-crossing of an upcoming half cycle in which the body diode (e.g., diode 810-1) of the solid-state switch (e.g., switch 810) is not forward biased and conducting. For example, in the exemplary embodiment of
When the air-gap electromagnetic switch 820 is closed, the switch controller 870 will proceed to generate a gate control signal to place the solid-state switch 810 into a switched-on state (block 1006). The solid-state switch 810 may be switched-on at any time after the air-gap electromagnetic switch 820 is closed. For example, the solid-state interrupter circuit 800 may operate in a “stand-by” mode where the air-gap electromagnetic switch 820 is maintained in switched-closed state, and the switch controller 870 waits for the occurrence of some triggering event (e.g., remote command) to proceed with activating the solid-state switch 810.
When both switches 810 and 820 are activated, the switch controller 870 will enter a waiting state for some event or command to interrupt the circuit connection between power and load (block 1008). During the waiting period, the solid-state switch 810 and the air-gap electromagnetic switch 820 will be maintained in an activated state (block 1010). The event can be the detection of a given fault condition or hazardous condition as determined by the switch controller 870 processing sensor data received from the various sensors 850 and 860. The command can be a manual command or automated command to interrupt the circuit connection.
Upon detecting a fault or hazardous condition (affirmative determination in block 1008) or in response to a manual or automated command to interrupt the circuit, the switch controller 870 will generate a gate control signal to place the solid-state switch 810 into a switched-off state (block 1012). The switch controller 870 will then proceed to process data from the zero-crossing sensor 840 to detect a target zero-crossing event (e.g., a positive transitioning zero-crossing event) on the line hot path (block 1014), and in response to detecting the target zero-crossing event (affirmative determination in block 1014), the switch controller 870 will generate a switch control signal to place the air-gap electromagnetic switch 820 into a switched-open state (block 1016).
The switch controller 870 will enter a wait state (block 1018) to wait for the fault event or hazardous condition to be cleared, and maintain the solid-state and air-gap electromagnetic switches in a deactivate state (block 1020). When the fault event or hazardous condition is cleared (affirmative determination in block 1018), or when the switch controller 870 otherwise receives a manual or remote command indicating to reconnect power to the load, the control process returns to block 1000, wherein the switch controller 870 proceeds to reactivate the air-gap and solid-state switches and, thereby reconnect the power supply to the load. It is to be understood that while the process flow of
The inrush protection circuit 1110 is configured to limit the magnitude of input current to the AC-to-DC converter circuit 1100. The sampling circuit 1120 is configured to sample the AC supply voltage waveform of AC mains 110. The sampling circuit 1120 outputs sampled voltages to the switch driver circuit 1130. The switch driver circuit 1130 is configured to apply a control voltage to a control switch of the control switch and clamp circuit 1140. The control switch and clamp circuit 1140 is configured to supply power to the storage circuit 1150 in response to the control voltage applied by the switch driver circuit 1130. The storage circuit 1150 comprises a voltage storage element (e.g., capacitor) that is configured to store a DC voltage that is applied to the voltage regulator circuit 1160. The voltage regulator circuit 1160 is configured to generate a regulated DC supply voltage to the load circuitry 1102.
In some embodiments, the switch driver circuit 1130 receives a feedback voltage 1180 from the storage circuit 1150 and generates the control voltage that is applied to the control switch and clamp circuit 1140 based, at least in part, on the feedback voltage 1180. In some embodiments, the feedback voltage 1180 can be eliminated, and the AC-to-DC converter circuit 1100 operates as a feed forward converter in which the storage element of the storage circuit 1150 is controlled from the forward side elements 1120, 1130 and 1140.
In some embodiments, the AC-to-DC converter circuitry 1100 implements a feedback control circuit 1190 from the load circuitry 1102 to the switch driver circuit 1130 to support both feed forward and feedback control. In some embodiment, the balance of feed forward and feedback control is determined by the feedback voltage 1180 and the selection of components in the sampling circuitry 1120. In some embodiments, a balance between feedforward and feedback control is configured according to resistor elements in the sampling circuitry 1120 and the feedback voltage 1180. In other embodiments, variable elements are utilized to enable adjustment of the feedforward and feedback control. In such embodiments, the feedback circuit 1190 would comprise galvanic isolation between the switch driver circuit 1130 and the load circuitry 1102.
The sampling circuitry 1120 comprises a plurality of resistors 1121, 1122, 1123, and 1124 which are connected to various nodes N1, N2, N3, and N4 as shown. The resistors 1121, 1122, and 1123 form a voltage divider network for sampling the input AC waveform, wherein the voltage divider network comprises a feedback node N2 and an output node N3. The resistor 1124 is connected between the feedback node N2 and an output node N4 of the storage circuitry 1150 to provide a feedback voltage from the storage capacitor 1152. The switch driver circuitry 1130 comprises a resistor 1131 connected between nodes N1 and N5, and a switch element 1132. The control switch and clamp circuitry 1140 comprises a control switch element 1141, a resistor 1142, and a Zener diode 1143. The storage circuitry 1150 comprises a diode 1151 and a storage capacitor 1152. The voltage regulator circuitry 1160 comprises a switch element 1161, a resistor 1162, a Zener diode 1163, and a capacitor 1164.
In some embodiments, the switch elements 1132, 1141 and 1161 comprise n-type enhancement MOSFET devices with gate G, drain D and source S terminals as shown in
The control switch 1141 comprises a drain terminal D connected to the output node N1 of the inrush circuitry 1110, a gate terminal G connected to the output node N5 of the switch driver circuitry, and a source terminal S connected to an input (i.e., anode of diode 1151) of the storage circuitry 1150. The Zener diode 1143 is connected between the gate terminal G and source terminal S of the control switch 1141, with a cathode of the Zener diode 1143 connected to the gate terminal G of the control switch 1141 and an anode of the Zener diode 1143 connected to the source terminal S of the control switch 1141.
