The present invention relates to systems for providing light to induce curing, hardening, and/or polymerization of monomeric, oligomeric or polymeric materials. Photocuring applications include, by way of example only, dentistry, coatings, imaging, inks, manufacturing, plastic, electronics, and packaging.
Photocuring systems have been developed in which visible and/or ultraviolet light is used to induce curing, hardening, and/or polymerization of monomeric, oligomeric or polymeric materials. Generally speaking, a photocurable resin/adhesive includes a photoinitiator responsible for initiating free-radical polymerization of the resin. The resin remains in a liquid/workable condition until polymerization is initiated. In order to initiate polymerization, light source is used to provide light of a wavelength suitable for absorption by the photo initiator. The photoinitiator enters an excited state upon absorption of photons of the correct wavelength inducing the creation of free-radicals. The free-radicals induce curing, hardening, and/or polymerization of monomeric, oligomeric or polymeric resin/adhesive.
Light energy is typically provided by one of four types of curing lights: quartz-tungsten-halogen (QTH), arc lamps, light-emitting diode (LED), arc lamps, and argon laser. Both QTH and arc lamps have broad emission spectra suitable for initiating polymerization in a broad range of resins. However, QTH and arc lamps also emit a great deal of heat/infrared. The heat/infrared output is reduced utilizing filters which may also be used to select output wavelengths suitable for particular photoinitiators. The large heat output however requires the QTH and arc lamp systems to have substantial thermal management systems and also reduces the life span of the lamps such that costly replacement parts are required. Moreover, both QTH and arc lamps have significant warm-up periods before spectral output is stable. Thus, in practice the lamps must be kept running continuously while light output is controlled using a shutter. This further reduces the effective lifespan of the lights.
Argon laser systems can be used to provide light for photocuring applications. The light output is coherent and can thus be used to generate high intensity illumination with photons of a selected wavelength. However, the emission spectra of the Argon laser is very narrow and may not be compatible with some photocurable resins. Moreover, Argon laser systems are expensive and have significant thermal regulation requirements
LEDs (light-emitting diodes) have matured significantly within the last decades. LEDs emit light in specific wavelengths and generate much less heat relative to arc and QTH lamps thereby providing for longer lifespan, easy switching, consistent output and lower power consumption. However LEDs presents trade-offs with respect to emission wavelength dependent intensity, broad emission spectrum (spectral half width on the order of 30 nm or more), poor spectral stability, and the wide angular range of emission. The narrow band emission may not be compatible with some photocurable resins. In addition, the process used to manufacture LED's cannot tightly control their spectral stability; anyone wishing to use LED's in applications requiring a good spectral stability typically works directly with a supplier to essentially hand-pick the LED's for the particular application. Moreover the spectral output of an LED varies with temperature. Also, LED's emit light over a wide angular range (50% of light intensity emitted at) 70°). While optics can narrow the emission band and focus the light output, the resulting loss in power and increase in thermal output further complicates the use of LEDs for photocuring. Thus, it can be difficult to provide sufficient light at a wavelength suitable for exciting a particular photoinitiator.
While lighting manufacturers cannot provide all things to all applications, it is precisely this breadth of demand for which a light engine can be designed. To that end, products are not simple sources, but rather light engines, sources and all the ancillary components required to provide pure, powerful, light to the sample or as close to it as mechanically possible. A qualitative comparison of light engine performance as a function of source technology is summarized in Table I.
A wide range of photoinitiators are available. To initiate polymerization it is essential to provide sufficient light energy at a wavelength which can be absorbed by a selected photoinitiator. However, each photoinitiator has a particular absorption spectra. Additionally, the light energy may have to pass through the resin and other materials in order to reach the photoinitiator. Resins incorporating a photoinitiator can affect transmission and absorption of light in different ways. Accordingly, it may be difficult to ensure sufficient light energy is provided at a wavelength suitable for exciting the photoinitiator. Without proper absorption, free radical polymerization may not occur uniformly throughout the resin. Moreover, where narrow band light sources, such as LEDs, are used the wavelength provided will not be suitable for exciting all photoinitiators in all compositions and manufacturing environments.
Accordingly it would be desirable to provide an LED light source for photocuring that overcomes limitations of the prior art.
The present invention provides an LED light engine system suitable for photocuring. The LED light engine system is a compact, passively cooled, durable, inexpensive solid state lighting solution, uniquely well suited to the production of light for photocuring. In an embodiment of the invention, this light engine can provide powerful, stable, inexpensive light across a range of wavelengths suitable for photocuring. The LED light engine system is designed to directly replace the entire configuration of light management components with a single, simple unit. Power, spectral breadth and purity, stability and reliability data demonstrates the advantages of the LED light engine system for photocuring applications. Performance and cost analyses are superior to traditional optical subsystems based on QTH, arc lamps, and lasers. Moreover the LED light engine has relatively small footprint, and low heat output such that it has lower power requirements and no need for moving parts—such as a fan.
