The present disclosure relates to solid-state lighting fixtures. Specifically, the present disclosure relates to light-emitting diode (LED) based lighting fixtures including high-efficiency and high power-density driver circuitry using compound semiconductor switching components such as silicon carbide (SiC).
Continuing advancements in solid-state lighting technologies, and specifically light-emitting diodes (LEDs), continue to result in remarkable performance improvements when compared to their incandescent and fluorescent counterparts. Generally, LED-based lighting fixtures are more efficient, last longer, are more environmentally friendly, and require less maintenance than incandescent and fluorescent lighting fixtures. Accordingly, LEDs are poised to replace conventional lighting technologies in applications such as traffic lights, automobiles, general-purpose lighting, and liquid-crystal-display (LCD) backlighting.
LED lighting fixtures are driven by a linear (i.e., direct current) driver signal or a pulse-width modulated (PWM) driver signal. Since most lighting fixtures receive power from an alternating current (AC) power source, power conversion must be performed by driver circuitry in order to produce a desired light output from the LED lighting fixture. While the color of light emitted from an LED primarily depends on the composition of the material used to fabricate the LED, the light output of an LED is directly related to the current flowing through the P-N junction of the LED. Accordingly, driver circuitry capable of providing a constant current is desirable for an LED lighting fixture.
The PFC circuitry 22 is a boost converter including a boost input node 30, a boost output node 32, a boost inductor LB, a boost switch QB, a boost diode DB, and a boost capacitor CB. The boost inductor LB is coupled between the boost input node 30 and an intermediary boost node 34. The boost switch QB is coupled between the intermediary boost node 34 and ground. The boost diode DB is coupled between the intermediary boost node 34 and the boost output node 32. Finally, the boost capacitor CB is coupled between the boost output node 32 and ground. The boost input node 30 is coupled to the rectifier output node 28 of the rectifier circuitry 20.
The DC-DC converter circuitry 24 is a flyback converter including a flyback input node 36, a flyback output node 38, a flyback transformer TFB, a flyback switch QFB, a flyback diode DFB, and a flyback capacitor CFB. The flyback transformer TFB includes a primary winding 40 coupled in series with the flyback switch QFB between the flyback input node 36 and ground. Further, the flyback transformer TFB includes a secondary winding 42 coupled between an anode of the flyback diode DFB and ground, wherein the cathode of the flyback diode DFB is in turn coupled to the flyback output node 38. Finally, the flyback capacitor CFB is coupled between the flyback output node 38 and ground. The flyback input node 36 is coupled to the boost output node 32, while the flyback output node 38 is coupled to the LED light source 18. In some cases, an additional switch (not shown) may be coupled between the LED light source 18 and ground, such that the additional switch operates to pulse-width modulate the current through the LED light source 18 in order to generate a desired light output.
In operation, an EMI-filtered AC input voltage from the power supply 12 is received at the rectifier circuitry 20, where it is rectified to generate a rectified voltage. The rectified voltage is then received by the PFC circuitry 22, which performs power factor correction and boosts the voltage of the signal to generate a direct current (DC) PFC voltage. The DC-DC converter circuitry 24 receives the PFC voltage and regulates a driver output current, which is used to drive the LED light source 18. The control circuitry 16, which may be separated into discrete PFC control circuitry, DC-DC control circuitry, and dimming control circuitry in some cases, operates the boost switch QB and the flyback switch QFB to generate a desired driver output current. While effective at generating a driver output current that is suitable for driving the LED light source 18, the conventional driver circuitry 10 shown in
Notably, the switching components in the conventional driver circuitry 10, (i.e., the boost switch QB, the boost diode DB, the flyback switch QFB, and the flyback diode DFB) are silicon (Si) parts, which further hampers the performance of the conventional driver circuitry 10. Specifically, because of the use of silicon (Si) switching components in the conventional driver circuitry 10, the switching frequency and power handling capability of these components is significantly limited. Accordingly, the acceptable voltage range of the AC input voltage as well as the output voltage and current of the conventional driver circuitry 10 are likewise limited. Since the AC input voltage may vary significantly (i.e. from 208V to 480V depending on the infrastructure of the country in which the lighting fixture is deployed), the limited input voltage of the conventional driver circuitry 10 may result in the need to design separate driver circuitry for each country or region in which the driver circuitry is to be sold or used, thereby driving up the cost of manufacturing. Further, since the power handling capability of silicon (Si) devices is limited, the switching devices must be made large for high power applications, and further may produce excessive amounts of heat, resulting in lighting fixtures that are bulky or otherwise undesirable.
