The energy efficiency of lighting has become an important consideration in industrial, consumer, and architectural lighting applications. With the advances in solid state light technology, light emitting diodes (LEDs) have become more energy efficient than fluorescent lights. Further, the marketplace has a large established fixture base for Edison, fluorescent and high intensity discharge lights. These types of applications present a significant technical challenge for LEDs due to their inherent point source nature, and the need to operate the LEDs at relatively low temperatures. Today there are many solutions addressing these issues, including fans, thermal sinks, heat pipes and the like. However, these approaches limit the applications by adding complexity, cost, efficiency loss, added failure modes, an undesirable form factor, and light distribution. The need remains to find a solution that can provide optical and electrical efficiency benefits, at attractive manufacturing costs and design.
A first solid state light, consistent with the present invention, includes a shell having an interior volume and surface texture, a light section coupled to the shell, and a light source board coupled to the light section. At least one solid state light source is on the light source board and transmits light into the interior volume. At least a portion of the light exits from the shell and is redirected by the texture.
A second solid state light, consistent with the present invention, includes a shell having an interior volume and surface texture, a light section coupled to the shell, and a light source board coupled to the light section. At least one solid state light source is on the light source board at an edge of the shell. The light source transmits light into the edge and into the interior volume. At least a portion of the light exits from the shell and is redirected by the texture.
A third solid state light, consistent with the present invention, includes a shell having an interior volume, a light section coupled to the shell, and a light source board coupled to the light section. A first solid state light source is on the light source board at an edge of the shell, and a second solid state light source is on the light source board within or adjacent the interior volume. The first light source transmits light into the edge, the second light source transmits light into the interior volume, and at least a portion of the light from the first and second light sources exits from the shell.
A fourth solid state light, consistent with the present invention, includes a shell having an interior volume and surface texture, a light section coupled to the shell, a light source board coupled to the light section, and a pedestal heat sink on the light source board. At least one solid state light source is on the pedestal heat sink and transmits light into the interior volume. At least a portion of the light exits from the shell and is redirected by the texture.
The accompanying drawings are incorporated in and constitute a part of this specification and, together with the description, explain the advantages and principles of the invention. In the drawings,
Embodiments of the present invention include an LED light bulb having advanced bulb shells, small-size heat sinks, and various configurations of LEDs or other solid state light sources. The advanced bulb shells can contain surface texture or optical transflective films to control the light distribution from the bulb. The light bulb is equipped with cooling air channels that aid in the dissipation of the heat. The LED light sources can be configured in various ways, and the lights can include various features, to optimize the performance and light distribution curve of the light bulb.
Examples of solid state lights are described in the following, all of which are incorporated herein by reference as if fully set forth: U.S. Pat. No. 8,487,518; and U.S. Patent Applications Publication Nos. 2012/0194054 and 2011/0032708.
A light section 16 includes a ridge 17, a ridge 18, and one or more apertures (vents) 19. Ridge 17 provides support for the shell at the edge formed by first and second surfaces 11 and 15 when upper and lower portions 12 and 14 are mated together. Ridge 18 provides support for a light source board 22. Light section 16 also includes a base portion 20. A base 21 is attached to base portion 20 and provides for connection to a power source.
Light source board 22 includes solid state light sources 25 and a driver 24 for controlling the light sources. Light source board 22 also includes one or more apertures (vents) 26, which provide for air flow between light section 16 and the interior volume of the shell when light source board 22 is mounted on ridge 18. Apertures 26 also provide for air flow between apertures 13 and 19 such that air flow is provided through the light for cooling the light. Air flow is also provided through the light by apertures 13 providing for air flow into and out of the interior volume of the shell and apertures 19 providing for air flow into and out of light section 16. Light sources 25 transmit light into the interior volume of the shell and through the shell such that at least a portion of the light is distributed from the first surface to provide for illumination from the light.
Light 10 can optionally include a light mixing chamber 27 over light sources 25. For example, light mixing chamber 27 can be implemented with a transparent or translucent dome-shaped covering over light sources 25 to provide light mixing before the light from light sources 25 is transmitted through the interior volume to the shell. Light mixing chamber 27 can include texture on its inner surface, outer surface, or both inner and outer surfaces. Examples of texture are provided below.
A light section 36 includes a ridge 37, a ridge 38, and one or more apertures (vents) 39. Ridge 37 provides support for the shell at the edge formed by first and second surfaces 31 and 35 when upper and lower portions 32 and 34 are mated together. Ridge 38 provides support for a light source board 42. Light section 36 also includes a base portion 40. A base 41 is attached to base portion 40 and provides for connection to a power source.