In an embodiment, the present invention provides a compact passively-cooled solid state illumination system usable as a replacement for conventional arc light, metal halide and Xenon white-light sources for photocuring applications. The solid state illumination system utilizes LED modules to generate high intensity light output suitable for photocuring. The light output is continuous in the visible spectrum from 380 nm to 530 nm and is suitable for photocuring using a wide range of photoinitiators. A touchscreen interface allows programming of spectral output, intensity and duration. Output can be initiated using the touchscreen interface and/or a foot pedal.
Embodiments of the present invention are directed to an LED light engine system suitable for use as a replacement for conventional QTH and arc light photocuring lamps. In particular embodiments, the LED light engine generates a broad band of wavelengths between 380 nm and 530 nm suitable for exciting a wide range of photoinitiators.
Another embodiment of the present invention relates to an improved system for cooling the LED modules of the LED light engine system which reduces contamination of the LED modules and optical pathway from cooling airflow. The system includes means for conductive transmission of heat away from LED modules to a remote heat sink which is passively cooled.
Other objects and advantages of the present invention will become apparent to those skilled in the art from the following description of the various embodiments, when read in light of the accompanying drawings.
Various embodiments of the present invention can be described in detail based on the following figures.
In the figures common reference numerals are used to indicate like elements throughout the drawings and detailed description; therefore, reference numerals used in a drawing may or may not be referenced in the detailed description specific to such drawing if the associated element is described elsewhere. The first digit in a three digit reference numeral indicates the series of figures in which the referenced item first appears. Likewise the first two digits in a four digit reference numeral.
LED Light Engine System for Photocuring
While no one lighting solution can best satisfy all instrument architectures, an LED light engine according to an embodiment of the invention combines the best of solid state technologies to meet or outperform the traditional technologies listed in Table I on the basis of all figures of merit across all wavelengths desired for photocuring. In an embodiment of the invention, an LED light engine can emit light exceeding 500 mW/color with intensifies up to 10 W/cm2 at wavelength suitable for photocuring. The present invention offers a smart alternative for light generation. The capabilities of the LED light engine are highlighted in Table II. The high performance illumination provided by the LED light engine is embodied in a single compact unit designed to replace the entire ensemble of lighting components. The sources, excitation filters, multicolor switching capabilities and fast pulsing are contained within one box with a small footprint such that no external optics or mechanics are required.
In various embodiments of the present invention, an LED light engine includes LED modules having light emitting diodes which emit wavelengths of light, which suitable for exciting a range of photoinitiators. The LEDs operate through the process of spontaneous emission, which results in a much larger selection of available wavelengths than is available for efficient stimulated emission (laser action). The outputs of LED modules each including LEDs which emit one or more color of light are combined using optics into a single output to produce multiple colors simultaneously or in sequence. The LED modules can be illuminated continuously, can be controlled in intensity, and can be pulsed on and off rapidly as necessary or desired to excite the photoinitiator in a particular application. The LED modules can be switched off between uses to eliminate the heat output. This can be contrasted with alternatives such as QTH lamps, arc lamps, and lasers which are unstable unless they are operated continuously.
Because of the solid state nature and independently operable designs of the LED modules, coupled to fast (approximately 10 ns) decay times of typical materials employed, an LED light engine outperforms any broad spectrum source in terms of support for switching control. QTH and arc lamp based sources are coupled to filters and/or shutters with mechanical supports that relegate them to 1 to 50 millisecond regimes and require continuous operation of the lamp. The LED light engine incorporates all that capability into its highly integrated design. Therefore switching times are limited today by the electronics of the boards controlling the sources. Rise times of less than 20 μs and fall times of less than 2 μs are can be achieved. Moreover each color can be switched independently and is compatible with triggering by TTL, RS232 and USB and intensity control by RS232, USB or manually.
Using an LED light engine, effectively instantaneous excitation of photointiators can be performed to achieve desired curing effects with no external hardware beyond the light engine itself. Moreover, because the LED light engine is based on solid state technologies, they are extremely stable both in short duration experiments and over long term use. The LED light engine is powered by 24 V power supplies operated in DC mode, therefore there is no 60 Hz noise. All colors perform similarly. In 24 hours of continuous operation, the output fluctuates on the order of 1%. Short term stability on the order of 1.0 ms is approximately 0.5%. Short term stability for 0.1 ms is diminished by a factor of ten to 0.05%.
