This application claims the benefit of Taiwan application Serial No. 100140434, filed Nov. 4, 2011, the subject matter of which is incorporated herein by reference.
1. Field of the Invention
The invention relates in general to a semiconductor device, and more particularly to a solid state light emitting semiconductor device.
2. Description of the Related Art
The light-emitting diode (LED) emits a light by converting electric energy into photo energy. The LED is mainly composed of semiconductors. Of the semiconductors, those having a larger ratio of holes carrying positive electricity are referred as P type semiconductors, and those having a larger ratio of electrons carrying negative electricity are referred as N type semiconductors. The joint connecting a P type semiconductor and an N type semiconductor forms a PN junction. When a voltage is applied to the positive polarity and negative polarity of an LED, the electrons and the holes will be combined and emitted in the form of light.
In addition, the luminous intensity of LED is related to the current density of a voltage applied thereto. In general, the luminous intensity increases with the increase in the current density. However, it is not easy to increase the light extraction efficiency and at the same time make the current uniformly diffused. In a conventional method, the current can be uniformly diffused by extending the electrodes. By doing so, the light emitting area is reduced and the luminous intensity deteriorates accordingly. Conversely, if the luminous intensity is increased by reducing the light blocking area of the electrodes, the current cannot be diffused uniformly and the effect of heat concentration will be worsened. Therefore, how to make the current density uniformly distributed without affecting the luminous intensity has become a prominent task for the industries.
The invention is directed to a solid state light emitting semiconductor device capable of reducing the light blocking area for the electrode and uniformly diffusing the current so as to increase the luminous intensity for the light emitting semiconductor device.
According to an embodiment of the present invention, a solid state light emitting semiconductor device including a substrate, a mesa epitaxy stacking structure, an insulating layer, a first type electrode and a second type electrode is provided. The mesa epitaxy stacking structure is formed on the substrate. The mesa epitaxy stacking structure includes a first type semiconductor layer, an active layer and a second type semiconductor layer which are arranged in order from the substrate, wherein a portion of surface of the first type semiconductor is exposed around the mesa epitaxy stacking structure, and a concave area is formed in the middle of the mesa epitaxy stacking structure to expose a portion of the first type semiconductor layer. The insulating layer covers the exposed surface of the first type semiconductor layer around the mesa epitaxy structure, sidewalls of the mesa epitaxy stacking structure and a portion of surface of the second type semiconductor layer. The first type electrode is located on the exposed first type semiconductor layer in the concave area. The second type electrode is located on the insulating layer around the mesa epitaxy stacking structure, so that the first type electrode is surrounded by the second type electrode.
The above and other aspects of the invention will become better understood with regard to the following detailed description of the preferred but non-limiting embodiments. The following description is made with reference to the accompanying drawings.
The solid state light emitting semiconductor device of the present embodiment transmits the current to the mesa epitaxy stacking structure with a strip-shaped first type electrode and a second type electrode surrounding the first type electrode for uniformly diffusing the current, so as to resolve the problem of current crowding or non-uniform density, and further increase the internal quantum efficiency and light extraction efficiency of the light emitting semiconductor device. Since the light blocking area of the second type electrode is reduced to minimum, the light emitting area is increased and the luminous intensity of the light emitting semiconductor device is improved accordingly.
A number of embodiments are disclosed below for elaborating the invention. However, the embodiments of the invention are for detailed descriptions only, not for limiting the scope of protection of the invention.
Referring to FIGS. 1 and 2A˜2C.
The solid state light emitting semiconductor device 10 includes a substrate 100, a mesa epitaxy stacking structure 110, an insulating layer 120, a transparent conductive layer 122, a first type electrode 130 (referring to
In the present embodiment, a mesa structure is formed around the mesa epitaxy stacking structure 110 to expose a portion of the surface of the first type semiconductor layer 112. A concave area is formed in the middle 111 (referring to
Moreover, the insulating layer 120 covers the exposed surface of first type semiconductor layer 112 around the mesa epitaxy stacking structure 110, the sidewall 113 of the mesa epitaxy stacking structure 110 and a portion of the surface of the second type semiconductor layer 116. The insulating layer 120 may be formed by an oxide containing silicon (SiOx) such as silicon dioxide or a nitride containing silicon (SiNx) such as silicon nitride, so that the first type semiconductor layer 112, the second type semiconductor layer 116 and the second type electrode 140 are electrically isolated from each other. In addition, a transparent conductive layer 122 may be disposed between the second type electrode 140 and the second type semiconductor layer 116 for electrically connecting the second type electrode 140 and the second type semiconductor layer 116. Details of the manufacturing process of the insulating layer 120 and the transparent conductive layer 122 are disclosed with accompanying drawings
As indicated in
Referring to
Besides, the second type electrode 140 includes a second pad 142, a second extension portion 143 and a third extension portion 144. As indicated in
As indicated in
As indicated in
In the present embodiment, the third direction D3 and the fifth direction D5 are respectively opposite to the first direction D1 by 180 degrees. The second direction D2 and the fourth direction D4 are opposite to each other by 180 degrees and are respectively perpendicular to the third direction D3 and the fifth direction D5. Therefore, the first type electrode 130 located on the concave area 111 is surrounded by the second extension portion 143 and the third extension portion 144 of the second type electrode 140 to improve the non-uniform distribution of the current. Since the light blocking area of the second type electrode 140 is reduced, the luminous intensity of the light emitting semiconductor element 10 is thus increased.
Furthermore, to make the current uniformly distributed, the second extension segment 143b and the fourth extension segment 144b of the second type electrode 140 respectively include multiple first finger portion structures 146a and multiple second finger portion structures 146b extended towards the first type electrode 130. In the present embodiment, the first and the second finger portion structures 146a and 146b are respectively perpendicular to the second and the fourth extension segments 143b and 144b. Since the first finger portion structures 146a and the second finger portion structures 146b are distributed like branches, the current can thus be uniformly diffused inwardly via the branches. In addition, the branch distribution makes the light blocking area of the second type electrode 140 minimized, so that the light emitting area is increased and the luminous intensity is improved accordingly.
A method of manufacturing a solid state light emitting semiconductor device is disclosed below.
Referring to
While the invention has been described by way of example and in terms of the preferred embodiment(s), it is to be understood that the invention is not limited thereto. On the contrary, it is intended to cover various modifications and similar arrangements and procedures, and the scope of the appended claims therefore should be accorded the broadest interpretation so as to encompass all such modifications and similar arrangements and procedures.
Number | Date | Country | Kind |
---|---|---|---|
100140434 | Nov 2011 | TW | national |