The conventional driver circuitry 10 shown in
Accordingly, there is a need for compact driver circuitry for a solid-state lighting fixture that is capable of delivering a constant output current while operating efficiently over a wide range of input voltages.
The present disclosure relates to driver circuitry for solid-state lighting fixtures. In one embodiment, a lighting fixture includes a solid-state light source and driver circuitry. The solid-state light source includes at least one light emitting diode (LED). The driver circuitry includes one or more compound semiconductor devices, and is coupled to the solid-state light source. By using one or more compound semiconductor devices in the driver circuitry, the efficiency of the driver circuitry and thus the lighting fixture may be significantly increased, while simultaneously reducing the cost and complexity of the driver circuitry and thus the lighting fixture when compared to conventional lighting fixtures.
In one embodiment, the one or more compound semiconductor devices are silicon carbide (SiC) devices.
In one embodiment, the driver circuitry is configured to receive an alternating current (AC) input voltage from a power supply and generate a driver output current for driving the at least one LED from the AC input voltage using the one or more compound semiconductor devices.
In one embodiment, driver circuitry for a solid-state lighting fixture including at least one LED includes rectifier circuitry, power factor correction (PFC) circuitry, and DC-DC converter circuitry. The rectifier circuitry is configured to receive and rectify an AC input voltage from a power supply to generate a rectified voltage. The PFC circuitry includes one or more PFC SiC switching components. Further, the PFC circuitry is coupled to the rectifier circuitry and configured to receive and provide PFC to the rectified voltage using the one or more PFC SiC switching components to generate a PFC voltage that is higher than the rectified voltage. The DC-DC converter circuitry includes one or more DC-DC converter SiC switching components. Further, the DC-DC converter circuitry is coupled to the PFC circuitry and configured to receive the output voltage from the PFC circuitry and generate a driver output current for driving the at least one LED using the one or more DC-DC converter SiC switching components. Notably, one or more switching components in the PFC circuitry and the DC-DC converter circuitry are silicon carbide (SiC) switching components. By using silicon carbide (SiC) for the switching components in the driver circuitry, the efficiency of the driver circuitry and thus the lighting fixture may be significantly increased, while simultaneously reducing the cost and complexity of the driver circuitry and thus the lighting fixture when compared to conventional lighting fixtures.
Those skilled in the art will appreciate the scope of the present disclosure and realize additional aspects thereof after reading the following detailed description of the preferred embodiments in association with the accompanying drawing figures.
The accompanying drawing figures incorporated in and forming a part of this specification illustrate several aspects of the disclosure, and together with the description serve to explain the principles of the disclosure.
The embodiments set forth below represent the necessary information to enable those skilled in the art to practice the embodiments and illustrate the best mode of practicing the embodiments. Upon reading the following description in light of the accompanying drawing figures, those skilled in the art will understand the concepts of the disclosure and will recognize applications of these concepts not particularly addressed herein. It should be understood that these concepts and applications fall within the scope of the disclosure and the accompanying claims.
It will be understood that, although the terms first, second, etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first element could be termed a second element, and, similarly, a second element could be termed a first element, without departing from the scope of the present disclosure. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
It will be understood that when an element such as a layer, region, or substrate is referred to as being “on” or extending “onto” another element, it can be directly on or extend directly onto the other element or intervening elements may also be present. In contrast, when an element is referred to as being “directly on” or extending “directly onto” another element, there are no intervening elements present. Likewise, it will be understood that when an element such as a layer, region, or substrate is referred to as being “over” or extending “over” another element, it can be directly over or extend directly over the other element or intervening elements may also be present. In contrast, when an element is referred to as being “directly over” or extending “directly over” another element, there are no intervening elements present. It will also be understood that when an element is referred to as being “connected” or “coupled” to another element, it can be directly connected or coupled to the other element or intervening elements may be present. In contrast, when an element is referred to as being “directly connected” or “directly coupled” to another element, there are no intervening elements present.