LED light engine 100 has a compact and novel fan-free design. The use of solid state light sources in combination with optimized thermal management allow for cool operation without the use of fans. LED light engine 100 has a long lifetime and is ideal for durable, reproducible, robust curing. A dual interlock system prevents light output from LED light engine 100 both mechanically and electronically when the light guide 102 is removed. The LED light engine 100 has no replaceable parts and no maintenance. Instant warm-up time and superior stability result in highly reproducible optical output power. LED light engine 100 is capable of fast on/off times that can be precisely controlled as well as intensity control. In an embodiment, LED light engine system 110 has the features shown Table III.
As shown in
LED Light Engine For Photocuring
As shown in
As shown in
In an embodiment of the invention, LED light engine 100 includes three LED modules 241, 242, and 243 each generating light of a different peak wavelength (color). The two dichroic mirrors serve 244, 245 color to create a single coaxial 3-color beam. In an embodiment the LED modules 241, 242, and 243 generate violet (405 nm), blue (440 nm), and cyan (485 nm) light. In a preferred embodiment, the output beam is substantially continuous over the spectrum of 380 nm-530 nm such that it is suitable for exciting a wide range of photoinitiators. Each individual LED light source is collimated so as to be efficiently combined by dichroic mirrors 244, 245 and after combination, the single coaxial beam is refocused by output optics 256 into a light guide for transport to the device or system to be illuminated. Additional or different colors can be used by replacing one or more of LED modules 241, 242, and 243. For example, UV light LED module including UV LEDS in place of or in addition to the violet LED module.
The cooling requirements for a solid state illumination system are substantially different than that for an incandescent light source. Incandescent lights typically release 90% or so of the heat they generate to their environment through radiation in the infrared and less than 10% through conduction. In comparison, LEDs typically release 90% or so of the heat they generate to their environment through conduction and less than 10% through conduction. Thermal dissipation is a key factor that limits the power output of an LED light source. Even though LEDs bulbs are considerably more efficient at converting electrical energy into light than incandescent light sources, but the LED components and the driver electronics can still create a considerable amount of heat. If this heat is not dissipated properly, the LED's quality of light, emission spectra, and life expectancy decrease dramatically. Thus, it is important in a solid state illumination system relying on LEDs to provide an effective solution for conductive cooling of the LEDs. Platform 230 provides both for mounting of LED modules 241, 242, and 243 as well as thermal regulation as described below.
As previously described cooling air is not circulated in the left portion of the housing. However, the LED modules 241, 242, and 243 generate heat during operation. This heat must be removed such that the temperature of the solid state light sources is maintained at a desired level. In prior devices, the individual solid state light sources were provided with individual finned heat sinks and air was passed over the heat sinks using a common or individual fan to remove heat—however, this cooling system allowed for the entry of dust and/or other contaminants into the light sources and onto the optical components. The dust and/or other contaminants could cause a number of problems including: reduction in optical efficiency, scattering of light within the housing, burning, and burning odor. In the LED light engine 100 shown in
The LED modules 241, 242, 243 are controlled by the controller board 240 either together or individually to control the spectral content of the output beam. In embodiments of the invention, three LED modules 241, 242, 243 produce spectral components centered on colors violet 405 nm, blue 425-460 nm, and cyan 460-500 nm. All the and three LED modules 241, 242, 243 can be turned on at the same time such that the different colors are combined to create a substantially continuous spectrum over the range 380 nm-530 nm.
In the control system embodiment shown in
LED Module For Photocuring System
Referring again to
Output Optics for Photocuring System
As shown in
As shown in
The foregoing description of the various embodiments of the present invention has been provided for the purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise forms disclosed. Many modifications and variations will be apparent to the practitioner skilled in the art. Embodiments were chosen and described in order to best describe the principles of the invention and its practical application, thereby enabling others skilled in the art to understand the invention, the various embodiments and with various modifications that are suited to the particular use contemplated. Other features, aspects and objects of the invention can be obtained from a review of the figures and the claims. It is to be understood that other embodiments of the invention can be developed and fall within the spirit and scope of the invention and claims.
The present application claims priority to U.S. Provisional Patent Application entitled “Solid State Light Source For Photocuring” Application No. 61/660,386, filed on Jun. 15, 2012 which application is incorporated herein by reference. The present application is related to the following patents and patent applications which are incorporated herein by reference in their entireties: U.S. Pat. No. 7,846,391, granted Dec. 7, 2010, entitled “Bioanalytical Instrumentation Using A Light Source Subsystem,” U.S. Publication No. 2007/0281322 filed May 21, 2007; U.S. Pat. No. 7,709,811, granted May 4, 2010 entitled “Light Emitting Diode Illumination System,” U.S. Publication No. 2009/0008573 filed Jul. 2, 2008; U.S. Pat. No. 8,098,375, granted Jan. 17, 2012 entitled “Light Emitting Diode Illumination System,” U.S. Publication No. 2009/0040523 filed Aug. 5, 2008; U.S. patent application Ser. No. 13/012,658, filed Jan. 24, 2011 entitled “Light Emitting Diode Illumination System,” U.S. Publication No. 2011/0116261; and U.S. patent application Ser. No. 12/691,601, now U.S. Pat. No. 8,242,462, granted Aug. 14, 2012, entitled “Lighting Design of High Quality Biomedical Devices,” U.S. Publication No. 2010/0187440 filed Jan. 21, 2010.
