The present invention relates to a solid-state image sensor and image sensing system.
FIG. 2 of Japanese Patent Laid-Open No. 2001-223566 shows a comparator including pixels 201, 202, and 203, a current path formation block 210, a current path 211, and a comparison unit 215. The current path formation block 210 includes MOS transistors 204, 205, and 206 having gates to which charge-voltage converters of the pixels 201, 202, and 203 are respectively connected. The current path 211 includes a MOS transistor having a gate to which a reference voltage 212 is supplied. The comparison unit 215 includes an arithmetic amplifier including the current path formation block 210 and current path 211 as a differential pair, and can obtain a digital signal corresponding to a pixel signal based on the output from the comparison unit 215.
In this arrangement shown in FIG. 2 of Japanese Patent Laid-Open No. 2001-223566, a transistor 213 which forms the differential pair together with the amplification transistors 204, 205, and 206 of the pixels 201, 202, and 203 is provided outside the pixels 201, 202, and 203. In an arrangement like this, it is difficult to improve the balance between one current path and the other current path forming the differential pair, and this sometimes makes it difficult to sufficiently increase the readout accuracy of a pixel signal.
The present invention provides a technique advantageous to increase the readout accuracy of a pixel signal.
One of aspects of the present invention provides a solid-state image sensor comprising an image sensing unit including a plurality of pixel blocks, and a readout unit configured to read out a signal from the image sensing unit, wherein the pixel block includes a photoelectric converter, a first transistor, a second transistor, and a current source, a first main electrode of the first transistor and a first main electrode of the second transistor are connected to a common node, and the current source is provided in a path between the common node and a predetermined voltage, a readout operation for reading out a signal from the image sensing unit includes an operation in which a voltage corresponding to charges generated in the photoelectric converter is supplied to a control electrode of the first transistor, and a temporally changing reference voltage is supplied to a control electrode of the second transistor, and the readout unit reads out a signal from the image sensing unit via a second main electrode of the first transistor.
Further features of the present invention will become apparent from the following description of exemplary embodiments with reference to the attached drawings.
Exemplary embodiments of the present invention will be explained below with reference to the accompanying drawings.
The solid-state image sensor 1 includes a vertical scanning unit (vertical selecting unit) 120 and horizontal scanning unit (horizontal selecting unit) 150 for selecting a pixel 112 from which a signal is read out. The vertical scanning unit 120 selects a row to be read out from a plurality of rows in the image sensing unit 110, and the readout unit 140 reads out signals of the pixels 112 in the selected row through a vertical transmission path 114. The horizontal scanning unit 150 selects the pixels 112 in a column to be read out from the signals of the pixels 112 in the plurality of columns read out by the readout unit 140, and outputs signals of the selected pixels 112 to an output signal line 160. That is, the horizontal scanning unit 150 selects a column to be read out from the plurality of columns in the image sensing unit 110.
The solid-state image sensor 1 further includes a reference voltage generator 130. The reference voltage generator 130 generates a temporally changing reference voltage. This temporally changing reference voltage is typically a ramp signal. The reference voltage generated by the reference voltage generator 130 can be supplied, via the vertical scanning unit 120, to a pixel block 113 including the pixels 112 in the row to be read out of the image sensing unit 110. The reference voltage may also be supplied to the pixel block 113 without using the vertical scanning unit 120. As exemplarily shown in
A readout operation for reading out a signal from the image sensing unit 110 includes an operation in which a voltage corresponding to charges generated in the photoelectric converter PD of the pixel 112 to be read out is supplied to the control electrode of the first transistor M1, and a temporally changing reference voltage VRMP is supplied to the control electrode of the second transistor M2. Note that the control electrode is the gate electrode. The readout unit 140 reads out a signal from the image sensing unit 110 through the second main electrode (in this example, the drain electrode) of the first transistor M1 and the vertical transmission path 114. In the example shown in
A transfer signal φT driven by the vertical scanning unit 120 is applied to the gate of the transfer transistor MT. A voltage control signal φR driven by the vertical scanning unit 120 is applied to the gate of the voltage control transistor MR. In the following description, when distinguishing between one transfer signal and another transfer signal, numbers are added after φT like φT1 and φT2. Similarly, when distinguishing between one voltage control signal and another voltage control signal, numbers are added after φR like φR1 and φR2. This applies to other signals.