Relative terms such as “below” or “above” or “upper” or “lower” or “horizontal” or “vertical” may be used herein to describe a relationship of one element, layer, or region to another element, layer, or region as illustrated in the Figures. It will be understood that these terms and those discussed above are intended to encompass different orientations of the device in addition to the orientation depicted in the Figures.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the disclosure. As used herein, the singular forms “a,” “an,” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises,” “comprising,” “includes,” and/or “including” when used herein specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs. It will be further understood that terms used herein should be interpreted as having a meaning that is consistent with their meaning in the context of this specification and the relevant art and will not be interpreted in an idealized or overly formal sense unless expressly so defined herein.
The PFC circuitry 58 is a boost converter including a boost input node 74, a boost output node 76, a boost inductor LB, a boost switch QB, a boost diode DB, and a boost capacitor CB. The boost inductor LB is coupled between the boost input node 74 and an intermediary boost node 78. The boost switch QB is coupled between the intermediary boost node 78 and ground. The boost diode DB is coupled between the intermediary boost node 78 and the boost output node 76. Finally, the boost capacitor CB is coupled between the boost output node 76 and ground. The boost input node 74 is coupled to the rectifier output node 72 of the rectifier circuitry 56.
The DC-DC converter circuitry 60 is a buck converter including a buck input node 80, a first buck output node 82A, a second buck output node 82B, a buck diode DBK, a buck switch QBK, a buck inductor LBK, and a buck capacitor CBK. The buck diode DBK includes an anode coupled to an intermediate buck node 84 and a cathode coupled to the buck input node 80. The buck switch QBK is coupled between the intermediate buck node 84 and ground. The buck inductor LBK is coupled between the intermediate buck node 84 and the second buck output node 82B. Finally, the buck capacitor CBK is coupled between the first buck output node 82A and the second buck output node 82B. The buck input node 80 is coupled to the boost output node 76 of the PFC circuitry 58, while the LED light source 68 is coupled in series across the first buck output node 82A and the second buck output node 82B, such that an anode of a first LED in the LED light source 68 is coupled to the first buck output node 82A, and a cathode of a second LED in the LED light source 68 is coupled to the second buck output node 82B. In some cases, an additional switch (not shown) may be coupled between the LED light source 68 and the second buck output node 82B, such that the additional switch is operated to pulse-width modulate the current through the LED light source 68 in order to generate a desired light output.
Although only a single string of series-connected LEDs are shown in the LED light source 68, any number of LEDs may be used for the LED light source and connected in various configurations without departing from the principles disclosed herein. For example, multiple strings of series-connected LEDs may be used for the LED light source 68 in some embodiments. In particular, the different strings of series-connected LEDs may each include LEDs configured to output a different wavelength of light, such that the light from each one of the strings of series-connected LEDs combine to generate light that is substantially white in color at a desired color temperature.
Notably, the switching devices in the PFC circuitry 58 and the DC-DC converter circuitry 60 are compound semiconductor devices. As defined herein, “switching devices” include diodes and other solid-state switching devices configured to selectively provide power to a load. Specifically, the boost switch QB, the boost diode DB, the buck diode DBK, and the buck switch QBK may each be silicon carbide (SiC) devices. Using silicon carbide (SiC) switching devices in the PFC circuitry 58 and the DC-DC converter circuitry 60 results in substantial performance improvements in the driver circuitry 54 when compared to conventional solutions. In particular, as a result of the use of silicon carbide (SiC) switching components in the PFC circuitry 58 and the DC-DC converter circuitry 60, the driver circuitry 54 is able to maintain a high efficiency (e.g., greater than 90%) over a wide input voltage range (e.g., 185-528V) and further is able to maintain even higher efficiencies (e.g., greater than 94%) at one or more points in the input voltage range. Further, the driver circuitry 54 is able to sustain a total harmonic distortion (THD) less than about 20% and a power factor greater than about 0.9 for an input power equal to about 500 W. The use of silicon carbide (SiC) switching components in the PFC circuitry 58 and the DC-DC converter circuitry 60 additionally allows the PFC circuitry 58 to operate in a continuous conduction mode (CCM) and the DC-DC converter circuitry 60 to operate in a critical conduction or boundary mode of operation, each of which may further improve the performance of the driver circuitry 54 as discussed below.