Number | Name | Date | Kind |
---|---|---|---|
1998054 | McBurney | Apr 1935 | A |
3313337 | Bernat | Apr 1967 | A |
3637285 | Stewart | Jan 1972 | A |
3759604 | Thelen | Sep 1973 | A |
3881800 | Friesem | May 1975 | A |
3982151 | Ludovici | Sep 1976 | A |
4003080 | Maiman | Jan 1977 | A |
4298820 | Bongers | Nov 1981 | A |
4371897 | Kramer | Feb 1983 | A |
4510555 | Mori | Apr 1985 | A |
4539687 | Gordon | Sep 1985 | A |
4602281 | Nagasaki et al. | Jul 1986 | A |
4626068 | Caldwell | Dec 1986 | A |
4642695 | Iwasaki | Feb 1987 | A |
4644141 | Hagen | Feb 1987 | A |
4657013 | Hoerenz et al. | Apr 1987 | A |
4695332 | Gordon | Sep 1987 | A |
4695732 | Ward | Sep 1987 | A |
4695762 | Berkstresser | Sep 1987 | A |
4713577 | Gualtieri | Dec 1987 | A |
4724356 | Daehler | Feb 1988 | A |
4798994 | Rijpers | Jan 1989 | A |
4804850 | Norrish et al. | Feb 1989 | A |
4852985 | Fujihara et al. | Aug 1989 | A |
4937661 | Van der Voort | Jun 1990 | A |
4995043 | Kuwata | Feb 1991 | A |
5052016 | Mahbobzadeh | Sep 1991 | A |
5089860 | Deppe | Feb 1992 | A |
5109463 | Lee | Apr 1992 | A |
5126626 | Iwasaki | Jun 1992 | A |
5128846 | Mills et al. | Jul 1992 | A |
5137598 | Thomas | Aug 1992 | A |
5193015 | Shanks | Mar 1993 | A |
5200861 | Moskovich | Apr 1993 | A |
5226053 | Cho | Jul 1993 | A |
5231533 | Gonokami | Jul 1993 | A |
5233372 | Matsumoto | Aug 1993 | A |
5249195 | Feldman | Sep 1993 | A |
5285131 | Muller | Feb 1994 | A |
5289018 | Okuda | Feb 1994 | A |
5312535 | Waska | May 1994 | A |
5315128 | Hunt | May 1994 | A |
5332892 | Li et al. | Jul 1994 | A |
5345333 | Greenberg | Sep 1994 | A |
5363398 | Glass | Nov 1994 | A |
5416342 | Edmond et al. | May 1995 | A |
5416617 | Loiseaux | May 1995 | A |
5418584 | Larson | May 1995 | A |
5428476 | Jensen | Jun 1995 | A |
5469018 | Jacobsen | Nov 1995 | A |
5475281 | Heijboer | Dec 1995 | A |
5478658 | Dodabalapur | Dec 1995 | A |
5489771 | Beach et al. | Feb 1996 | A |
5493177 | Muller | Feb 1996 | A |
5500569 | Blomberg | Mar 1996 | A |
5542016 | Kaschke | Jul 1996 | A |
5616986 | Jacobsen | Apr 1997 | A |
5634711 | Kennedy et al. | Jun 1997 | A |
5644676 | Blomberg | Jul 1997 | A |
5658976 | Carpenter | Aug 1997 | A |
5669692 | Thorgersen | Sep 1997 | A |
5671050 | De Groot | Sep 1997 | A |
5674698 | Zarling | Oct 1997 | A |
5690417 | Polidor et al. | Nov 1997 | A |
5715083 | Takayama | Feb 1998 | A |
5719391 | Kain | Feb 1998 | A |
5757014 | Bruno | May 1998 | A |
5781338 | Kapitza et al. | Jul 1998 | A |
5803579 | Turnbull et al. | Sep 1998 | A |
5804919 | Jacobsen | Sep 1998 | A |
5808759 | Okamori et al. | Sep 1998 | A |
5827438 | Blomberg | Oct 1998 | A |
5833827 | Anazawa | Nov 1998 | A |
5858562 | Utsugi | Jan 1999 | A |
5864426 | Songer | Jan 1999 | A |
5942319 | Oyama | Aug 1999 | A |
5955839 | Jaffe | Sep 1999 | A |
5984861 | Crowley | Nov 1999 | A |
6089740 | Forehand et al. | Jul 2000 | A |
6110106 | MacKinnon et al. | Aug 2000 | A |
6154282 | Lilge | Nov 2000 | A |
6198211 | Jaffe | Mar 2001 | B1 |
6200134 | Kovac et al. | Mar 2001 | B1 |
6204971 | Morris | Mar 2001 | B1 |
6222673 | Austin | Apr 2001 | B1 |
6293911 | Imaizumi et al. | Sep 2001 | B1 |
6299338 | Levinson | Oct 2001 | B1 |