The switch element 1161 of the voltage regulator circuitry 1160 comprises a drain terminal D connected to the output node N4 of the storage circuitry 1150, a gate terminal G connected to a node N7 between the resistor 1162 and the Zener diode 1163, and a source terminal S connected to an output node N8 of the voltage regulator circuitry 1160. The capacitor 1164 is connected between the output node N8 of the voltage regulator circuitry 1160 and the output node N6 of the inrush protection circuitry 1110.
The resistor 1124 (or sense resistor) is connected between the output node N4 of the storage circuitry 1150 to provide a feedback voltage that is applied to the feedback node N2 of the sampling circuitry 1120 through the feedback resistor 1124. The feedback path provided by the connection of the feedback resistor 1124 between nodes N4 and N2 provides an exemplary embodiment of the feedback voltage 1180 as shown in
The switch element 1132 is driven by a gate control voltage generated at the output node N3 of the voltage divider network of the sampling circuitry 1120. The gating of the switch element 1132 controls operation of the control switch 1141 of the switch driver circuitry 1130. The resistance values of the resistors 1121, 1122, 1123, and 1124 are selected such that the voltage on node N3 of the voltage divider network, which is applied to the gate terminal G of the switch element 1132 in the switch driver circuitry 1130, will turn the switch element 1132 ON and OFF and thereby synchronously turn the control switch element 1141 OFF and ON. The control switch element 1141 is thereby driven to output a preselected timed output pulse to charge the storage capacitor 1152.
The peak output current of the control switch 1141 is clamped to a preselected value based on a preselected value of the Zener voltage (i.e., reverse breakdown voltage) of the Zener diode 1143, wherein the maximum gate-to-source voltage (VGS) is limited by the Zener voltage of the Zener diode 1143. The pulsed output from the control switch 1141 operates to turn on the diode 1151 and supply charge to the node N4 to charge the storage capacitor 1152. The feedback provided by the resistor 1124 connected between the output node N4 of the storage circuitry 1160 and the feedback node N2 of the sampling circuitry 1120 serves to drive the switch driver circuit 1130 to maintain the storage capacitor 1152 to a constant charge.
The switch element 1132 and control switch 1141 are activated, either opened or closed, in synch with the AC voltage input. The AC-to-DC converter circuit 1100 provides a low voltage output with pulse modulation at the frequency of the incoming AC source. The switches 1132 and 1141 are activated, either opened or closed, at voltages that are near, within the threshold voltages for the switches 1132 and 1141, of the zero crossing of the AC source. The output node N4 of the storage circuitry 1150 is applied to an input of the voltage regulator circuitry 1160 and then the load circuit 1102. The capacitor 1164 provides storage capacity to buffer and thereby smooth the output from the AC-to-DC converter 1100 to the load circuitry 1102.
In summary, the exemplary AC-to-DC converter circuits 1100 as shown in
Although exemplary embodiments have been described herein with reference to the accompanying figures, it is to be understood that the invention is not limited to those precise embodiments, and that various other changes and modifications may be made therein by one skilled in the art without departing from the scope of the appended claims.
This application is a Divisional of U.S. patent application Ser. No. 16/589,999, filed on Oct. 1, 2019, now U.S. Pat. No. 11,349,296, which is a Continuation-in-Part of U.S. patent application Ser. No. 16/149,094, filed on Oct. 1, 2018, now U.S. Pat. No. 10,985,548, the disclosures of which are all incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3638102 | Pelka | Jan 1972 | A |
3777253 | Callan | Dec 1973 | A |
4074345 | Ackermann | Feb 1978 | A |
4127895 | Krueger | Nov 1978 | A |
4245148 | Gisske et al. | Jan 1981 | A |
4245184 | Billings et al. | Jan 1981 | A |
4245185 | Mitchell et al. | Jan 1981 | A |
4257081 | Sauer et al. | Mar 1981 | A |
4466071 | Russell, Jr. | Aug 1984 | A |
4487458 | Janutka | Dec 1984 | A |
4581540 | Guajardo | Apr 1986 | A |
4631625 | Alexander et al. | Dec 1986 | A |
4636907 | Howell | Jan 1987 | A |
4649302 | Damiano et al. | Mar 1987 | A |
4653084 | Ahuja | Mar 1987 | A |
4682061 | Donovan | Jul 1987 | A |
4685046 | Sanders | Aug 1987 | A |