Light source board 42 includes solid state light sources 45 and a driver 44 for controlling the light sources. Light source board 42 does not include apertures and thus does not allow air flow between light section 36 and the interior volume of the shell when light source board 42 is mounted on ridge 38. Air flow is provided through the light for cooling the light by apertures 33 providing for air flow into and out of the interior volume of the shell and apertures 39 providing for air flow into and out of light section 36. Light sources 45 transmit light into the interior volume of the shell and through the shell such that at least a portion of the light is distributed from the first surface to provide for illumination from the light.
A light section 56 includes a ridge 57, a ridge 58, and one or more apertures (vents) 59. Ridge 57 provides support for the shell at the edge formed by first and second surfaces 51 and 55 when upper and lower portions 52 and 54 are mated together. Ridge 58 provides support for a light source board 62. Light section 56 also includes a base portion 60. A base 61 is attached to base portion 60 and provides for connection to a power source.
Light source board 62 includes solid state light sources 65 and a driver 64 for controlling the light sources. Light source board 62 also includes a center opening, which provides for air flow between light section 56 and the interior volume of the shell when light source board 62 is mounted on ridge 58. The opening in light source board 62 also provides for air flow between apertures 53 and 59 such that air flow is provided through the light for cooling the light. Air flow is also provided through the light by apertures 53 providing for air flow into and out of the interior volume of the shell and apertures 59 providing for air flow into and out of light section 56. Light source board 62 can have a ring shape, as shown, or other shapes depending upon the shape of light section 56.
Light sources 65 are located at least partially at the edge of the shell formed by first and second surfaces 51 and 55. An optional gap can exist between light sources 65 and the edge. Some light from light sources 65 is transmitted and optically coupled into the shell at the edge, and transmitted through the shell, for example by total internal reflection, until the light exits from first surface 51 or second surface 55. Some light from light sources 65 is transmitted into the interior volume of the shell. At least a portion of the light transmitted into the edge and the interior volume is distributed from the first surface to provide for illumination from the light.
A light section 76 includes a ridge 77, a ridge 78, and one or more apertures (vents) 79. Ridge 77 provides support for the shell at the edge formed by first and second surfaces 71 and 75 when upper and lower portions 72 and 74 are mated together. Ridge 78 provides support for a light source board 82. Light section 76 also includes a base portion 80. A base 81 is attached to base portion 80 and provides for connection to a power source.
Light source board 82 includes solid state light sources 86 and 87, and a driver 84 for controlling the light sources. Light source board 82 also includes one or more apertures (vents) 85, which provide for air flow between light section 76 and the interior volume of the shell when light source board 82 is mounted on ridge 78. Apertures 85 also provide for air flow between apertures 73 and 79 such that air flow is provided through the light for cooling the light. Air flow is also provided through the light by apertures 73 providing for air flow into and out of the interior volume of the shell and apertures 79 providing for air flow into and out of light section 76.
Light sources 86 are located at the edge of the shell optionally with a gap between the light sources and the edge. Light sources 86 transmit light into the shell at the edge. The light from light sources 86 is optically coupled into the shell at the edge and transported within the shell, for example by total internal reflection, until the light exits from first surface 71 or second surface 75. Light sources 87 are located adjacent or within the interior volume of the shell. Light from light sources 87 is transmitted into the interior volume and through the shell. An optional reflective material 88, for example a metal ring or reflective film, can be located between light sources 86 and 87. An example of a reflective film is the Enhanced Specular Reflective (ESR) film product from 3M Company, St. Paul, Minn. At least a portion of the light transmitted into the edge and the interior volume is distributed from the first surface to provide for illumination from the light.
A light section 96 includes a ridge 97, a ridge 98, and one or more apertures (vents) 99. Ridge 97 provides support for the shell at the edge formed by first and second surfaces 91 and 95 when upper and lower portions 92 and 94 are mated together. Ridge 98 provides support for a light source board 102. Light section 96 also includes a base portion 100. A base 101 is attached to base portion 100 and provides for connection to a power source.
Light source board 102 includes solid state light sources 107 on a pedestal heat sink 106 and a driver 104 for controlling the light sources. Light source board 102 also includes one or more apertures (vents) 105, which provide for air flow between light section 96 and the interior volume of the shell when light source board 102 is mounted on ridge 98. Apertures 105 also provide for air flow between apertures 93 and 99 such that air flow is provided through the light for cooling the light. Air flow is also provided through the light by apertures 93 providing for air flow into and out of the interior volume of the shell and apertures 99 providing for air flow into and out of light section 96. Light sources 107 transmit light from the interior volume of the shell through the shell such that at least a portion of the light is distributed from the first surface to provide for illumination from the light.