6304584 | Krupke | Oct 2001 | B1 |
6366383 | Roeder | Apr 2002 | B1 |
6392341 | Jacobsen | May 2002 | B2 |
6404127 | Jacobsen | Jun 2002 | B2 |
6404495 | Melman | Jun 2002 | B1 |
6422994 | Kaneko et al. | Jul 2002 | B1 |
6444476 | Morgan | Sep 2002 | B1 |
6513962 | Mayshack et al. | Feb 2003 | B1 |
6517213 | Fujita et al. | Feb 2003 | B1 |
6529322 | Jones | Mar 2003 | B1 |
6542231 | Garrett | Apr 2003 | B1 |
6544734 | Briscoe | Apr 2003 | B1 |
6594075 | Kanao et al. | Jul 2003 | B1 |
6608332 | Shimizu | Aug 2003 | B2 |
6614161 | Jacobsen | Sep 2003 | B1 |
6614179 | Shimizu et al. | Sep 2003 | B1 |
6637905 | Ng | Oct 2003 | B1 |
6642652 | Collins | Nov 2003 | B2 |
6649432 | Eilers | Nov 2003 | B1 |
6674575 | Tandler et al. | Jan 2004 | B1 |
6680569 | Mueller-Mach et al. | Jan 2004 | B2 |
6685341 | Ouderkirk et al. | Feb 2004 | B2 |
6690467 | Reel | Feb 2004 | B1 |
6717353 | Mueller | Apr 2004 | B1 |
6747710 | Hall | Jun 2004 | B2 |
6791259 | Stokes et al. | Sep 2004 | B1 |
6791629 | Moskovich | Sep 2004 | B2 |
6795239 | Tandler et al. | Sep 2004 | B2 |
6843590 | Jones | Jan 2005 | B2 |
6869206 | Zimmerman et al. | Mar 2005 | B2 |
6870165 | Amirkhanian | Mar 2005 | B2 |
6926848 | Le Mercier | Aug 2005 | B2 |
6958245 | Seul et al. | Oct 2005 | B2 |
6960872 | Beeson et al. | Nov 2005 | B2 |
6981970 | Karni | Jan 2006 | B2 |
6991358 | Kokogawa | Jan 2006 | B2 |
6995355 | Rains, Jr. et al. | Feb 2006 | B2 |
7009211 | Eilers | Mar 2006 | B2 |
7011421 | Hulse et al. | Mar 2006 | B2 |
7035017 | Tadic-Galeb | Apr 2006 | B2 |
7083610 | Murray et al. | Aug 2006 | B1 |
7141801 | Goodwin | Nov 2006 | B2 |
7153015 | Brukilacchio | Dec 2006 | B2 |
7192161 | Cleaver et al. | Mar 2007 | B1 |
7205048 | Naasani | Apr 2007 | B2 |
7208007 | Nightingale et al. | Apr 2007 | B2 |
7211833 | Slater, Jr. et al. | May 2007 | B2 |
7239449 | Leitel et al. | Jul 2007 | B2 |
7283230 | Ostler et al. | Oct 2007 | B2 |
7300175 | Brukilacchio | Nov 2007 | B2 |
7316497 | Rutherford et al. | Jan 2008 | B2 |
7384797 | Blair | Jun 2008 | B1 |
7416313 | Westphal et al. | Aug 2008 | B2 |
7422356 | Hama et al. | Sep 2008 | B2 |
7427146 | Conner | Sep 2008 | B2 |
7445340 | Conner | Nov 2008 | B2 |
7467885 | Grotsch et al. | Dec 2008 | B2 |
7488088 | Brukilacchio | Feb 2009 | B2 |
7488101 | Brukilacchio | Feb 2009 | B2 |
7498734 | Suehiro et al. | Mar 2009 | B2 |
7540616 | Conner | Jun 2009 | B2 |
7595513 | Plank et al. | Sep 2009 | B2 |
7633093 | Blonder et al. | Dec 2009 | B2 |
7709811 | Conner | May 2010 | B2 |
7746560 | Yamazaki | Jun 2010 | B2 |
7802910 | Middlemass et al. | Sep 2010 | B2 |
7832878 | Brukilacchio | Nov 2010 | B2 |
7837348 | Narendran et al. | Nov 2010 | B2 |
7846391 | Jaffe et al. | Dec 2010 | B2 |
7854514 | Conner | Dec 2010 | B2 |
7857457 | Rutherford et al. | Dec 2010 | B2 |
7898665 | Brukilacchio et al. | Mar 2011 | B2 |
7922346 | Katsuda et al. | Apr 2011 | B2 |
7976307 | Plank et al. | Jul 2011 | B2 |
8029142 | Conner | Oct 2011 | B2 |
8098375 | Brukilacchio | Jan 2012 | B2 |
8231383 | Gill et al. | Jul 2012 | B2 |
8242462 | Jaffe et al. | Aug 2012 | B2 |
8258487 | Jaffe et al. | Sep 2012 | B1 |
8263949 | Jaffe et al. | Sep 2012 | B2 |
8279442 | Brukilacchio et al. | Oct 2012 | B2 |