In one embodiment, the boost diode DB and the buck diode DBK are silicon carbide (SiC) Schottky diodes. In other embodiments, the boost diode DB and the buck diode DBK may be any suitable diode element, for example, P-N diodes or PiN diodes. The boost switch QB and the buck switch QBK may be silicon carbide (SiC) metal-oxide-semiconductor field-effect transistors (MOSFETs). In other embodiments, the boost switch QB and the buck switch QBK may be any suitable switching element, such as field effect transistors (FETs), insulated gate bipolar transistors (IGBTs), high electron mobility transistors (HEMTs), bipolar junction transistors (BJTs), or the like.
In one embodiment, the switching devices in the PFC circuitry 58 and the DC-DC converter circuitry 60 are gallium nitride (GaN) devices. Specifically, the boost diode DB and the buck diode DBK may be gallium nitride (GaN) Schottky diodes. Further, the boost switch QB and the buck switch QBK may be gallium nitride (GaN) high electron mobility transistors (HEMTs). Using gallium nitride (GaN) devices may afford benefits similar to those discussed above with respect to silicon carbide.
In operation, an EMI-filtered AC input voltage from the power supply 62 is received at the rectifier circuitry 56, where it is rectified to generate a rectified voltage. The rectified voltage is then received by the PFC circuitry 58, which performs power factor correction and boosts the rectified voltage to generate a direct current (DC) PFC voltage. Specifically, a boost control signal provided to the boost switch QB from PFC control circuitry 86 in the control circuitry 66 is modulated in order to charge the boost inductor LB (i.e., cause the boost inductor LB to store energy in the form of a magnetic field) while the boost switch QB is ON (i.e. closed), and to discharge the boost inductor LB through the boost diode DB and across the boost capacitor CB when the boost switch QB is OFF (i.e. open). The boost capacitor CB acts as a low-pass filter, providing a relatively constant DC output voltage (the PFC output voltage) to the DC-DC converter circuitry 60.
The particular modulation frequency and pattern of the boost control signal determines the amount of power factor correction and the magnitude of the resulting PFC output voltage generated by the PFC circuitry 58. In one embodiment, the boost control signal is modulated in relation to the AC input voltage from the power supply 62. That is, the boost control signal may be modulated based on the AC input voltage of the power supply 62 such that the PFC output voltage tracks the AC input voltage of the power supply 62. Operating the PFC circuitry 58 in this manner may lead to significant improvements in the efficiency of the PFC circuitry 58 over the input voltage range.
If the boost control signal is modulated such that the current through the boost inductor LB never falls to zero, the PFC circuitry 58 is said to operate in a continuous conduction mode (CCM). Operating the PFC circuitry 58 in a continuous conduction mode is desirable for high power applications, as it reduces the conduction loss of the boost inductor LB and the boost switch QB used in the PFC circuitry 58 while maintaining a required or desired output voltage. However, operating the PFC circuitry 58 in a continuous conduction mode may require the boost control signal to be modulated at a significantly higher frequency than if the PFC circuitry 58 was operated in a discontinuous conduction mode. Accordingly, operating conventional driver circuitry in a continuous conduction mode is generally impractical or impossible due to the limitations on the switching speed of the silicon (Si) switching components therein, as discussed above. Because the driver circuitry 54 shown in
The DC-DC converter circuitry 60 receives the PFC voltage from the PFC circuitry 58 and regulates a driver output current, which is used to drive the LEDs of the LED light source 68. Specifically, a buck control signal provided to the buck switch QBK from buck control circuitry 88 in the control circuitry 66 is modulated in order to charge the buck inductor LBK (i.e., cause the buck inductor LBK to store energy in the form of a magnetic field) while the buck switch QBK is ON (i.e., closed), and to discharge the buck inductor QBK and into the buck capacitor CBK when the buck switch QBK is OFF (i.e., open). The buck capacitor CBK acts as a low-pass filter, providing a relatively constant DC output current (the driver output current) to the LED light source 68.