The readout unit 140 converts a signal transmitted from the pixel 112 of the image sensing unit 110 through the vertical transmission path 114 into a digital signal, and outputs the signal to the output signal line 160. In a general solid-state image sensor which outputs a pixel signal as a digital signal, a column amplifier formed for each column of an image sensing unit reads out a signal from a pixel in the form of an analog voltage signal, and an AD converter converts this analog voltage signal into a digital signal. To the contrary, in the solid-state image sensor 1 of this embodiment, a signal transmitted from a pixel to the vertical transmission path 114 has a form in current signal, and this current signal is converted into a digital signal.
The readout unit 140 can include a signal processing unit 142, counter 144, and memory 146. A set of the signal processing unit 142, counter 144, and memory 146 can be formed for each column of the image sensing unit 110. The signal processing unit 142 receives an electric current supplied from the second main electrode of the first transistor M1 through the vertical transmission path 114. Based on the value of this electric current, the signal processing unit 142 detects a timing at which the magnitude relation between the voltage of the control electrode of the first transistor M1 (this voltage is also the voltage of the charge-voltage converter fd) and the voltage (reference voltage VRMP) of the control electrode of the second transistor M2 inverts. For example, the signal processing unit 142 compares the value of a first electric current supplied from the second main electrode of the first transistor M1 through the first vertical signal line 114a with the value of a second electric current supplied from the second main electrode of the second transistor M2 through the second vertical signal line 114b. Then, the signal processing unit 142 outputs a comparison result signal indicating the magnitude relation between the values of the first and second electric currents. The inversion of this comparison result signal means that the magnitude relation between the values of the first and second electric currents has inverted. Also, the inversion of the magnitude relation between the values of the first and second electric currents is equivalent to the inversion of the magnitude relation between the voltages of the control electrodes of the first and second transistors M1 and M2.
The counter 144 starts a count operation at a predetermined timing, and stops the count operation in accordance with the inversion of the comparison result signal. The memory 146 holds a count value (that is, a pixel value) obtained by the counter 144, and outputs the count value to the output signal line 160 when selected by the horizontal scanning unit 150. That is, the readout unit 140 decides that the count value of the counter 144 is the value of a signal read out from the image sensing unit 110, in accordance with the inversion of the output from the signal processing unit 142.
In the architecture as described above, the first transistor M1, second transistor M2, and current source M3 are provided close to each other. This makes it possible to decrease both the parasitic resistances on the source sides of the first and second transistors M1 and M2. Accordingly, it is possible to improve the balance between the current path including the first transistor M1 and the current path including the second transistor M2, thereby improving the differential input characteristic balance. As a consequence, the pixel signal readout accuracy increases.
More practical embodiments will be explained below.
The first main electrode (source electrode) of the first transistor M1 and the first main electrode (source electrode) of the second transistor M2 are connected to a common node CN, and the third transistor M# is provided in a path between the common node CN and a predetermined potential (in this example, a ground potential). The third transistor M3 functions as a tail current source when a predetermined bias voltage Vbias is applied to the control electrode (gate). The first transistor M1, second transistor M2, and current source M3 form a differential amplifier circuit. This circuit formed by the first transistor M1, second transistor M2, and current source M3 can also be regarded as a voltage comparator for comparing the voltage of the control electrode of the first transistor M1 (this voltage is also the voltage of a charge-voltage converter fd) with the voltage (a reference voltage VRMP) of the control electrode of the second transistor M2.
A readout operation for reading out a signal from the image sensing unit 110 includes an operation in which a voltage corresponding to charges generated in the photoelectric converter PD of the pixel 112 to be read out is supplied to the control electrode of the first transistor M1, and the temporally changing reference voltage VRMP is supplied to the control electrode of the second transistor M2. A readout unit 140 reads out a signal from the image sensing unit 110 through the second main electrode of the first transistor M1 and a vertical transmission path 114.