8309940 | Jaffe et al. | Nov 2012 | B2 |
8389957 | Jaffe et al. | Mar 2013 | B2 |
8466436 | Jaffe et al. | Jun 2013 | B2 |
8493564 | Brukilacchio et al. | Jul 2013 | B2 |
8992042 | Eichenholz | Mar 2015 | B2 |
20010038992 | Otsuka | Nov 2001 | A1 |
20010055208 | Kimura | Dec 2001 | A1 |
20020109844 | Christel et al. | Aug 2002 | A1 |
20020127224 | Chen | Sep 2002 | A1 |
20030007087 | Hakamata et al. | Jan 2003 | A1 |
20030044160 | Jonese et al. | Mar 2003 | A1 |
20030095401 | Hanson et al. | May 2003 | A1 |
20030127609 | El-Hage et al. | Jul 2003 | A1 |
20030160151 | Zarate et al. | Aug 2003 | A1 |
20030230728 | Dai | Dec 2003 | A1 |
20030233138 | Spooner | Dec 2003 | A1 |
20040090600 | Blei | May 2004 | A1 |
20040090794 | Ollett et al. | May 2004 | A1 |
20040247861 | Naasani | Dec 2004 | A1 |
20040264185 | Grotsch et al. | Dec 2004 | A1 |
20050062404 | Jones et al. | Mar 2005 | A1 |
20050116635 | Walson et al. | Jun 2005 | A1 |
20050146652 | Yokoyama et al. | Jul 2005 | A1 |
20050152029 | Endo | Jul 2005 | A1 |
20050184651 | Cheng | Aug 2005 | A1 |
20050201899 | Weisbuch | Sep 2005 | A1 |
20050248839 | Yamaguchi | Nov 2005 | A1 |
20050260676 | Chandler | Nov 2005 | A1 |
20050263679 | Fan | Dec 2005 | A1 |
20060002131 | Schultz et al. | Jan 2006 | A1 |
20060030026 | Garcia | Feb 2006 | A1 |
20060060872 | Edmond et al. | Mar 2006 | A1 |
20060060879 | Edmond | Mar 2006 | A1 |
20060114960 | Snee | Jun 2006 | A1 |
20060170931 | Guo | Aug 2006 | A1 |
20060237658 | Waluszko | Oct 2006 | A1 |
20060282137 | Nightingale et al. | Dec 2006 | A1 |
20070009210 | Hulse | Jan 2007 | A1 |
20070053184 | Brukilacchio | Mar 2007 | A1 |
20070053200 | Brukilacchio | Mar 2007 | A1 |
20070058389 | Brukilacchio | Mar 2007 | A1 |
20070064202 | Moffat et al. | Mar 2007 | A1 |
20070086006 | Ebersole et al. | Apr 2007 | A1 |
20070126017 | Krames et al. | Jun 2007 | A1 |
20070211460 | Ravkin | Sep 2007 | A1 |
20070253733 | Fey | Nov 2007 | A1 |
20070262731 | Jaffar et al. | Nov 2007 | A1 |
20070279914 | Rutherford et al. | Dec 2007 | A1 |
20070279915 | Rutherford et al. | Dec 2007 | A1 |
20070280622 | Rutherford et al. | Dec 2007 | A1 |
20070281322 | Jaffe et al. | Dec 2007 | A1 |
20070284513 | Fan | Dec 2007 | A1 |
20070297049 | Schadwinkel et al. | Dec 2007 | A1 |
20080079910 | Rutherford et al. | Apr 2008 | A1 |
20080224024 | Ashdown | Sep 2008 | A1 |
20080291446 | Smith | Nov 2008 | A1 |
20090122533 | Brukilacchio | May 2009 | A1 |
20090196046 | Rutherford et al. | Aug 2009 | A1 |
20090268461 | Deak et al. | Oct 2009 | A1 |
20100188017 | Brukilacchio | Jul 2010 | A1 |
20110044858 | Jaffe et al. | Feb 2011 | A1 |
20120106192 | Brukilacchio | May 2012 | A1 |
20120181936 | Jaffe et al. | Jul 2012 | A1 |
20120181937 | Jaffe et al. | Jul 2012 | A1 |
20120238472 | Jaffe et al. | Sep 2012 | A1 |
20120252704 | Jaffe et al. | Oct 2012 | A1 |
20120307514 | Brukilacchio et al. | Dec 2012 | A1 |
20130052607 | Gersh et al. | Feb 2013 | A1 |
20130099135 | Jaffe et al. | Apr 2013 | A1 |
20130188331 | Jaffe et al. | Jul 2013 | A1 |
20130188383 | Jaffe et al. | Jul 2013 | A1 |
20130188384 | Jaffe et al. | Jul 2013 | A1 |
20130188388 | Jaffe et al. | Jul 2013 | A1 |