The particular modulation frequency and pattern of the buck control signal determines the magnitude of the resulting driver output current generated by the DC-DC converter circuitry 60. If the buck control signal is modulated such that the buck switch QBK is turned ON each time the current through the buck inductor LBK decreases to zero the DC-DC converter circuitry 60 is said to operate in a critical conduction or boundary mode of operation. Operating in a critical conduction or boundary mode of operation is desirable because the buck switch QBK is turned ON when the voltage across the switch resonates to a valley, which results in lower switching loss and reverse recovery loss of the buck diode DBK. However, similar to the principles discussed above with respect to the PFC circuitry 58 operating a continuous conduction mode, operating the DC-DC converter circuitry 60 in a critical conduction or boundary mode may require the buck control signal to be modulated at a significantly higher frequency than if the DC-DC converter circuitry 60 was operated in a discontinuous conduction mode. Because the driver circuitry 54 shown in
One issue experienced by operating the DC-DC converter circuitry 60 in a critical conduction or boundary mode is that the switching frequency of the buck switch QBK varies as a function of the voltage across and current through the LED light source 68, as well as the inductance of the buck inductor LBK, and the output PFC voltage, as shown by Equation 1 below:
where VLED is the voltage across the LED light source 68, ILED is the current through the LED light source 68, LBK represents the inductance of the buck inductor LBK, and VB is the PFC output voltage. Assuming VLED=300V, VB=800V, and LBK=1 mH, the switching frequency of the DC-DC converter circuitry 60 increases by a factor of 10 from 89 kHz to 890 kHz when the current through the LED light source ILED is reduced from 1.05 A to 0.105 A. An extremely high switching frequency (e.g., 890 kHz) will generally exceed the frequency limit of the buck control circuitry 88, and further may also cause high switching loss even for the silicon carbide (SiC) buck switch QBK. This switching loss is exacerbated when the PFC output voltage VB is high and the voltage VLED across the LED light source 68 is low, since the voltage across the buck switch QBK is approximately equal to VB−2VLED at the moment the buck switch QBK is turned ON. Accordingly, the switching frequency fs of the buck switch QBK should be limited to a practical value in some applications (e.g., below 500 kHz).
The MOT circuitry 90 includes a MOT input node 92, a MOT output node 94, three MOT diodes DMOT1-DMOT3, a MOT zener diode DZMOT, four MOT resistors RMOT1-RMOT4, two MOT capacitors CMOT1 and CMOT2, and an MOT inductor LMOT. Notably, the MOT inductor LMOT is an auxiliary winding of the buck inductor LBK, such that the MOT inductor LMOT and the buck inductor LBK are electromagnetically coupled. A first MOT diode DMOT1 is coupled in series with a first MOT resistor RMOT1 between the MOT input node 92 and a first MOT intermediate node 96, such that the first MOT diode DMOT1 includes an anode coupled to the MOT input node 92 and a cathode coupled to a first MOT resistor RMOT1. A first MOT capacitor CMOT1 and a second MOT resistor RMOT2 are coupled in parallel between the first MOT intermediate node 96 and a second MOT intermediary node 98. A second MOT diode DMOT2, a third MOT resistor RMOT3, and a second MOT capacitor CMOT2 are coupled in parallel between the second MOT intermediary node 98 and ground, such that an anode of the second MOT diode DMOT2 is coupled to ground and a cathode of the second MOT intermediary node 98 is coupled to the second MOT intermediary node 98. A third MOT diode DMOT3 is coupled between the second MOT intermediary node 98 and the MOT output node 94, such that an anode of the third MOT diode DMOT3 is coupled to the second MOT intermediary node 98 and a cathode of the third MOT diode DMOT3 is coupled to the MOT output node 94. Finally, the MOT zener diode DZMOT, a fourth MOT resistor RMOT4, and the MOT inductor LMOT are coupled in series between the MOT output node 94 and ground, such that a cathode of the MOT zener diode DZMOT is coupled to the MOT output node 94 and an anode of the MOT zener diode DZMOT is coupled to the fourth MOT resistor RMOT4, which is in turn coupled to ground through the MOT inductor LMOT. The MOT input node 92 is configured to receive the buck control signal from the buck control circuitry 88. The MOT output node 94 is coupled to an input of the buck control circuitry 88.