In the first-row readout period, a predetermined bias voltage Vbias is applied to the gate of the transistor forming each current source M3 in the first row, and the current source M3 functions as a tail constant current source. First, a voltage control signal φR1 is activated to High level. Consequently, the voltage control transistor MR is turned on, and the charge-voltage converter fd is reset to a voltage (reset voltage) corresponding to a reset voltage VRES.
Then, the voltage control signal φR1 is deactivated to Low level, and the charge-voltage converter fd floats. The initial voltage of the reference voltage VRMP is set to be much higher than the reset voltage of the charge-voltage converter fd such that almost the while electric current supplied by the current source M3 (the electric current defined by the current source M3) flows through the second transistor M2, and an electric current flowing through the first transistor M1 is almost zero. The reference voltage VRMP is linearly dropped, and a counter 144 (148) measures a time before the comparison result signal output from the signal processing unit 142 inverts due to the inversion of the magnitude relation between the reset voltage and reference voltage VRMP. The count value obtained by the counter 144 (148) and held in a memory 146 is a digital value (to be referred to as a noise value hereinafter) corresponding to the reset voltage (noise level) of the pixel 112. Reference symbol N_AD denotes the operation of holding the digital value corresponding to the reset voltage in the memory 146 as described above.
Subsequently, the reference voltage VRMP is returned to the initial voltage, and the transfer signal φT1 is activated to High level. As a consequence, charges photoelectrically converted and accumulated by the photoelectric converter PD are transferred to the charge-voltage converter fd. After the transfer signal φT1 is deactivated to Low level, the reference voltage VRMP is linearly dropped. The counter 144 (148) measures a time before the comparison result signal output from the signal processing unit 142 inverts due to the inversion of the magnitude relation between the voltage of the charge-voltage converter fd and the reference voltage VRMP. The count value obtained by the counter 144 (148) and held in the memory 146 is a digital value (to be referred to as an optical signal value hereinafter) corresponding to the amount of charges generated by photoelectric conversion in the photoelectric converter PD of the pixel 112. Reference symbol S_AD denotes the operation of holding the digital value corresponding to the amount of charges generated by photoelectric conversion in the memory 146 as described above. The noise value and optical signal value held in the memory 146 can separately be output. It is also possible to output a value obtained by subtracting the noise value from the optical signal value (that is, a value subjected to CDS (Correlated Double Sampling)).
A second readout period is a period in which the second-row bias signal φB2 is High (a bias voltage), and the first-row bias signal φB1 is Low. A second-row read operation is executed by the same method as that for the first row.
In the second embodiment, two pixels 112 share the third transistor M3. However, more pixels 112 may share the third transistor M3. For example, the pixels 112 in one column may share the third transistor M3.
In the fourth embodiment, when a pixel 112a is a pixel to be read out, a signal of the pixel 112a is read out by using a transistor M2 of a pixel 112b different from the pixel 112a as a second transistor. Also, when the pixel 112b is a pixel to be read out, a signal of the pixel 112b is read out by using a transistor M1 of the pixel 112a different from the pixel 112b as a second transistor. In another viewpoint, it is possible to regard that the pixels 112a and 112b form one pixel block 113, and the pixel block 113 includes the first transistor M1, the second transistor M2, and a current source M3. A readout operation for reading out a signal from the image sensing unit 110 includes an operation in which a voltage corresponding to charges generated in a photoelectric converter PD of the pixel block 113 is supplied to the control electrode of the first transistor M1, and a temporally changing reference voltage VRMP is supplied to the control electrode of the second transistor M2.
A reset voltage VRES or the reference voltage VRMP is supplied to the drain of a voltage control transistor TR via switches S (S1 and S2). More specifically, the reset voltage VRES is supplied to a charge-voltage converter fd (fd1 or fd2) of the pixel 112 (112a or 112b) to be read out in the pixel block 113. On the other hand, the reference voltage VRMP is supplied to the charge-voltage converter fd of the pixel 112 (112a or 112b) not to be read out.