Number | Date | Country |
---|---|---|
2 280 398 | Apr 2000 | CA |
1 426 807 | Dec 2003 | EP |
0943756 | Dec 1963 | GB |
2 000 173 | Jan 1979 | GB |
02-804873 | Jul 1998 | JP |
2005-195485 | Jul 2005 | JP |
2005-243973 | Sep 2005 | JP |
2006-049814 | Feb 2006 | JP |
2007-133435 | May 2007 | JP |
2008139796 | Jun 2008 | JP |
20-1999-0041018 | Dec 1999 | KR |
10-2006-0055934 | May 2006 | KR |
10-2006-0089104 | Aug 2006 | KR |
WO 02080577 | Oct 2002 | WO |
WO 2004114053 | Dec 2004 | WO |
WO 2006067885 | Jun 2006 | WO |
WO 2006120586 | Nov 2006 | WO |
Entry |
---|
International Search Report dated Dec. 31, 2008, Application No. PCT/US2008/072394, 10 pages. |
International Search Report for PCT/US2010021843 dated Aug. 19, 2010, 9 pages. |
Extended European Search Report for PCT/US2008072394 dated Oct. 7, 2011, 9 pages. |
International Search Report dated Jun. 19, 2012 for Application No. PCT/US2011/063030, 11 pages. |
Extended European Search Report for PCT/US2007/069490 dated Oct. 26, 2012, 8 pages. |
International Search Report dated Jun. 3, 2013 for Application No. PCT/US2013/029931, 11 pages. |
Albrecht, M., et al., “Scintillators and Wavelength Shifters for the Detection of Ionizing Radiation,” Astroparticle, Particle and Space Physics, Detectors and Medical Physics Applications, ICATPP-8, M. Barone, et al., Eds, World Scientific, pp. 502-511 (2004). |
Da-Lite Screen Company, Inc., www.da-lite.com, 46 pages website downloads as of Oct. 8, 1998. |
DDS™ Rear Projection Screens, LORS™ Reflection Screens, ©1998 Physical Optics Corporation, Torrance, CA, 2 pages. |
Deck, L., et al., “Two color light-emitting-diode source for high precision phase-shifting interferometry”, Optics Letters, vol. 18, No. 22, Nov. 15, 1993, pp. 1899-1901. |
Depp, S.W., et al., “Flat Panel Displays,” Scientific American, pp. 90-97, Mar. 1993. |
Flor-Henry, M., et al., “Use of a Highly Sensitive Two-Dimensional Luminescence Imaging System to Monitor Endogenous Bioluminescence in Plant Leaves,” BMC Plant Biology, vol. 4, No. 19, Nov. 2004. |
Hamberg, I. and Granqvist, C.G., “Evaporated Sn-doped In2O3 films: Basic optical properties and applications to energy-efficient windows,” Journal of Applied Physics, vol. 60, No. 11, pp. R123-R159, Dec. 1, 1986. |
Handbook of Optics, vol. 1—Fundamentals, Techniques, and Design, Second Edition, Chapter 42: Optical Properties of Films and Coatings, J.A. Dobrowolski, pp. 42.3-42.25, McGraw-Hill, Inc., © 1995. |
Haroche, S., et al., “Cavity Quantum Electrodynamics,” Scientific American, pp. 54-62, Apr. 1993. |
Hecht, Jeff, “Diverse fiberoptic systems require varied sources,” Laser Focus World, vol. 36, No. 1, pp. 155-161, Jan. 2000. |
Hemingway, D.J. and Lissberger, P.H., “Effective Refractive Indices of Metal-Dielectric Interference Filters,” Applied Optics, vol. 6, No. 3, pp. 471-476, Mar. 1967. |
Hinds, E.A., “Spectroscopy of Atoms in a Micron-Sized Cavity,” (date and periodical title unknown), pp. 18-19. |
Holloway, R.J. and Lissberger, P.H., “The Design and Preparation of Induced Transmission Filters,” Applied Optics, vol. 8, No. 3, pp. 653-660, Mar. 1969. |
Huo, D.T.C., et al., “Reticulated Single-Crystal Luminescent Screen,” J. Electrochem. Soc., vol. 133, No. 7, pp. 1492-1497, Jul. 1986. |