4709296 | Hung et al. | Nov 1987 | A |
4760293 | Hebenstreit | Jul 1988 | A |
4766281 | Buhler | Aug 1988 | A |
4812995 | Girgis et al. | Mar 1989 | A |
4888504 | Kinzer | Dec 1989 | A |
4945345 | Proctor et al. | Jul 1990 | A |
5121282 | White | Jun 1992 | A |
5161107 | Mayeaux et al. | Nov 1992 | A |
5276737 | Micali | Jan 1994 | A |
5307257 | Fukushima | Apr 1994 | A |
5371646 | Biegelmeier | Dec 1994 | A |
5410745 | Friesen et al. | Apr 1995 | A |
5559656 | Chokhawala | Sep 1996 | A |
5646514 | Tsunetsugu | Jul 1997 | A |
5654880 | Brkovic et al. | Aug 1997 | A |
5731732 | Williams | Mar 1998 | A |
5793596 | Jordan et al. | Aug 1998 | A |
5796274 | Willis et al. | Aug 1998 | A |
5844759 | Hirsh et al. | Dec 1998 | A |
5870009 | Serpinet et al. | Feb 1999 | A |
5933305 | Schmalz et al. | Aug 1999 | A |
6041322 | Meng et al. | Mar 2000 | A |
6081123 | Kasbarian et al. | Jun 2000 | A |
6111494 | Fischer et al. | Aug 2000 | A |
6115267 | Herbert | Sep 2000 | A |
6141197 | Kim et al. | Oct 2000 | A |
6160689 | Stolzenberg | Dec 2000 | A |
6167329 | Engel et al. | Dec 2000 | A |
6169391 | Lei | Jan 2001 | B1 |
6188203 | Rice et al. | Feb 2001 | B1 |
6300748 | Miller | Oct 2001 | B1 |
6369554 | Aram | Apr 2002 | B1 |
6483290 | Hemminger et al. | Nov 2002 | B1 |
6515434 | Biebl | Feb 2003 | B1 |
6538906 | Ke et al. | Mar 2003 | B1 |
6756998 | Bilger | Jun 2004 | B1 |
6788512 | Vicente et al. | Sep 2004 | B2 |
6807035 | Baldwin et al. | Oct 2004 | B1 |
6813720 | Leblanc | Nov 2004 | B2 |
6839208 | Macbeth et al. | Jan 2005 | B2 |
6843680 | Gorman | Jan 2005 | B2 |
6906476 | Beatenbough et al. | Jun 2005 | B1 |
6984988 | Yamamoto | Jan 2006 | B2 |
7045723 | Projkovski | May 2006 | B1 |
7053626 | Monter et al. | May 2006 | B2 |
7110225 | Hick | Sep 2006 | B1 |
7148796 | Joy et al. | Dec 2006 | B2 |
7164238 | Kazanov et al. | Jan 2007 | B2 |
7292419 | Nemir | Nov 2007 | B1 |
7297603 | Robb et al. | Nov 2007 | B2 |
7304828 | Shvartsman | Dec 2007 | B1 |
D558683 | Pape et al. | Jan 2008 | S |
7319574 | Engel | Jan 2008 | B2 |
D568253 | Gorman | May 2008 | S |
7367121 | Gorman | May 2008 | B1 |
7586285 | Gunji | Sep 2009 | B2 |
7595680 | Morita et al. | Sep 2009 | B2 |
7610616 | Masuouka et al. | Oct 2009 | B2 |
7633727 | Zhou et al. | Dec 2009 | B2 |
7643256 | Wright et al. | Jan 2010 | B2 |
7693670 | Durling et al. | Apr 2010 | B2 |
7715216 | Liu et al. | May 2010 | B2 |
7729147 | Wong et al. | Jun 2010 | B1 |
7731403 | Lynam et al. | Jun 2010 | B2 |
7746677 | Unkrich | Jun 2010 | B2 |
7821023 | Yuan et al. | Oct 2010 | B2 |
D638355 | Chen | May 2011 | S |
7936279 | Tang et al. | May 2011 | B2 |
7948719 | Xu | May 2011 | B2 |
8124888 | Etemad-Moghadam et al. | Feb 2012 | B2 |
8256675 | Baglin et al. | Sep 2012 | B2 |
8295950 | Wordsworth et al. | Oct 2012 | B1 |
8374729 | Chapel et al. | Feb 2013 | B2 |
8463453 | Parsons, Jr. | Jun 2013 | B2 |
8482885 | Billingsley et al. | Jul 2013 | B2 |
8560134 | Lee | Oct 2013 | B1 |
8649883 | Lu et al. | Feb 2014 | B2 |
8664886 | Ostrovsky | Mar 2014 | B2 |
8717720 | DeBoer | May 2014 | B2 |
8718830 | Smith | May 2014 | B2 |
8781637 | Eaves | Jul 2014 | B2 |
8817441 | Callanan | Aug 2014 | B2 |
8890371 | Gotou | Nov 2014 | B2 |
D720295 | Dodal et al. | Dec 2014 | S |
8947838 | Yamai et al. | Feb 2015 | B2 |
9054587 | Neyman | Jun 2015 | B2 |
9055641 | Shteynberg et al. | Jun 2015 | B2 |
9287792 | Telefus et al. | Mar 2016 | B2 |
9325516 | Pera et al. | Apr 2016 | B2 |
9366702 | Steele et al. | Jun 2016 | B2 |
9439318 | Chen | Sep 2016 | B2 |
9443845 | Stafanov et al. | Sep 2016 | B1 |
9502832 | Ullahkhan et al. | Nov 2016 | B1 |
9509083 | Yang | Nov 2016 | B2 |
9515560 | Telefus et al. | Dec 2016 | B1 |
9577420 | Ostrovsky et al. | Feb 2017 | B2 |
9621053 | Telefus | Apr 2017 | B1 |
9755630 | Urciuoli | Sep 2017 | B2 |
9774182 | Phillips | Sep 2017 | B2 |
9836243 | Chanler et al. | Dec 2017 | B1 |
9883554 | Lynch | Jan 2018 | B2 |
D814424 | DeCosta | Apr 2018 | S |
9965007 | Amelio et al. | May 2018 | B2 |
9990786 | Ziraknejad | Jun 2018 | B1 |
9991633 | Robinet | Jun 2018 | B2 |
10072942 | Wootton et al. | Sep 2018 | B2 |
10076006 | Kahlman et al. | Sep 2018 | B2 |
10101716 | Kim | Oct 2018 | B2 |
10186027 | Hicken et al. | Jan 2019 | B1 |
10187944 | MacAdam et al. | Jan 2019 | B2 |
10469077 | Telefus et al. | Nov 2019 | B2 |
10548188 | Cheng et al. | Jan 2020 | B2 |
D879056 | Telefus | Mar 2020 | S |
D881144 | Telefus | Apr 2020 | S |
10615713 | Telefus et al. | Apr 2020 | B2 |
10645536 | Barnes et al. | May 2020 | B1 |
10756662 | Steiner et al. | Aug 2020 | B2 |
