The present application claims foreign priority under 35 USC 119 based on Japanese Patent Application No. 2005-114045, filed Apr. 12, 2005, the content of which is incorporated herein by reference.
1. Technical Field
The present invention relates to a solid state laser device and a method for producing a solid state laser device, and more particularly to a solid state laser device and a method for producing a solid state laser device in which a longitudinal mode can be preferably changed to a single mode by an etalon.
2. Related Art
A solid state laser device has been known that comprises a laser diode, an Nd:YAG laser medium, a non-linear optical element, an etalon and an output mirror (for instance, see U.S. Pat. No. 5,506,860). The laser diode outputs an excited laser beam. The Nd:YAG laser medium is excited by the excited laser beam to induce and emit a fundamental wave. The non-linear optical element converts the fundamental wave to a higher harmonic wave. The etalon changes a longitudinal mode to a single mode. The output mirror forms one end of an optical resonator and transmits the outputted laser beam.
When an etalon is not inserted into an optical resonator, for instance, as shown in
When the etalon is inserted into the optical resonator, for instance, as shown by a thin full line in
However, as shown in
However, since the longitudinal mode is not changed to the single mode under this state, an output is undesirably unstable due to the competition of modes.
Thus, it is an object of the present invention to provide a solid state laser device and a method for producing a solid state laser device in which a longitudinal mode can be preferably changed to a signal mode by an etalon.
According to a first aspect, the present invention provides a solid state laser device comprising: a laser diode for outputting an excited laser beam; an Nd:YAG laser medium excited by the excited laser beam to induce and emit a fundamental wave; a non-linear optical element for converting the fundamental wave to a higher harmonic wave; an etalon for changing a longitudinal mode to a single mode; and an output mirror forming one end of an optical resonator and transmitting the outputted laser beam, characterized in that the transmittance of the etalon relative to an oscillating line of the wavelength of 1061.6 to 1062.2 nm by the Nd:YAG medium is 0.9 or lower.
The “transmittance of the etalon” is represented by a relative value when the maximum value of the transmittance is 1.0.
In the solid state laser device according to the first aspect, since the transmittance of the etalon relative to the oscillating line having the wavelength of 1061.6 to 1062.2 nm by the Nd:YAG medium is 0.9 or lower, the oscillating line having the wavelength of 1061.6 to 1062.2 nm is damped by the etalon so that a peak corresponding thereto does not substantially appear in the outputted laser beam. Accordingly the longitudinal mode can be preferably changed to the single mode and an output can be stabilized.
According to a second aspect, the present invention provides a producing method for a solid state laser device including a laser diode for outputting an excited laser beam; an Nd:YAG laser medium excited by the excited laser beam to induce and emit a fundamental wave; a non-linear optical element for converting the fundamental wave to a higher harmonic wave; an etalon for changing a longitudinal mode to a single mode; and an output mirror forming one end of an optical resonator and transmitting the outputted laser beam. The producing method for a solid state laser device comprises the steps of: observing the outputted laser beam of the solid state laser device to measure a central wavelength λ1 of an oscillating line having the wavelength of 1064.2 to 1065.2 nm by the Nd:YAG laser medium; observing the outputted laser beam of the solid state laser device having the etalon removed to measure a central wavelength λ0 of an oscillating line having the wavelength of 1064.2 to 1065.2 nm by the Nd:YAG laser medium; obtaining a corrected optical path length Δ of the etalon so that the transmittance of the etalon relative to an oscillating line having the wavelength of 1061.6 to 1062.2 nm by the Nd:YAG laser medium is 0.9 or lower on the basis of the λ0 and λ1; and correcting the optical path of the etalon by the corrected optical path length Δ.