In a first-row readout period, φS1 and φR2 are changed to High level, and φS2 is changed to Low level. First, a first-row voltage control signal φR1 is activated to High level. Consequently, the voltage control transistor MR of the pixel 112a in the first row is turned on, and the charge-voltage converter fd1 of the pixel 112a in the first row is reset to a voltage (reset voltage) corresponding to the reset voltage VRES. The reference voltage VRMP is supplied to the charge-voltage converter fd2 of the pixel 112b in the second row. Accordingly, as in the first embodiment, an operation (N_AD) of holding a digital value corresponding to the reset voltage in a memory 146 and an operation (S_AD) of holding a digital value corresponding to the amount of charges generated by photoelectric conversion in the memory 146 are performed.
In a second-row readout period, φS2 and φR1 are changed to High level, and φS1 is changed to Low level. First, a second-row voltage control signal φR2 is activated to High level. Consequently, the voltage control transistor MR of the pixel 112b in the second row is turned on, and the charge-voltage converter fd2 of the pixel 112b in the second row is reset to the voltage (reset voltage) corresponding to the reset voltage VRES. The reference voltage VRMP is supplied to the charge-voltage converter fd1 of the pixel 112a in the first row. Accordingly, the operation (N_AD) of holding the digital value corresponding to the reset voltage in the memory 146 and the operation (S_AD) of holding the digital value corresponding to the amount of charges generated by photoelectric conversion in the memory 146 are performed for the pixel in the second row.
In read periods of the first to fourth rows, a bias voltage Vbias is supplied to the control electrode (gate) of a third transistor M3. In the first-row read period, the first voltage control signal φR1 for the first and second rows is activated to High level, and a reset voltage (a voltage lower than the initial voltage of the reference voltage) is supplied from the signal line VRES/VRMP. After that, the first voltage control signal φR1 is deactivated to Low level. In the period during which the first voltage control signal φR1 is activated to High level, the resetting of the first charge-voltage converter fd1 for the first and second rows is complete.
Then, the reference voltage VRMP is supplied to the signal line VRES/VRMP, and the second voltage control signal φR2 for the third and fourth rows is activated to High level. Consequently, the reference voltage VRMP is supplied to the second charge-voltage converter fd2 for the third and fourth rows. The reference voltage VRMP is linearly dropped, and a counter 144 (148) measures a time before a comparison result signal output from a signal processing unit 142 inverts due to the inversion of the magnitude relation between the reset voltage and reference voltage VRMP (N_AD). Subsequently, the reference voltage VRMP is returned to the initial voltage, and a transfer signal φT1 is activated to High level. As a consequence, charges photoelectrically converted and accumulated by the photoelectric converter PD1 in the first row are transferred to the first charge-voltage converter fd1. After the transfer signal φT1 is deactivated to Low level, the reference voltage VRMP is linearly dropped. Then, the counter 144 (148) measures a time before the comparison result signal output from the signal processing unit 142 inverts due to the inversion of the magnitude relation between the voltage of the first charge-voltage converter fd1 and the reference voltage VRMP (S_AD).
In the second-row readout period, the first voltage control signal φR1 for the first and second rows is activated to High level, and the reset voltage (a voltage lower than the initial voltage of the reference voltage) is supplied from the signal line VRES/VRMP. After that, the first voltage control signal φR1 is deactivated to Low level. In the period during which the first voltage control signal φR1 is activated to High level, the resetting of the first charge-voltage converter fd1 for the first and second rows is complete.
Then, the reference voltage VRMP is supplied to the signal line VRES/VRMP, and the second voltage control signal φR2 for the third and fourth rows is activated to High level. Consequently, the reference voltage VRMP is supplied to the second charge-voltage converter fd2 for the third and fourth rows. The reference voltage VRMP is linearly dropped, and the counter 144 (148) measures a time before the comparison result signal output from the signal processing unit 142 inverts due to the inversion of the magnitude relation between the reset voltage and reference voltage VRMP (N_AD). Subsequently, the reference voltage VRMP is returned to the initial voltage, and a transfer signal φT2 is activated to High level. As a consequence, charges photoelectrically converted and accumulated by the photoelectric converter PD2 in the second row are transferred to the first charge-voltage converter fd1. After the transfer signal φT2 is deactivated to Low level, the reference voltage VRMP is linearly dropped. Then, the counter 144 (148) measures a time before the comparison result signal output from the signal processing unit 142 inverts due to the inversion of the magnitude relation between the voltage of the charge-voltage converter fd and the reference voltage VRMP (S_AD).