10812072 | Telefus et al. | Oct 2020 | B2 |
10812282 | Telefus et al. | Oct 2020 | B2 |
10819336 | Telefus et al. | Oct 2020 | B2 |
10834792 | Telefus et al. | Nov 2020 | B2 |
10887447 | Jakobsson et al. | Jan 2021 | B2 |
10931473 | Telefus et al. | Feb 2021 | B2 |
10936749 | Jakobsson | Mar 2021 | B2 |
10951435 | Jakobsson | Mar 2021 | B2 |
10985548 | Telefus | Apr 2021 | B2 |
10992236 | Telefus et al. | Apr 2021 | B2 |
10993082 | Jakobsson | Apr 2021 | B2 |
11050236 | Telefus et al. | Jun 2021 | B2 |
11056981 | Telefus | Jul 2021 | B2 |
11064586 | Telefus et al. | Jul 2021 | B2 |
11114947 | Telefus et al. | Sep 2021 | B2 |
11170964 | Telefus et al. | Nov 2021 | B2 |
11197153 | Jakobsson | Dec 2021 | B2 |
11205011 | Jakobsson et al. | Dec 2021 | B2 |
11245339 | Telefus et al. | Feb 2022 | B2 |
20020109487 | Telefus et al. | Aug 2002 | A1 |
20030052544 | Yamamoto et al. | Mar 2003 | A1 |
20030063420 | Pahl et al. | Apr 2003 | A1 |
20030151865 | Maio | Aug 2003 | A1 |
20040032756 | Van Den Bossche | Feb 2004 | A1 |
20040251884 | Steffie et al. | Dec 2004 | A1 |
20050128657 | Covault | Jun 2005 | A1 |
20050162139 | Hirst | Jul 2005 | A1 |
20050185353 | Rasmussen et al. | Aug 2005 | A1 |
20050286184 | Campolo | Dec 2005 | A1 |
20060227469 | Parker | Oct 2006 | A1 |
20060285366 | Radecker et al. | Dec 2006 | A1 |
20070008747 | Soldano et al. | Jan 2007 | A1 |
20070018506 | Paik et al. | Jan 2007 | A1 |
20070143826 | Sastry et al. | Jun 2007 | A1 |
20070159745 | Berberich et al. | Jul 2007 | A1 |
20070188025 | Keagy et al. | Aug 2007 | A1 |
20070217237 | Salvestrini | Sep 2007 | A1 |
20070232347 | Persson et al. | Oct 2007 | A1 |
20070236152 | Davis et al. | Oct 2007 | A1 |
20080006607 | Boeder et al. | Jan 2008 | A1 |
20080136581 | Heilman et al. | Jun 2008 | A1 |
20080151444 | Upton | Jun 2008 | A1 |
20080174922 | Kimbrough | Jul 2008 | A1 |
20080180866 | Wong | Jul 2008 | A1 |
20080197699 | Yu et al. | Aug 2008 | A1 |
20080204950 | Zhou et al. | Aug 2008 | A1 |
20080234879 | Fuller et al. | Sep 2008 | A1 |
20080253153 | Wu et al. | Oct 2008 | A1 |
20080281472 | Podgorny et al. | Nov 2008 | A1 |
20090034139 | Martin | Feb 2009 | A1 |
20090067201 | Cai | Mar 2009 | A1 |
20090168273 | Yu et al. | Jul 2009 | A1 |
20090195349 | Frader-Thompson et al. | Aug 2009 | A1 |
20090203355 | Clark | Aug 2009 | A1 |
20090213629 | Liu et al. | Aug 2009 | A1 |
20090284385 | Tang et al. | Nov 2009 | A1 |
20100036903 | Ahmad et al. | Feb 2010 | A1 |
20100091418 | Xu | Apr 2010 | A1 |
20100145479 | Griffiths | Jun 2010 | A1 |
20100145542 | Chapel et al. | Jun 2010 | A1 |
20100156369 | Kularatna et al. | Jun 2010 | A1 |
20100188054 | Asakura et al. | Jul 2010 | A1 |
20100191487 | Rada et al. | Jul 2010 | A1 |
20100231135 | Hum et al. | Sep 2010 | A1 |
20100231373 | Romp | Sep 2010 | A1 |
20100235896 | Hirsch | Sep 2010 | A1 |
20100244730 | Nerone | Sep 2010 | A1 |
20100261373 | Roneker | Oct 2010 | A1 |
20100284207 | Watanabe et al. | Nov 2010 | A1 |
20100296207 | Schumacher et al. | Nov 2010 | A1 |
20100309003 | Rousseau | Dec 2010 | A1 |
20100320840 | Fridberg | Dec 2010 | A1 |
20110062936 | Bartelous | Mar 2011 | A1 |
20110121752 | Newman, Jr. et al. | May 2011 | A1 |
20110127922 | Sauerlaender | Jun 2011 | A1 |
20110156610 | Ostrovsky et al. | Jun 2011 | A1 |
20110273103 | Hong | Nov 2011 | A1 |
20110292703 | Cuk | Dec 2011 | A1 |
20110299547 | Diab et al. | Dec 2011 | A1 |
20110301894 | Sanderford, Jr. | Dec 2011 | A1 |
20110305054 | Yamagiwa et al. | Dec 2011 | A1 |
20110307447 | Sabaa et al. | Dec 2011 | A1 |
20120026632 | Acharya et al. | Feb 2012 | A1 |
20120075897 | Fujita | Mar 2012 | A1 |
20120080942 | Carralero et al. | Apr 2012 | A1 |
20120089266 | Tomimbang et al. | Apr 2012 | A1 |
20120095605 | Tran | Apr 2012 | A1 |
20120133289 | Hum et al. | May 2012 | A1 |
20120275076 | Shono | Nov 2012 | A1 |
20120311035 | Guha et al. | Dec 2012 | A1 |
20120323510 | Bell et al. | Dec 2012 | A1 |
20130021708 | Demetriades et al. | Jan 2013 | A1 |
20130026925 | Ven et al. | Jan 2013 | A1 |
20130051102 | Huang et al. | Feb 2013 | A1 |
20130057247 | Russell et al. | Mar 2013 | A1 |
20130063851 | Stevens et al. | Mar 2013 | A1 |
20130066478 | Smith | Mar 2013 | A1 |
20130088160 | Chai et al. | Apr 2013 | A1 |
20130104238 | Balsan et al. | Apr 2013 | A1 |
20130119958 | Gasperi | May 2013 | A1 |
20130128396 | Danesh et al. | May 2013 | A1 |
20130170261 | Lee et al. | Jul 2013 | A1 |
20130174211 | Aad et al. | Jul 2013 | A1 |
20130187631 | Russell et al. | Jul 2013 | A1 |
20130245841 | Ahn et al. | Sep 2013 | A1 |