In the producing method for a solid state laser device according to the second aspect, the outputted laser beam of the solid state laser device having the etalon removed is observed to actually measure the central wavelength λ0 of the oscillating line having the wavelength of 1064.2 to 1065.2 nm. The outputted laser beam of the solid state laser device into which the etalon is inserted is observed to actually measure the central wavelength λ1 of the oscillating line having the wavelength of 1064.2 to 1065.2 nm. Thus, the corrected optical path length Δ for changing the transmitting characteristics of the etalon is obtained so that the transmittance of the etalon relative to the oscillating line having the wavelength of 1061.6 to 1062.2 nm is 0.9 or lower on the basis of the obtained results. Then, the optical path of the etalon is corrected by the corrected optical path length Δ. Accordingly, the maximum transmittance peak of the etalon after the correction does not correspond to a secondary oscillating line having the wavelength of 1061.6 to 1062.2 nm, so that the oscillating line having the wavelength of 1061.6 to 1062.2 nm is damped by the etalon and a peak corresponding thereto does not substantially appear in the outputted laser beam. Therefore, the solid state laser device that can preferably change the longitudinal mode to the single mode can be produced.
A corrected optical path length Δ is most preferably obtained so that the minimum transmittance peak of the etalon corresponds to the oscillating line of the wavelength of 1061.6 to 1062.2 nm.
According to a third aspect, the present invention provides a producing method for a solid state laser device according to the second aspect, characterized in that assuming that an order of interference of the etalon relative to the fundamental wave of the oscillating line having the wavelength of 1064.2 to 1065.2 nm by the Nd:YAG laser medium is m and an integer not smaller than 0 and not larger than 3 is k, the corrected optical path length Δ is obtained so that the oscillating line having the wavelength of 1061.6 to 1062.2 nm by the Nd:YAG laser medium is located within a range having the transmittance not larger than 0.9 between the maximum transmittance peak of the order of interference of m+k of the etalon and the maximum transmittance peak of the order of interference of m+k+1.
Since when the etalon is inserted into the optical resonator, the transmitting characteristics of the etalon show a sine wave form, assuming that k is an integer, the corrected optical path length Δ is obtained so that the oscillating line having the wavelength of 1061.6 to 1062.2 nm by the Nd:YAG laser medium is located within a range having the transmittance not larger than 0.9 between the maximum transmittance peak of the order of interference of m+k of the etalon and the maximum transmittance peak of the order of interference of m+k+1.
However, when k is a negative number, the corrected optical path length Δ increases an optical path length, so that a practice is difficult (a practice may be made). When k is 0 or higher, the corrected optical path length Δ decreases an optical path length, so that a practice can be easily made by employing a technique disclosed in, for instance, US2003/0146189A1. However, when k is 4 or larger, a part between the maximum transmittance peak of the order of interference m and the maximum transmittance peak of the order of interference m±1 is too narrow. Thus, a multi-mode may be possibly formed by the fundamental wave of the oscillating line having the wavelength of 1064.2 to 1065.2 nm.
Thus, in the producing method for a solid state laser device according to the third aspect, k is set to a value not smaller than 0 and not larger than 3. Accordingly, the optical path length can be easily corrected and the longitudinal mode can be preferably changed to the single mode.
According to the solid state laser device and the producing method for a solid state laser device of the present invention, the longitudinal mode can be preferably changed to the single mode and an output can be stabilized.
The present invention will be described in more detail by way of embodiments shown in the drawings. It is to be understood that the present invention is not limited thereto.
Further, the solid state laser device 100 includes a light receiving element 11, a controller 12, an optical resonator temperature regulator 21, an etalon temperature regulator 22, a first temperature regulator driving circuit 23 and a second temperature regulator driving circuit 24. The light receiving element 11 receives the laser beam taken out by the beam splitter 8. The controller 12 controls the laser diode 1 through the laser diode driving circuit 9 so that a light receiving intensity in the light receiving element 11 is constant. The optical resonator temperature regulator 21 heats or cools the entire part of the optical resonator 7. The etalon temperature regulator 22 heats or cools the etalon 5. The first temperature regulator driving circuit 23 drives the optical resonator temperature regulator 21 under the control of the controller 12. The second temperature regulator driving circuit 24 drives the etalon temperature regulator 22 under the control of the controller 12.