In the third-row readout period, the second voltage control signal φR2 for the third and fourth rows is activated to High level, and the reset voltage (a voltage lower than the initial voltage of the reference voltage) is supplied from the signal line VRES/VRMP. After that, the second voltage control signal φR2 is deactivated to Low level. In the period during which the second voltage control signal φR2 is activated to High level, the resetting of the second charge-voltage converter fd2 for the third and fourth rows is complete.
Then, the reference voltage VRMP is supplied to the signal line VRES/VRMP, and the first voltage control signal φR1 for the first and second rows is activated to High level. Consequently, the reference voltage VRMP is supplied to the first charge-voltage converter fd1 for the first and second rows. The reference voltage VRMP is linearly dropped, and the counter 144 (148) measures a time before the comparison result signal output from the signal processing unit 142 inverts due to the inversion of the magnitude relation between the reset voltage and reference voltage VRMP (N_AD). Subsequently, the reference voltage VRMP is returned to the initial voltage, and a transfer signal φT3 is activated to High level. As a consequence, charges photoelectrically converted and accumulated by the photoelectric converter PD3 in the third row are transferred to the second charge-voltage converter fd2. After the transfer signal φT3 is deactivated to Low level, the reference voltage VRMP is linearly dropped. Then, the counter 144 (148) measures a time before the comparison result signal output from the signal processing unit 142 inverts due to the inversion of the magnitude relation between the voltage of the second charge-voltage converter fd2 and the reference voltage VRMP (S_AD).
In the fourth-row readout period, the second voltage control signal φR2 for the third and fourth rows is activated to High level, and the reset voltage (a voltage lower than the initial voltage of the reference voltage) is supplied from the signal line VRES/VRMP. After that, the second voltage control signal φR2 is deactivated to Low level. In the period during which the second voltage control signal φR2 is activated to High level, the resetting of the second charge-voltage converter fd2 for the third and fourth rows is complete.
Then, the reference voltage VRMP is supplied to the signal line VRES/VRMP, and the first voltage control signal φR1 for the first and second rows is activated to High level. Consequently, the reference voltage VRMP is supplied to the first charge-voltage converter fd1 for the first and second rows. The reference voltage VRMP is linearly dropped, and the counter 144 (148) measures a time before the comparison result signal output from the signal processing unit 142 inverts due to the inversion of the magnitude relation between the reset voltage and reference voltage VRMP (N_AD). Subsequently, the reference voltage VRMP is returned to the initial voltage, and a transfer signal φT4 is activated to High level. As a consequence, charges photoelectrically converted and accumulated by the photoelectric converter PD4 in the fourth row are transferred to the second charge-voltage converter fd2. After the transfer signal φT4 is deactivated to Low level, the reference voltage VRMP is linearly dropped. Then, the counter 144 (148) measures a time before the comparison result signal output from the signal processing unit 142 inverts due to the inversion of the magnitude relation between the voltage of the second charge-voltage converter fd2 and the reference voltage VRMP (S_AD).
In the fifth embodiment, two photoelectric converters share one charge-voltage converter. However, more photoelectric converters may also share one charge-voltage converter. The signal line VRES/VRMP may be connected to the charge-voltage converters in the same column via the reset switches MR, and may also be connected to all the charge-voltage converters via the reset switches MR. Accordingly, the signal line VRES/VRMP may be provided along the column direction, and may also be provided in a matrix along the row and column directions.
