The invention relates to solid state nanopore devices and methods of manufacture and, more particularly, to solid state nanopore devices for nanopore applications and methods of manufacture.
Solid state nanopore devices have been demonstrated for many potential applications in bio-sensing and other applications. For example, single molecular detection of DNA, RNA, and protein molecules has been realized in solid state nanopore devices. Also, bio-molecule binding affinity has been studied using solid state nanopore devices.
An important factor to improve the nanopore sensitivity to molecular translocation is to reduce the membrane thickness. A major challenge is that the thin membrane, especially when the membrane thickness is in the sub-10 nm regime, is mechanically fragile while suspending over a micron or tens of micron window size. The techniques typically used to generate thin membrane structures at these extremely-scaled sizes, such as reactive ion etch or ion milling to locally thin down a relative thicker membrane, are incapable to incorporate more functional structures on the top of the membrane such as field effect transistors (FETs) or tunneling junction electrodes.
Accordingly, there exists a need in the art to overcome the deficiencies and limitations described hereinabove.
In a first aspect of the invention, a method comprises forming a membrane layer on an underlying substrate. The method further comprises forming a hole in the membrane layer. The method further comprises plugging the hole with a sacrificial material. The method further comprises forming a membrane over the sacrificial material. The method further comprises removing the sacrificial material within the hole. The method further comprises drilling an opening in the membrane, aligned with the hole.
In another aspect of the invention, a method comprises forming a dielectric layer on an underlying substrate. The method further comprises forming a hole in the dielectric layer by lithography and etching processes. The method further comprises plugging the hole with a sacrificial material to form a sacrificial plug. The plugging comprises blanket depositing of an oxide material to a thickness greater than the depth of the hole, and planarizing the oxide material to the surface of the dielectric layer. The method further comprises forming a membrane over the sacrificial plug. The method further comprises removing the sacrificial plug and portions of the underlying substrate. The method further comprises drilling an opening in the membrane, aligned with the hole.
In yet another aspect of the invention, a structure comprises: a dielectric layer on an underlying substrate; a hole in the dielectric layer and underlying substrate; and a membrane over the sacrificial plug having an opening suspended and aligned with the hole.
In another aspect of the invention, a design structure tangibly embodied in a machine readable storage medium for designing, manufacturing, or testing an integrated circuit is provided. The design structure comprises the structures of the present invention. In further embodiments, a hardware description language (HDL) design structure encoded on a machine-readable data storage medium comprises elements that when processed in a computer-aided design system generates a machine-executable representation of the ultrathin membranes for nanopore applications, which comprises the structures of the present invention. In still further embodiments, a method in a computer-aided design system is provided for generating a functional design model of the ultrathin membranes for nanopore applications. The method comprises generating a functional representation of the structural elements of the ultrathin membranes for nanopore applications.
The present invention is described in the detailed description which follows, in reference to the noted plurality of drawings by way of non-limiting examples of exemplary embodiments of the present invention.
a-1f show processes and respective structures in accordance with aspects of the present invention;
a-2d show processes and respective structures in accordance with additional aspects of the present invention;
a-3d show structures in accordance with aspects of the present invention;
a and 4b show bio-sensing structures in accordance with aspects of the present invention; and
The invention relates to solid state nanopore devices and methods of manufacture and, more particularly, to solid state nanopore devices for nanopore applications and methods of manufacture. In more specific embodiments, the present invention is directed to methods of creating an ultra thin membrane suspended over a few hundred nanometer window supported by a thicker membrane which can span over a micron or tens of microns wide window on a Si wafer. In embodiments, this is achieved by forming a thin membrane film on top of a planarized thick membrane film with a sacrificial plug. After removal of the sacrificial plug, a small sized opening can be formed in the membrane file, aligned with the hole formed by the removal of the sacrificial plug.
Advantageously, fabrication flows of the present invention allow a thin membrane to span only over a small area, which makes it mechanically strong enough to undergo post process and test procedures. Additionally, the thickness of the membrane is dependent on a formation method (e.g., growth or deposition process), which is better controlled than etching methods currently used to form thin membranes. Moreover, the fabricated membrane of the present invention has a flat top surface, making it compatible with additional functional structures such as FET or tunneling junction electrodes.
a shows a beginning structure and respective processing steps in accordance with aspects of the present invention. In particular, the structure 5 of
In embodiments, a hole 14 is formed within the dielectric layer 12. In embodiments, the hole 14 can be formed using standard lithography and etching processes. For example, a resist can be applied to the dielectric layer 12, which is patterned by local exposure to an energy source (e.g., an electron beam). A reactive ion etch (RIE) is performed through the patterned resist to form the hole 14 within the dielectric layer 12 while masking the rest of the dielectric layer 12. The resist can then be stripped or removed using conventional descum or stripping processes, such as oxygen plasma ashing. In embodiments, the hole can be about 200 nm or less in size; although other dimensions are also contemplated by the present invention. In embodiments, the hole can be any desired shape.