In step S1, the spectrum of the outputted laser beam Lo is measured in a structure having no etalon 5 installed. Then, the central wavelength λ0 of the oscillating line having the wavelength of 1064.2 to 1065.2 nm is obtained. For instance, the spectrum of the second harmonic wave as shown in
In step S2, the spectrum of the outputted laser beam Lo is measured in the structure having the etalon 5 installed. Then, the central wavelength λ1 of the oscillating line having the wavelength of 1064.2 to 1065.2 nm is obtained. For instance, the spectrum of the second harmonic wave as shown by a thick full line in
In step S3, an order of interference m of the etalon 5 relative to a fundamental wave by the oscillating line having the wavelength of 1064.2 to 1065.2 nm is calculated from the refractive index n of the etalon 5, a thickness d, an inserting angle (refractive angle) θ and the central wavelength λ0.
m=2·n·d·cos θ/λ0
In step S4, when a new central wavelength is a target wavelength λ2, assuming that the order of interference of the etalon 5 relative to the fundamental wave of the oscillating line having the wavelength of 1064.2 to 1065.2 nm by the Nd:YAG laser medium 3 is m and an integer not smaller than 0 and not larger than 3 is k, the target wavelength λ2 is obtained from a transmittance Th and the transmitting characteristics of the etalon 5, which satisfies a condition that the oscillating line having the wavelength of 1061.6 to 1062.2 nm by the Nd:YAG laser medium 3 is located within a range having the transmittance Th not higher than 0.9 between the maximum transmittance peak of the order of interference m+k of the etalon 5 and the maximum transmittance peak of the order of interference m+k+1. Specifically, assuming that a reflection factor on the end face of the etalon 5 is R, λ2 satisfying following formulas is obtained.
Th/1−Th≧4·R/(1−R)2·sin2(2·π·n·d·cos θ/λ2−k·λ02/(2·n·d)) [Mathematical Formula 1]
Th/1−Th≧4.R/(1−R)2·sin2(2·π·n·d·cos θ/λ2−(k+1)·λ02/(2·n·d)) [Mathematical Formula 2]
In step S5, corrected thickness Δd is calculated.
Δd=(λ1−λ2)/2·n·cos θ)
In step S6, when the corrected thickness Δd is a suitable value (not excessively small or not excessively large), the procedure advances to step S7. When the corrected thickness Δd is not a suitable value (excessively small or excessively large), the process is finished.
In the step S7, the thickness of the etalon 5 is corrected by the corrected thickness Δd. The etalon 5 is cut by a technique disclosed in, for instance, US2003/0146189A1. Then, the process is finished.
The spectrum of the outputted laser beam Lo of the solid state laser device 100 having a structure that the corrected etalon 5 is installed is illustrated in
When the order of interference of the maximum transmittance peak corresponding to the main oscillating line having the wavelength of 1064.2 to 1065.2 nm is m, a secondary oscillating line having the wavelength of 1061.6 to 1062.2 nm corresponds to a minimum transmittance peak between an order of interference m+2 and an order of interference m+3, so that a secondary peak of the wavelength of 530.8 to 531.1 nm does not appear in the outputted laser beam Lo. Further, a secondary peak of the wavelength of 531.4 to 531.8 nm does nto appear. That is, the longitudinal mode can be preferably changed to the single mode and a stable output can be obtained.
Now, the grounds of the above-described “Mathematical Formula 1” and the “Mathematical Formula 2” are described below.
As shown by a thin dotted line in
Further, as shown by a thin broken line in
Further, as shown by a thick full line in
A thick broken line in
The solid state laser device and the method for producing the solid state laser device can according to the present invention can be utilized in a bio-engineering field or a measurement field.
Number | Date | Country | Kind |
---|---|---|---|
2005-114045 | Apr 2005 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
5502738 | Hyuga | Mar 1996 | A |
5506860 | Hyuga et al. | Apr 1996 | A |
5657341 | Hyuga | Aug 1997 | A |
5768304 | Goto | Jun 1998 | A |
6028869 | Harada et al. | Feb 2000 | A |
6130900 | Black et al. | Oct 2000 | A |
6584129 | Hyuga et al. | Jun 2003 | B2 |
6665321 | Sochava et al. | Dec 2003 | B1 |
6763047 | Daiber et al. | Jul 2004 | B2 |
20030146189 | Tateno et al. | Aug 2003 | A1 |
Number | Date | Country | |
---|---|---|---|
20060227819 A1 | Oct 2006 | US |