The operation of the first application example will be explained with reference to
Details will be explained below. In N_AD and S_AD, the initial voltage of the reference voltage VRMP is controlled to be higher than voltages Vfd1 and Vfd2 of the charge-voltage converters fd1 and fd2, that is, controlled such that VRMP>Vfd1 and VRMP>Vfd2. As a result, in the pixels 112a and 112b, the second transistors M2 are turned on, and the first transistors M1 are turned off. Accordingly, the electric current I_VL1 flowing through the vertical signal line 114a is the sum of electric currents flowing through the current sources M3 of the two pixels 112a and 112b. Also, the electric current I_VL2 flowing through the vertical signal line 114b is 0.
Subsequently, ramp-down of the reference voltage VRMP is started, and VRMP<Vfd1 holds at time 1 in N_AD and at time t3 in S_AD. In the pixel 112a, therefore, M1 is turned on, M2 is turned off, I_VL1 reduces, and I_VL2 increases. In addition, when VRMP<Vfd2 holds at time t2 in N_AD and at time t4 in S_AD, M1 is turned on, M2 is turned off, and I_VL2 further reduces to 0 in the pixel 112b. Consequently, I_VL2 further increases and becomes the sum of the electric currents flowing through the current sources M3 of the two pixels 112a and 112b.
The signal processing unit 104 detects changes in electric currents I_VL1 and/or I_VL2, thereby detecting times t1 and t2 in the N_AD period and times t3 and t4 in the S_AD period. Letting fclk be the frequency of the count clock in a period from the start of count by the counter 144 (148) to t1 or t3, the frequency of the count clock from t1 or t3 to t2 or t4 at which the count is terminated can be controlled to fclk/2. This makes it possible to obtain the average value of the signals of the pixels 112a and 112b. Although the frequency of the count clock is changed in the first application example, the substance of the first application example is to detect times t1, t2, t3, and t4, so changing the count clock frequency is merely an example. For example, it is also possible to use two counters which operate by count clocks having the same frequency, output, as digital codes, a period from the start of count to t1 or t3 and a period from the start of count to t2 or t4, and add these codes by digital addition.
(Case1) is a case in which Vfd1<Vfd2. The reference voltage VRMP starts linearly dropping. First, at time t1 at which VRMP<Vfd2, in the pixel 112b shown in
(Case2) is a case in which Vfd1>Vfd2. The reference voltage VRMP starts linearly dropping. First, at time t3 at which VRMP<Vfd1, in the pixel 112a shown in
By detecting the current change by the three thresholds (thresholds 1, 2, and 3) exemplified in
The operation of the second application example will be explained with reference to
The optical unit 810 as an optical system such as a lens images light from an object on an image sensing unit 110 of the image sensing element 100, in which a plurality of pixels are two-dimensionally arranged, thereby forming an image of the object. The image sensing element 100 outputs a signal corresponding to the light imaged on the image sensing unit 110, at a timing based on a signal from the timing control unit 850. The output signal from the image sensing element 100 is input to the image signal processing unit 830 as an image signal processor, and the image signal processing unit 830 performs signal processing in accordance with a method determined by a program or the like. The signal obtained by the processing in the image signal processing unit 830 is transmitted as image data to the record/communication unit 840. The record/communication unit 840 transmits a signal for forming an image to the playback/display unit 870, and causes the playback/display unit 870 to playback/display a moving image or still image. When receiving the signal from the image signal processing unit 830, the record/communication unit 840 communicates with the system control unit 860, and also records a signal for forming an image on a recording medium (not shown).
The system control unit 860 comprehensively controls the operation of the image sensing system, and controls the driving of the optical unit 810, timing control unit 850, record/communication unit 840, and playback/display unit 870. Also, the system control unit 860 includes a storage device (not shown) such as a recording medium, and records, for example, programs necessary to control the operation of the image sensing system in the storage device. Furthermore, the system control unit 860 supplies, for example, a signal for switching driving modes in accordance with a user's operation to the image sensing system. Practical examples are a change of a read target row or reset target row, a change of the angle of view caused by electronic zooming, and a shift of the angle of view caused by electronic vibration isolation. The timing control unit 850 controls the driving timings of the image sensing element 100 and image signal processing unit 830 under the control of the system control unit 860.
While the present invention has been described with reference to exemplary embodiments, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. The scope of the following claims is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures and functions.