20130253898 | Meagher et al. | Sep 2013 | A1 |
20130261821 | Lu et al. | Oct 2013 | A1 |
20130265041 | Friedrich et al. | Oct 2013 | A1 |
20130300534 | Myllymaki | Nov 2013 | A1 |
20130329331 | Erger et al. | Dec 2013 | A1 |
20140043732 | McKay et al. | Feb 2014 | A1 |
20140067137 | Amelio et al. | Mar 2014 | A1 |
20140074730 | Arensmeier et al. | Mar 2014 | A1 |
20140085940 | Lee et al. | Mar 2014 | A1 |
20140096272 | Makofsky et al. | Apr 2014 | A1 |
20140097809 | Follic et al. | Apr 2014 | A1 |
20140159593 | Chu et al. | Jun 2014 | A1 |
20140164294 | Osann, Jr. | Jun 2014 | A1 |
20140203718 | Yoon et al. | Jul 2014 | A1 |
20140246926 | Cruz et al. | Sep 2014 | A1 |
20140266698 | Hall et al. | Sep 2014 | A1 |
20140268935 | Chiang | Sep 2014 | A1 |
20140276753 | Wham et al. | Sep 2014 | A1 |
20140331278 | Tkachev | Nov 2014 | A1 |
20140357228 | Luft et al. | Dec 2014 | A1 |
20140365490 | Yang et al. | Dec 2014 | A1 |
20150019726 | Zhou et al. | Jan 2015 | A1 |
20150042274 | Kim et al. | Feb 2015 | A1 |
20150055261 | Lubicki et al. | Feb 2015 | A1 |
20150097430 | Scruggs | Apr 2015 | A1 |
20150116886 | Zehnder et al. | Apr 2015 | A1 |
20150154404 | Patel et al. | Jun 2015 | A1 |
20150155789 | Freeman et al. | Jun 2015 | A1 |
20150180469 | Kim | Jun 2015 | A1 |
20150185261 | Frader-Thompson et al. | Jul 2015 | A1 |
20150185262 | Song et al. | Jul 2015 | A1 |
20150216006 | Lee et al. | Jul 2015 | A1 |
20150221151 | Bacco et al. | Aug 2015 | A1 |
20150236587 | Kim et al. | Aug 2015 | A1 |
20150253364 | Hieda et al. | Sep 2015 | A1 |
20150256355 | Pera et al. | Sep 2015 | A1 |
20150256665 | Pera et al. | Sep 2015 | A1 |
20150282223 | Wang et al. | Oct 2015 | A1 |
20150309521 | Pan | Oct 2015 | A1 |
20150317326 | Bandarupalli et al. | Nov 2015 | A1 |
20150355649 | Ovadia | Dec 2015 | A1 |
20150362927 | Giorgi | Dec 2015 | A1 |
20150363563 | Hallwachs | Dec 2015 | A1 |
20150382153 | Otis et al. | Dec 2015 | A1 |
20160012699 | Lundy | Jan 2016 | A1 |
20160018800 | Gettings et al. | Jan 2016 | A1 |
20160035159 | Ganapathy Achari et al. | Feb 2016 | A1 |
20160050530 | Corbalis et al. | Feb 2016 | A1 |
20160057841 | Lenig | Feb 2016 | A1 |
20160069933 | Cook et al. | Mar 2016 | A1 |
20160077746 | Muth et al. | Mar 2016 | A1 |
20160081143 | Wang | Mar 2016 | A1 |
20160095099 | Yang et al. | Mar 2016 | A1 |
20160105814 | Hurst et al. | Apr 2016 | A1 |
20160110154 | Qureshi et al. | Apr 2016 | A1 |
20160117917 | Prakash et al. | Apr 2016 | A1 |
20160126031 | Wootton et al. | May 2016 | A1 |
20160156635 | Liu et al. | Jun 2016 | A1 |
20160157193 | Qi et al. | Jun 2016 | A1 |
20160178691 | Simonin | Jun 2016 | A1 |
20160181941 | Gratton et al. | Jun 2016 | A1 |
20160195864 | Kim | Jul 2016 | A1 |
20160232318 | Mensinger et al. | Aug 2016 | A1 |
20160247799 | Stafanov et al. | Aug 2016 | A1 |
20160259308 | Fadell et al. | Sep 2016 | A1 |
20160260135 | Zomet et al. | Sep 2016 | A1 |
20160274864 | Zomet et al. | Sep 2016 | A1 |
20160277528 | Guilaume et al. | Sep 2016 | A1 |
20160294179 | Kennedy et al. | Oct 2016 | A1 |
20160322807 | Milkie | Nov 2016 | A1 |
20160343083 | Hering et al. | Nov 2016 | A1 |
20160360586 | Yang et al. | Dec 2016 | A1 |
20160374134 | Kweon et al. | Dec 2016 | A1 |
20170004948 | Leyh | Jan 2017 | A1 |
20170019969 | O'Neil et al. | Jan 2017 | A1 |
20170026194 | Vijayrao et al. | Jan 2017 | A1 |
20170033942 | Koeninger | Feb 2017 | A1 |
20170063225 | Guo et al. | Mar 2017 | A1 |
20170067961 | O'Flynn | Mar 2017 | A1 |
20170086281 | Avrahamy | Mar 2017 | A1 |
20170099647 | Shah et al. | Apr 2017 | A1 |
20170104325 | Eriksen et al. | Apr 2017 | A1 |
20170134883 | Lekutai | May 2017 | A1 |
20170168516 | King | Jun 2017 | A1 |
20170170730 | Sugiura | Jun 2017 | A1 |
20170171802 | Hou et al. | Jun 2017 | A1 |
20170179946 | Turvey | Jun 2017 | A1 |
20170195130 | Landow et al. | Jul 2017 | A1 |
20170212653 | Kanojia et al. | Jul 2017 | A1 |
20170214967 | Xia et al. | Jul 2017 | A1 |
20170230193 | Apte et al. | Aug 2017 | A1 |
20170230939 | Rudolf et al. | Aug 2017 | A1 |
20170244241 | Wilson et al. | Aug 2017 | A1 |
20170256934 | Kennedy | Sep 2017 | A1 |
20170256941 | Bowers et al. | Sep 2017 | A1 |
20170256956 | Irish et al. | Sep 2017 | A1 |
20170277709 | Strauss et al. | Sep 2017 | A1 |
20170314743 | Del Castillo et al. | Nov 2017 | A1 |
20170318098 | Sanghvi et al. | Nov 2017 | A1 |
20170322049 | Wootton et al. | Nov 2017 | A1 |
20170322258 | Miller et al. | Nov 2017 | A1 |
20170338809 | Stefanov et al. | Nov 2017 | A1 |
20170347415 | Cho et al. | Nov 2017 | A1 |