Pedestal heat sink 106 is in sufficient contact, directly or indirectly, with solid state light sources 107 in order to conduct and dissipate heat from the solid state light sources. Heat sink 106 can be directly in physical contact with solid state light sources 107 or indirectly in contact with them such as through other components. Heat sink 106 can be implemented with a metal material such as aluminum. The heat sink can also be implemented with other metal materials, ceramic materials, or combinations of metals and ceramics. The heat sink can be hollow, as shown, in order to provide a space for driver circuit 104 and a cap over the driver circuit. Alternatively, if the driver circuit is located elsewhere, the heat sink can be composed of a solid material.
The texture on the shell preferably protrudes from a surface of the shell and is located on the first (outer) surface of the shell. Alternatively, the texture can be indented into the shell. The texture can be, for example, molded into the shell during formation of it or applied to the shell after it is formed. The texture can include, for example, pyramids, ribs, prisms, cones, half-circles, or other shapes. The pyramids can have, for example, a 90° (or 105° or 60° or other angles) pyramid pattern. The texture redirects light at an angle, and the individual texture features can thus be tailored for overall light redirection from the shell. In particular, the shape, density, and placement of the texture features can be varied to achieve a various light distribution curves or appearances of the light when the light sources are on. For example, the texture can be tailored such that the light distribution curve of the solid state light achieves light distribution properties resembling those properties of an incandescent light bulb. The texture can optionally reflect some light in addition to redirecting and transmitting light.
The following are exemplary materials, components, and configurations for the solid state lights described herein.
The light sources can be implemented with LEDs, organic LEDs (OLEDS), or other solid state light sources. The lights can include one light source or multiple light sources. The light sources can be located in different zones on the light source board, for example in a central area and a perimeter as shown in
The light section can be implemented with, for example, a metal material such as aluminum and with an insulator for the base portion inside the base. The light section can also be implemented with other metal materials or ceramic materials. The light section can function as a heat sink, and a size of the light section can be adjusted to dissipate a particular amount of heat from the light. The light section can have a round or circular shape, as shown, or other shapes depending upon the shape of the shell, for example.
The base can be implemented with, for example, an Edison base for use with conventional light bulb sockets or a base configured for connection to other types of light fixture connections.
The light source boards, including alternative light source boards, can be implemented with a material providing sufficient mechanical support for the light sources and optionally conducting heat from the light sources for use in dissipating the heat. Examples of light source boards include the SMJE-2V12W2P4 (Acrich2) product from Seoul Semiconductor Co., Ltd. The light source boards would have electrical connections with the base and the light sources in order to receive power from the base when connected to a power source and drive the light sources. The light source board in some embodiments has at least one aperture when coupled to the light section, which may be accomplished by the light source board forming an aperture with the light section or having a complete aperture. The light source boards can be coupled to the light section by, for example, being supported by a ridge or other component, or being adhered to a ridge or other component with an adhesive, fasteners, or in other ways.
The driver can be implemented with one or more integrated circuit chips, or other circuit components, having an LED driver or other solid state light source driver. The drivers can be located on the light source board, as shown, or elsewhere on a separate board. Examples of such LED drivers include the driver circuits available from Seoul Semiconductor Co., Ltd.; JMK Optoelectronic Co., Ltd.; and InterLight Optotech Corporation.
The shells can be implemented with, for example, a transparent or translucent material capable of receiving light from the one or more solid state light sources and emitting the light. For example, the shells can be made of an optically suitable material such as acrylic, polycarbonate, polyacrylates such as polymethyl methacrylate, polystyrene, glass, or any number of different plastic materials having sufficiently high refractive indexes. The material can be cast or molded, for example, to form the shells. The surfaces of the shells can optionally be polished. The shells can optionally include bulk scatter elements, such as particles within the shells, to provide for a soft glow appearance when the shells are illuminated by the solid state light sources. Based upon a placement of the light sources, the shells can function as a light guide to transmit light within them, for example by total internal reflection, and can transmit light through the shells, for example from the interior volume through the inner surface and exiting from the outer surface.
The shells can have a single aperture or multiple apertures. Although the lights described above only have apertures in the upper portion, the shells can also or alternatively have apertures in the lower portion. The apertures can have various shapes. For example, the apertures can be in the shape of narrow slits as shown in the lights described above or can be in other shapes such as circles, triangles, or squares.
The top and bottom portions of the shells can be adhered together with an adhesive, for example, or they can otherwise be removably attached together. The shells can have a bulb shape, as shown, or other shapes such as a cylinder or cone. The shells can be composed of multiple sections joined together, for example the upper and lower portions shown, or a single unitary piece of material. The shells can be coupled to the light section by, for example, being supported by a ridge or other component, or being adhered to a ridge or other component with an adhesive, fasteners, or in other ways.