This application claims the benefit of Japanese Patent Application No. 2014-066812, filed Mar. 27, 2014, and Japanese Patent Application No. 2014-265780, filed Dec. 26, 2014, which are hereby incorporated by reference herein in their entirety.
Number | Date | Country | Kind |
---|---|---|---|
2014-066812 | Mar 2014 | JP | national |
2014-265780 | Dec 2014 | JP | national |
This is a continuation of U.S. patent application Ser. No. 14/662,604, filed Mar. 19, 2015.
Number | Name | Date | Kind |
---|---|---|---|
5698892 | Koizumi et al. | Dec 1997 | A |
5917547 | Merrill et al. | Jun 1999 | A |
6188094 | Kochi et al. | Feb 2001 | B1 |
6265941 | Lopata | Jul 2001 | B1 |
6271785 | Martin et al. | Aug 2001 | B1 |
6518910 | Sakuragi et al. | Feb 2003 | B2 |
6670990 | Kochi et al. | Dec 2003 | B1 |
6960751 | Hiyama et al. | Nov 2005 | B2 |
7016089 | Yoneda et al. | Mar 2006 | B2 |
7110030 | Kochi et al. | Sep 2006 | B1 |
7227208 | Ogura et al. | Jun 2007 | B2 |
7321110 | Okita et al. | Jan 2008 | B2 |
7324144 | Koizumi | Jan 2008 | B1 |
7348615 | Koizumi | Mar 2008 | B2 |
7408210 | Ogura et al. | Aug 2008 | B2 |
7429764 | Koizumi et al. | Sep 2008 | B2 |
7460162 | Koizumi et al. | Dec 2008 | B2 |
7462810 | Kobayashi et al. | Dec 2008 | B2 |
7466003 | Ueno et al. | Dec 2008 | B2 |
7538810 | Koizumi et al. | May 2009 | B2 |
7550793 | Itano et al. | Jun 2009 | B2 |
7554591 | Kikuchi et al. | Jun 2009 | B2 |
7605415 | Koizumi et al. | Oct 2009 | B2 |
7629568 | Koizumi et al. | Dec 2009 | B2 |
7633540 | Totsuka | Dec 2009 | B2 |
7808537 | Fujimura et al. | Oct 2010 | B2 |
7872286 | Okita et al. | Jan 2011 | B2 |
7907196 | Ogura et al. | Mar 2011 | B2 |
7928477 | Kobayashi et al. | Apr 2011 | B2 |
7935995 | Watanabe et al. | May 2011 | B2 |
7948540 | Ogura et al. | May 2011 | B2 |
7948541 | Koizumi et al. | May 2011 | B2 |
7990440 | Kobayashi et al. | Aug 2011 | B2 |
8045034 | Shibata et al. | Oct 2011 | B2 |
8084729 | Kato et al. | Dec 2011 | B2 |
8085319 | Ono et al. | Dec 2011 | B2 |
8120681 | Ryoki et al. | Feb 2012 | B2 |
8154639 | Kato et al. | Apr 2012 | B2 |
8169525 | Ryoki et al. | May 2012 | B2 |
8174600 | Ogura et al. | May 2012 | B2 |
8189081 | Totsuka | May 2012 | B2 |
8289432 | Shibata et al. | Oct 2012 | B2 |
8345133 | Matsuda et al. | Jan 2013 | B2 |
8400546 | Itano et al. | Mar 2013 | B2 |
8411178 | Ogura et al. | Apr 2013 | B2 |
8411185 | Totsuka | Apr 2013 | B2 |
8456559 | Yamashita et al. | Jun 2013 | B2 |
8477224 | Ogura et al. | Jul 2013 | B2 |
8520102 | Ogura et al. | Aug 2013 | B2 |
8552353 | Kobayashi et al. | Oct 2013 | B2 |
8553115 | Arishima et al. | Oct 2013 | B2 |
8553118 | Saito et al. | Oct 2013 | B2 |
8605182 | Totsuka et al. | Dec 2013 | B2 |
8670056 | Kono et al. | Mar 2014 | B2 |
8698062 | Yoshida | Apr 2014 | B2 |
8872092 | Ryoki et al. | Oct 2014 | B2 |