20170366950 | Arbon | Dec 2017 | A1 |
20170372159 | Schimmel | Dec 2017 | A1 |
20180026534 | Turcan | Jan 2018 | A1 |
20180054460 | Brady et al. | Feb 2018 | A1 |
20180054862 | Takagimoto et al. | Feb 2018 | A1 |
20180061158 | Greene | Mar 2018 | A1 |
20180091361 | Smith et al. | Mar 2018 | A1 |
20180130618 | Ramirez | May 2018 | A1 |
20180146369 | Kennedy, Jr. | May 2018 | A1 |
20180174076 | Fukami | Jun 2018 | A1 |
20180196094 | Fishburn et al. | Jul 2018 | A1 |
20180201302 | Sonoda et al. | Jul 2018 | A1 |
20180254959 | Mantyjarvi et al. | Sep 2018 | A1 |
20180285198 | Dantkale et al. | Oct 2018 | A1 |
20180287802 | Brickell | Oct 2018 | A1 |
20180301006 | Flint et al. | Oct 2018 | A1 |
20180307609 | Qiang et al. | Oct 2018 | A1 |
20180307859 | LaFever et al. | Oct 2018 | A1 |
20180342329 | Rufo et al. | Nov 2018 | A1 |
20180351342 | Anderson et al. | Dec 2018 | A1 |
20180359039 | Daoura et al. | Dec 2018 | A1 |
20180359223 | Maier et al. | Dec 2018 | A1 |
20190003855 | Wootton et al. | Jan 2019 | A1 |
20190020477 | Antonatos et al. | Jan 2019 | A1 |
20190026493 | Ukena-Bonfig et al. | Jan 2019 | A1 |
20190028869 | Kaliner | Jan 2019 | A1 |
20190036928 | Meriac et al. | Jan 2019 | A1 |
20190050903 | DeWitt et al. | Feb 2019 | A1 |
20190052174 | Gong | Feb 2019 | A1 |
20190068716 | Lauer | Feb 2019 | A1 |
20190086979 | Kao et al. | Mar 2019 | A1 |
20190087835 | Schwed et al. | Mar 2019 | A1 |
20190104138 | Storms et al. | Apr 2019 | A1 |
20190122834 | Wootton et al. | Apr 2019 | A1 |
20190140640 | Telefus et al. | May 2019 | A1 |
20190148931 | Li | May 2019 | A1 |
20190165691 | Telefus et al. | May 2019 | A1 |
20190181679 | Northway et al. | Jun 2019 | A1 |
20190182617 | Zamber et al. | Jun 2019 | A1 |
20190207375 | Telefus et al. | Jul 2019 | A1 |
20190222058 | Sharifipour | Jul 2019 | A1 |
20190238060 | Telefus et al. | Aug 2019 | A1 |
20190245457 | Telefus et al. | Aug 2019 | A1 |
20190253243 | Zimmerman et al. | Aug 2019 | A1 |
20190268176 | Pognant | Aug 2019 | A1 |
20190280887 | Telefus et al. | Sep 2019 | A1 |
20190306953 | Joyce et al. | Oct 2019 | A1 |
20190334999 | Ryhorchuk et al. | Oct 2019 | A1 |
20190355014 | Gerber | Nov 2019 | A1 |
20190362101 | Fisse et al. | Nov 2019 | A1 |
20190372331 | Liu et al. | Dec 2019 | A1 |
20200007126 | Telefus et al. | Jan 2020 | A1 |
20200014301 | Telefus | Jan 2020 | A1 |
20200014379 | Telefus | Jan 2020 | A1 |
20200044883 | Telefus et al. | Feb 2020 | A1 |
20200052607 | Telefus et al. | Feb 2020 | A1 |
20200053100 | Jakobsson | Feb 2020 | A1 |
20200106259 | Telefus | Apr 2020 | A1 |
20200106260 | Telefus | Apr 2020 | A1 |
20200106637 | Jakobsson | Apr 2020 | A1 |
20200120202 | Jakobsson et al. | Apr 2020 | A1 |
20200145247 | Jakobsson | May 2020 | A1 |
20200153245 | Jakobsson et al. | May 2020 | A1 |
20200159960 | Jakobsson | May 2020 | A1 |
20200193785 | Berglund et al. | Jun 2020 | A1 |
20200196110 | Jakobsson | Jun 2020 | A1 |
20200196412 | Telefus et al. | Jun 2020 | A1 |
20200200851 | Homsky et al. | Jun 2020 | A1 |
20200252299 | Kaag et al. | Aug 2020 | A1 |
20200260287 | Hendel | Aug 2020 | A1 |
20200275266 | Jakobsson | Aug 2020 | A1 |
20200287537 | Telefus et al. | Sep 2020 | A1 |
20200314233 | Mohalik et al. | Oct 2020 | A1 |
20200328694 | Telefus et al. | Oct 2020 | A1 |
20200344596 | Dong et al. | Oct 2020 | A1 |
20200365345 | Telefus et al. | Nov 2020 | A1 |
20200365346 | Telefus et al. | Nov 2020 | A1 |
20200365356 | Telefus et al. | Nov 2020 | A1 |
20200366078 | Telefus et al. | Nov 2020 | A1 |
20200366079 | Telefus et al. | Nov 2020 | A1 |
20200394332 | Jakobsson et al. | Dec 2020 | A1 |
20210014947 | Telefus et al. | Jan 2021 | A1 |
20210119528 | Telefus | Apr 2021 | A1 |
20210173364 | Telefus et al. | Jun 2021 | A1 |
20210182111 | Jakobsson | Jun 2021 | A1 |
20210185035 | Fernandez Yu | Jun 2021 | A1 |
20210226441 | Telefus et al. | Jul 2021 | A1 |
20210234356 | Telefus et al. | Jul 2021 | A1 |
20210336555 | Telefus | Oct 2021 | A1 |
20210345462 | Telefus et al. | Nov 2021 | A1 |
20220052533 | Telefus et al. | Feb 2022 | A1 |
Number | Date | Country |
---|---|---|
102165555 | Aug 2011 | CN |
109075551 | Jan 2021 | CN |
19712261 | Oct 1998 | DE |
0016646 | Oct 1980 | EP |
0398026 | Nov 1990 | EP |
2560063 | Feb 2013 | EP |
1302357 | Jan 1973 | GB |
2458699 | Sep 2009 | GB |
06-053779 | Feb 1994 | JP |
2012244716 | Dec 2012 | JP |
2013230034 | Nov 2013 | JP |
2014030355 | Feb 2014 | JP |
6997105 | Jan 2022 | JP |
2010110951 | Sep 2010 | WO |
2016010529 | Jan 2016 | WO |
2016105505 | Jun 2016 | WO |
2016110833 | Jul 2016 | WO |