In operation, the buck control signal is received at the MOT input node 92. When the buck control signal is high (i.e., when the buck switch QBK is turned ON), the second MOT capacitor CMOT2 is charged through the first MOT capacitor CMOT1 and the second MOT resistor RMOT2. Further, the MOT inductor LMOT will begin to store energy coupled from the buck inductor LBK, and current will flow from the MOT inductor LMOT through the fourth MOT resistor RMOT4 and the third MOT diode DMOT1. The MOT zener diode DZMOT is used to clamp the voltage at the MOT output node 94. The first MOT resistor RMOT1 is used to limit the peak charging current delivered to the second MOT capacitor CMOT2 and to protect the first MOT diode DMOT1 as well as the MOT zener diode DZMOT. When the buck control signal is low (i.e., when the buck switch QBK is turned OFF), the voltage across the second MOT capacitor CMOT2 begins to decay. Further, the voltage across the MOT inductor LMOT also begins to decay. When both the voltage across the second MOT capacitor CMOT2 and the voltage across the MOT inductor LMOT drop to zero, the voltage at the MOT output node 94 will similarly drop to zero. In response to the voltage at the MOT output node 94 dropping to zero, the buck control circuitry 88 will start the cycle again, turning ON the buck switch QBK. In other words, the buck control circuitry 88 will not turn the buck switch QBK back ON until the voltage at the MOT output node 94 drops to zero. The time for the voltage at the MOT output node 94 to drop to zero therefore determines the minimum off time of the buck switch QBK. Accordingly, the minimum off time of the buck switch QBK may be limited in order to prevent switching losses from high switching frequencies in the DC-DC converter circuitry 60.
In operation, the buck control signal is received at the MOT input node 92. When the buck control signal is high (i.e., when the buck switch QBK is turned ON), the second MOT capacitor CMOT2 is charged through the first MOT capacitor CMOT1 and the second MOT resistor RMOT2, thereby placing a charge at the gate contact (G) of the MOT transistor QMOT. Further, the MOT inductor LMOT will begin to store energy coupled from the buck inductor LBK, and current will flow from the MOT inductor LMOT through the fourth MOT resistor RMOT4. If the voltage across the MOT inductor LMOT is greater than the charge across the second MOT capacitor CMOT2, the MOT transistor QMOT will remain OFF, and the voltage across the MOT inductor LMOT will hold the MOT output node 94 high. If the voltage across the MOT inductor LMOT is less than the voltage across the second MOT capacitor CMOT2, the MOT transistor QMOT will turn ON and provide a voltage suitable to continue to hold the MOT output node 94 high. When the buck control signal is low (i.e., when the buck switch QBK is turned OFF), the voltage across the second MOT capacitor CMOT2 begins to decay. Further, the voltage across the MOT inductor LMOT also begins to decay. Since either the voltage across the second MOT capacitor CMOT2 or the voltage across the MOT inductor LMOT are suitable to hold the MOT output node 94 high, both of the voltages must drop to zero before the MOT output node 94 will similarly drop to zero. As discussed above, the buck control circuitry 88 will not turn the buck switch QBK back ON until the voltage at the MOT output node 94 drops to zero. Accordingly, the minimum off time of the buck switch QBK may be limited in order to prevent switching losses from high switching frequencies in the DC-DC converter circuitry 60.