8884391 | Fudaba et al. | Nov 2014 | B2 |
8937672 | Totsuka et al. | Jan 2015 | B2 |
8963271 | Yamazaki et al. | Feb 2015 | B2 |
9007501 | Matsuda et al. | Apr 2015 | B2 |
9013765 | Totsuka | Apr 2015 | B2 |
9019141 | Hashimoto et al. | Apr 2015 | B2 |
9049389 | Hashimoto et al. | Jun 2015 | B2 |
9147708 | Okita et al. | Sep 2015 | B2 |
9153610 | Kobayashi et al. | Oct 2015 | B2 |
9159750 | Ikeda et al. | Oct 2015 | B2 |
9282263 | Totsuka | Mar 2016 | B2 |
9332202 | Totsuka | May 2016 | B2 |
9344653 | Shimotsusa et al. | May 2016 | B2 |
9350958 | Totsuka et al. | May 2016 | B2 |
9407839 | Yoshida | Aug 2016 | B2 |
9538112 | Wada et al. | Jan 2017 | B2 |
9548328 | Hasegawa et al. | Jan 2017 | B2 |
20010020909 | Sakuragi et al. | Sep 2001 | A1 |
20040017494 | Lu et al. | Jan 2004 | A1 |
20040099790 | Knee et al. | May 2004 | A1 |
20050072978 | Raynor | Apr 2005 | A1 |
20070177043 | Kok | Aug 2007 | A1 |
20110221931 | Wakabayashi | Sep 2011 | A1 |
20130153749 | Sakurai | Jun 2013 | A1 |
20130175652 | Yamazaki et al. | Jul 2013 | A1 |
20140022354 | Okigawa et al. | Jan 2014 | A1 |
20140061436 | Kobayashi | Mar 2014 | A1 |
20140263950 | Fenigstein | Sep 2014 | A1 |
20150201144 | Kobayashi et al. | Jul 2015 | A1 |
20150264283 | Kobayashi et al. | Sep 2015 | A1 |
20150281616 | Muto et al. | Oct 2015 | A1 |
20150319380 | Yoshida | Nov 2015 | A1 |
20150365616 | Yoshida | Dec 2015 | A1 |
20160247846 | Iida et al. | Aug 2016 | A1 |
20160301886 | Muto et al. | Oct 2016 | A1 |
20160360126 | Soda et al. | Dec 2016 | A1 |
20180054580 | Adachi | Feb 2018 | A1 |
Number | Date | Country |
---|---|---|
203103304 | Jul 2013 | CN |
103548335 | Jan 2014 | CN |
10006525 | Oct 2001 | DE |
2001-223566 | Aug 2001 | JP |
2005-311487 | Nov 2005 | JP |
2012-079861 | Apr 2012 | JP |
2008146236 | Dec 2008 | WO |
Entry |
---|
U.S. Appl. No. 15/237,272, filed Aug. 15, 2016. |
U.S. Appl. No. 15/237,255, filed Aug. 15, 2016. |
U.S. Appl. No. 15/257,549, filed Sep. 6, 2016. |
U.S. Appl. No. 15/235,679, filed Aug. 12, 2016. |
U.S. Appl. No. 15/227,576, filed Aug. 3, 2016. |
U.S. Appl. No. 15/420,903, filed Jan. 31, 2017. |
David X.D. Yang et al., “A Nyquist Rate Pixel Level ADC for CMOS Image Sensors”, Custom Integrated Circuits Conference, IEEE May 1998, pp. 237-240. |
Jul. 6, 2015 extended European Search Report concerning corresponding European Patent Application No. 15158989.2. |
Office Action dated Mar. 27, 2017, in European Patent Application No. 15158989.2. |
Office Action dated Sep. 5, 2017, in Chinese Patent Application No. 201510137664.7. |
Office Action dated Jul. 26, 2018, in European Patent Application No. 15158989.2. |
Number | Date | Country | |
---|---|---|---|
20180098013 A1 | Apr 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14662604 | Mar 2015 | US |
Child | 15834293 | US |