2017196571 | Nov 2017 | WO |
2017196572 | Nov 2017 | WO |
2017196649 | Nov 2017 | WO |
2018075726 | Apr 2018 | WO |
2018080604 | May 2018 | WO |
2018080614 | May 2018 | WO |
2018081619 | May 2018 | WO |
2018081619 | May 2018 | WO |
2018159914 | Sep 2018 | WO |
2019133110 | Jul 2019 | WO |
2020014158 | Jan 2020 | WO |
2020014161 | Jan 2020 | WO |
PCTUS1954102 | Feb 2020 | WO |
2020072516 | Apr 2020 | WO |
PCTUS1967004 | Apr 2020 | WO |
2020131977 | Jun 2020 | WO |
PCTUS2033421 | Sep 2020 | WO |
2020236726 | Nov 2020 | WO |
PCTUS2114320 | Apr 2021 | WO |
2021112870 | Jun 2021 | WO |
2021150684 | Jul 2021 | WO |
2021183172 | Sep 2021 | WO |
PCTUS2145624 | Nov 2021 | WO |
Entry |
---|
F. Stajano et al., “The Resurrecting Duckling: Security Issues for Ad-hoc Wireless Networks,” International Workshop on Security Protocols, 1999, 11 pages. |
L. Sweeney, “Simple Demographics Often Identify People Uniquely,” Carnegie Mellon University, Data Privacy Working Paper 3, 2000, 34 pages. |
A. Narayanan et al., “Robust De-anonymization of Large Sparse Datasets,” IEEE Symposium on Security and Privacy, May 2008, 15 pages. |
M. Alahmad et al., “Non-Intrusive Electrical Load Monitoring and Profiling Methods for Applications in Energy Management Systems,” IEEE Long Island Systems, Applications and Technology Conference, 2011, 7 pages. |
K. Yang et al. “Series Arc Fault Detection Algorithm Based on Autoregressive Bispecturm Analysis,” Algorithms, vol. 8, Oct. 16, 2015, pp. 929-950. |
J.-E. Park et al., “Design on Topologies for High Efficiency Two-Stage AC-DC Converter,” 2012 IEEE 7th International Power Electronics and Motion Control Conference—ECCE Asia, Jun. 2-5, 2012, China, 6 pages. |
S. Cuk, “98% Efficient Single-Stage AC/DC Converter Topologies,” Power Electronics Europe, Issue 4, 2011, 6 pages. |
E. Carvou et al., “Electrical Arc Characterization for Ac-Arc Fault Applications,” 2009 Proceedings of the 55th IEEE Holm Conference on Electrical Contacts, IEEE Explore Oct. 9, 2009, 6 pages. |
C. Restrepo, “Arc Fault Detection and Discrimination Methods,” 2007 Proceedings of the 53rd IEEE Holm Conference on Electrical Contacts, IEEE Explore Sep. 24, 2007, 8 pages. |
K. Eguchi et al., “Design of a Charge-Pump Type AC-DC Converter for RF-ID Tags,” 2006 International Symposium on Communications and Information Technologies, F4D-3, IEEE, 2006, 4 pages. |
A. Ayari et al., “Active Power Measurement Comparison Between Analog and Digital Methods,” International Conference on Electrical Engineering and Software Applications, 2013, 6 pages. |
G. D. Gregory et al., “The Arc-Fault Circuit Interrupter, an Emerging Product,” IEEE, 1998, 8 pages. |
D. Irwin et al., “Exploiting Home Automation Protocols for Load Monitoring in Smart Buildings,” BuildSys '11: Proceedings of the Third ACM Workshop on Embedded Sensing Systems for Energy-Efficiency in Buildings, Nov. 2011, 6 pages. |
B. Mrazovac et al., “Towards Ubiquitous Smart Outlets for Safety and Energetic Efficiency of Home Electric Appliances,” 2011 IEEE International Conference on Consumer Electronics, Berlin, German, Sep. 6-8, 2011, 5 pages. |
J. K. Becker et al., “Tracking Anonymized Bluetooth Devices,” Proceedings on Privacy Enhancing Technologies, vol. 3, 2019, pp. 50-65. |
H. Siadati et al., “Mind your SMSes: Mitigating Social Engineering in Second Factor Authentication,” Computers & Security, vol. 65, Mar. 2017, 12 pages. |
S. Jerde, “The New York Times Can Now Predict Your Emotions and Motivations After Reading a Story,” https://www.adweek.com/tv-video/the-new-york-times-can-now-predict-your-emotions-and-motivations-after-reading-a-story/, Apr. 29, 2019, 3 pages. |
K. Mowery et al., “Pixel Perfect: Fingerprinting Canvas in HTML5,” Proceedings of W2SP, 2012, 12 pages. |
S. Kamkar, “Evercookie,” https://samy.pl/evercookie/, Oct. 11, 2010, 5 pages. |
M. K. Franklin et al., “Fair Exchange with a Semi-Trusted Third Party,” Association for Computing Machinery, 1997, 6 pages. |
J. Camenisch et al., “Digital Payment Systems with Passive Anonymity-Revoking Trustees,” Journal of Computer Security, vol. 5, No. 1, 1997, 11 pages. |
L. Coney et al., “Towards a Privacy Measurement Criterion for Voting Systems,” Proceedings of the 2005 National Conference On Digital Government Research, 2005, 2 pages. |
L. Sweeney, “k-anonymity: A Model for Protecting Privacy,” International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, vol. 1, No. 5, 2002, 14 pages. |
C. Dwork, “Differential Privacy,” Encyclopedia of Cryptography and Security, 2011, 12 pages. |