In operation, when an external control voltage, which may be supplied, for example, by a light switch or a dimming triac, applied across the first SOC input node 102A and the second SOC input node 102B is higher than the zener voltage of the SOC zener diode DZSOC, the SOC zener diode DZSOC begins to conduct, sending a current through the optocoupler LED DOC, thereby turning on the optocoupler photosensitive transistor QOC and pulling the SOC output node 104 to ground. In this embodiment, when the PFC control circuitry 86 and the buck control circuitry 88 receive a high signal at the SOC output node 104, the PFC circuitry 58 and the DC-DC converter circuitry 60 are left ON. However, the PFC circuitry 58 and the DC-DC converter circuitry 60 are disabled when a low signal (e.g., ground) is placed at the SOC output node 104. Using the SOC optocoupler USOC allows the PFC control circuitry 86 and the buck control circuitry 88 to remain isolated from the control signals used to turn the PFC circuitry 58 and the DC-DC converter circuitry 60 OFF. Accordingly, noise may be reduced in the driver circuitry 54.
In operation, the dimming control microcontroller 112 receives an external control voltage applied across the first dimming control input node 108A and the second dimming control input node 108B, for example, from a dimming triac or other dimming control interface. The dimming control microcontroller 112 then generates a pulse-width modulated (PWM) dimming control signal with a duty cycle proportional to the control voltage across the first dimming control resistor RDC1 and the optocoupler LED DOC. The PWM dimming control signal activates the optocoupler photosensitive transistor QOC, which results in the PWM dimming control signal being placed at the dimming control output node 110. In one embodiment, the dimming control circuitry 106 monitors one or more voltages or currents in the driver circuitry 54 and uses the measurements as feedback for adjusting the PWM dimming control signal. In response to the PWM dimming control signal, the PFC control circuitry 86 and the buck control circuitry 88 supply the LED light source 68 with a voltage and/or current that is proportional to the duty cycle of the PWM dimming control signal. Accordingly, the dimming control microcontroller 112 may maintain a desired amount of light output from the LED light source 68. The PWM dimming control signal may be delivered to the PFC control circuitry 86, the buck control circuitry 88, or both, where it may be used to modulate the PFC control signal and/or the buck control signal, respectively in order to control the voltage across the LED light source 68 and/or the current through the LED light source 68.
Those skilled in the art will recognize improvements and modifications to the preferred embodiments of the present disclosure. All such improvements and modifications are considered within the scope of the concepts disclosed herein and the claims that follow.
Number | Name | Date | Kind |
---|---|---|---|
5962986 | Morse | Oct 1999 | A |
6246592 | Balogh | Jun 2001 | B1 |
7888881 | Shteynberg | Feb 2011 | B2 |
9178415 | Kost et al. | Nov 2015 | B1 |
20080018261 | Kastner | Jan 2008 | A1 |
20080197817 | Colbeck et al. | Aug 2008 | A1 |
20080224625 | Greenfeld | Sep 2008 | A1 |
20080224636 | Melanson | Sep 2008 | A1 |
20080237613 | Lee et al. | Oct 2008 | A1 |
20090058567 | Dutta | Mar 2009 | A1 |
20090236595 | Atanackovic | Sep 2009 | A1 |
20090267085 | Lee et al. | Oct 2009 | A1 |
20090323323 | Liu | Dec 2009 | A1 |
20100213859 | Shteynberg | Aug 2010 | A1 |
20100253312 | Morimoto | Oct 2010 | A1 |
20110304270 | Scarpelli | Dec 2011 | A1 |
20110304311 | Takahashi et al. | Dec 2011 | A1 |
20130015768 | Roberts et al. | Jan 2013 | A1 |
20130049621 | Yan | Feb 2013 | A1 |
20130300310 | Hu | Nov 2013 | A1 |
20150216012 | Nagasaka | Jul 2015 | A1 |
Entry |
---|
‘Optimum Semiconductors for High-Power Electronics’, Krishna Shenai, et al. 1989 IEEE. |
Shenai et al, ‘Optimum Semiconductors for High-Power Electronics’ IEEE 1989. |
‘Optimimum Semiconductors for High-Power Electronics’, Shenai, IEEE, 1989. |
Non-Final Office Action for U.S. Appl. No. 14/467,251, dated Jan. 13, 2017, 12 pages. |
Notice of Allowance for U.S. Appl. No. 14/467,251, dated Jul. 27, 2017, 7 pages. |
Number | Date | Country | |
---|---|---|---|
20160057824 A1 | Feb 2016 | US |