Jenmar Visual Systems, Sunnyvale, CA, 4 pages, no date, but at least as early as Oct. 15, 1998. |
Landau, B.V. and Lissberger, P.H., “Theory of Induced-Transmission Filters in Terms of the Concept of Equivalent Layers,” Journal of the Optical Society of America, vol. 62, No. 11, pp. 1258-1264, Nov. 1972. |
Launer, Herbert F., “Exposure Meter for Precision Light Dosage”, The Review of Scientific Instruments, vol. 20, No. 2, Feb. 1949, pp. 103-109. |
Lissberger, P.H., “Coatings with Induced Transmission,” Applied Optics, vol. 20, No. 1, pp. 95-103, Jan. 1, 1981. |
Mauch, R.H., et al., “Optical Behaviour of Electroluminescent Devices,” Springer Proceedings in Physics, vol. 38, Electroluminescence, © Springer-Verlag Berlin, Heidelberg, pp. 291-295 (1989). |
Morgan, C. G., et al., “New Approaches to Lifetime-Resolved Luminescence Imaging”, Journal of Fluorescence, vol. 7, No. 1, 1997, pp. 65-73. |
Pelletier, E. and Macleod, H.A., “Interference Filters with Multiple Peaks,” Journal of the Optical Society of America, vol. 72, No. 6, pp. 683-687, Jun. 1982. |
Plasma Display Manufacturers of the American Display Consortium, “Recommended Research Topics on Plasma Display for the DARPA Sponsored Phosphor Center of Excellence,” pp. 1-2, Mar. 24, 1993. |
Poelman, D., et al., “Spectral Shifts in Thin Film Electroluminescent Devices: An Interference Effect,” J. Phys. D: Appl. Phys., vol. 25, pp. 1010-1013 (1992). |
Schott Glass Technologies, Inc., Schott Total Customer Care, Contrast Enhancement Filters, Duryea, PA, 6 pages, Jan. 1998. |
Schubert, E.F., et al., “Giant Enhancement of Luminescence Intensity in Er-doped Si/SiO2 Resonant Cavities,” Appl. Phys. Lett. vol. 61, No. 12, pp. 1381-1383, Sep. 21, 1992. |
Stewart Filmscreen Corporation®, www,stewartfilm.com, 34 pages website downloads as of Oct. 8, 1998. |
Tuenge, R.T., “Current Status of Color TFEL Phosphors,” Electroluminescence—Proceedings of the Sixth International Workshop on Electroluminescence, El Paso, Tex., pp. 173-177, May 1992. |
Vlasenko, N.A., et al., “Interference of Luminescent Emission from an Evaporated Phosphor,” Opt. Spect., vol. 11, pp. 216-219 (1961). |
Vlasenko, N.A., et al., “Investigation of Interference Effects in Thin Electroluminescent ZnS—Mn Films,” Opt. Spect., vol. 28, pp. 68-71 (1970). |
Whitaker, Jerry C., “Electronic Displays: Technology, Design, and Applications,” McGraw-Hill, Inc., pp. 185-192 (1994). |
World Watch, Photonics Spectra, “IR Reflective Coating Boosts Bulb's Output, Recycling of IR Energy Saves Power, Cuts Costs” pp. 40-41, Jan. 1991. |
Yamamoto, Y., et al., “Optical Processes in Microcavities,” Physics Today, pp. 66-73, Jun. 1993. |
Yokoyama, H., “Physics and Device Applications of Optical Microcavities,” Science, vol. 256, pp. 66-70, Apr. 3, 1992. |
Young, L., “Multilayer Interference Filters with Narrow Stop Bands,” Applied Optics, vol. 6, No. 2, pp. 297-312, Feb. 1967. |
International Search Report dated Sep. 4, 2013 for Application No. .PCT/US2013/043134, 11 pages. |
Number | Date | Country | |
---|---|---|---|
20130335992 A1 | Dec 2013 | US |
Number | Date | Country | |
---|---|---|---|
61660386 | Jun 2012 | US |