A. P. Felt et al., “Android Permissions: User Attention, Comprehension, and Behavior,” Symposium on Usable Privacy and Security, Jul. 11-13, 2012, 14 pages. |
S. Von Solms et al., “On Blind Signatures and Perfect Crimes,” Computers & Security, vol. 11, No. 6, 1992, 3 pages. |
R. Wyden, “Wyden Releases Discussion Draft Of Legislation To Provide Real Protections For Americans' Privacy,” https://www.wyden.senate.gov/news/press-releases/wyden-releases-discussion-draft-of-legislation-to-provide-real-protections-for-americans-privacy, Nov. 1, 2018, 3 pages. |
M. Rubio, “Rubio Introduces Privacy Bill To Protect Consumers While Promoting Innovation,” https://www.rubio.senate.gov/public/index.cfm/2019/1/rubio-introduces-privacy-bill-to-protect-consumers-while-promoting-innovation#:%7E:text=Washingt%E2%80%A6, Jan. 16, 2019, 2 pages. |
C. Dwork et al., “Differential Privacy and Robust Statistics,” 41st ACM Symposium on Theory of Computing, 2009, 10 pages. |
J. Camenisch et al., “Compact E-Cash,” Eurocrypt, vol. 3494, 2005, pp. 302-321. |
D. L. Chaum, “Untraceable Electronic Mail, Return Addresses, and Digital Pseudonyms,” Communications of the ACM, vol. 24, No. 2, Feb. 1981, pp. 84-88. |
J. Camenisch et al., “An Efficient System For Nontransferable Anonymous Credentials With Optional Anonymity Revocation,” International Conference on the Theory and Application of Cryptographic Techniques, May 6-10, 2001, 30 pages. |
M. K. Reiter et al., “Crowds: Anonymity For Web Transactions,” ACM Transactions on Information and System Security, vol. 1, 1997, 23 pages. |
I. Clarke et al., “Freenet: A Distributed Anonymous Information Storage And Retrieval System,” International Workshop on Designing Privacy Enhanching Technologies: Design Issues in Anonymity and Unobservability, 2001, 21 pages. |
P. Golle et al., “Universal Re-encryption for Mixnets,” Lecture Notes in Computer Science, Feb. 2004, 15 pages. |
Y. Lindell et al., “Multiparty Computation For Privacy Preserving Data Mining,” Journal of Privacy and Confidentiality, May 6, 2008, 39 pages. |
J. Hollan et al., “Distributed Cognition: Toward a New Foundation for Human-Computer Interaction Research,” ACM Transactions on Computer-Human Interaction, vol. 7, No. 2, Jun. 2000, pp. 174-196. |
A. Adams et al., “Users are Not the Enemy,” Communications of the ACM, Dec. 1999, 6 pages. |
A. Morton et al., “Privacy is a Process, Not a Pet: a Theory for Effective Privacy Practice,” Proceedings of the 2012 New Security Paradigms Workshop, Sep. 2012, 18 pages. |
G. D. Abowd et al., “Charting Past, Present And Future Research In Ubiquitous Computing,” ACM Transactions on Computer-Human Interaction, vol. 7, No. 1, Mar. 2000, pp. 29-58. |
W. Mason et al., “Conducting Behavioral Research on Amazon's Mechanical Turk,” Behavior Research Methods, Jun. 2011, 23 pages. |
G. M. Gray et al., “Dealing with the Dangers of Fear: The Role of Risk Communication,” Health Affairs, Nov. 2002, 11 pages. |
L. Shengyuan et al., “Instantaneous Value Sampling AC-DC Converter and its Application in Power Quantity Detection,” 2011 Third International Conference on Measuring Technology and Mechatronics Automation, Jan. 6-7, 2011, 4 pages. |
H.-H. Chang et al., “Load Recognition for Different Loads with the Same Real Power and Reactive Power in a Non-intrusive Load-monitoring System,” 2008 12th International Conference on Computer Supported Cooperative Work in Design, Apr. 16-18, 2008, 6 pages. |
U.S. Appl. No. 17/047,613 filed in the name of Mark Telefus et al., filed Oct. 14, 2020, and entitled “Intelligent Circuit Breakers.”. |
U.S. Appl. No. 17/596,415 filed in the name of Mark Telefus et al. entitled “Two-Wire Electronic Switch and Dimmer.”. |
U.S. Appl. No. 63/250,716 filed in the name of Damon Baker, filed Sep. 30, 2021, and entitled “Three-Way Switching and Dimming Control.”. |
U.S. Appl. No. 63/270,728 filed in the name of Mark Telefus et al., filed Oct. 22, 2021, and entitled “Multi-Output Programmable Power Manager.”. |
U.S. Appl. No. 63/303,492 filed in the name of Damon Matthew Baker et al., filed Jan. 26, 2022, and entitled “Zero-Current Crossing Detection In Inductive Loads.”. |
Extended European Search Report of EP19869963. dated Jul. 25, 2022, 9 pages. |
European Search Report of Application 20809502.6 dated Jun. 15, 2023, 9 pages. |
Number | Date | Country | |
---|---|---|---|
20220255310 A1 | Aug 2022 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16589999 | Oct 2019 | US |
Child | 17731424 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16149094 | Oct 2018 | US |
Child | 16589999 | US |