In
In
In
As shown in
In
a-2d show processes and respective structures in accordance with additional aspects of the present invention. More specifically, starting from the structure of
In
As shown in
In
a-3d show various views of the structures fabricated in the processes described above. More specifically,
a shows a structure starting from the structure of
Design flow 900 may vary depending on the type of representation being designed. For example, a design flow 900 for building an application specific IC (ASIC) may differ from a design flow 900 for designing a standard component or from a design flow 900 for instantiating the design into a programmable array, for example a programmable gate array (PGA) or a field programmable gate array (FPGA) offered by Altera® Inc. or Xilinx® Inc.
Design process 910 preferably employs and incorporates hardware and/or software modules for synthesizing, translating, or otherwise processing a design/simulation functional equivalent of the components, circuits, devices, or logic structures shown in
Design process 910 may include hardware and software modules for processing a variety of input data structure types including netlist 980. Such data structure types may reside, for example, within library elements 930 and include a set of commonly used elements, circuits, and devices, including models, layouts, and symbolic representations, for a given manufacturing technology (e.g., different technology nodes, 32 nm, 45 nm, 90 nm, etc.). The data structure types may further include design specifications 940, characterization data 950, verification data 960, design rules 970, and test data files 985 which may include input test patterns, output test results, and other testing information. Design process 910 may further include, for example, standard mechanical design processes such as stress analysis, thermal analysis, mechanical event simulation, process simulation for operations such as casting, molding, and die press forming, etc. One of ordinary skill in the art of mechanical design can appreciate the extent of possible mechanical design tools and applications used in design process 910 without deviating from the scope and spirit of the invention. Design process 910 may also include modules for performing standard circuit design processes such as timing analysis, verification, design rule checking, place and route operations, etc.
Design process 910 employs and incorporates logic and physical design tools such as HDL compilers and simulation model build tools to process design structure 920 together with some or all of the depicted supporting data structures along with any additional mechanical design or data (if applicable), to generate a second design structure 990.
Design structure 990 resides on a storage medium or programmable gate array in a data format used for the exchange of data of mechanical devices and structures (e.g. information stored in a IGES, DXF, Parasolid XT, JT, DRG, or any other suitable format for storing or rendering such mechanical design structures). Similar to design structure 920, design structure 990 preferably comprises one or more files, data structures, or other computer-encoded data or instructions that reside on transmission or data storage media and that when processed by an ECAD system generate a logically or otherwise functionally equivalent form of one or more of the embodiments of the invention shown in
Design structure 990 may also employ a data format used for the exchange of layout data of integrated circuits and/or symbolic data format (e.g. information stored in a GDSII (GDS2), GL1, OASIS, map files, or any other suitable format for storing such design data structures). Design structure 990 may comprise information such as, for example, symbolic data, map files, test data files, design content files, manufacturing data, layout parameters, wires, levels of metal, vias, shapes, data for routing through the manufacturing line, and any other data required by a manufacturer or other designer/developer to produce a device or structure as described above and shown in
The method as described above is used in the fabrication of integrated circuit chips. The resulting integrated circuit chips can be distributed by the fabricator in raw wafer form (that is, as a single wafer that has multiple unpackaged chips), as a bare die, or in a packaged form. In the latter case the chip is mounted in a single chip package (such as a plastic carrier, with leads that are affixed to a motherboard or other higher level carrier) or in a multichip package (such as a ceramic carrier that has either or both surface interconnections or buried interconnections). In any case the chip is then integrated with other chips, discrete circuit elements, and/or other signal processing devices as part of either (a) an intermediate product, such as a motherboard, or (b) an end product. The end product can be any product that includes integrated circuit chips, ranging from toys and other low-end applications to advanced computer products having a display, a keyboard or other input device, and a central processor.
The descriptions of the various embodiments of the present invention have been presented for purposes of illustration, but are not intended to be exhaustive or limited to the embodiments disclosed. Many modifications and variations will be apparent to those of ordinary skill in the art without departing from the scope and spirit of the described embodiments. The terminology used herein was chosen to best explain the principles of the embodiments, the practical application or technical improvement over technologies found in the marketplace, or to enable others of ordinary skill in the art to understand the embodiments disclosed herein.
Number | Name | Date | Kind |
---|---|---|---|
4919810 | Itoh et al. | Apr 1990 | A |
6412928 | Anagnostopoulos et al. | Jul 2002 | B1 |
7717271 | Ramaswamy et al. | May 2010 | B2 |
7824548 | DiLeo et al. | Nov 2010 | B2 |
8137442 | Pintault et al. | Mar 2012 | B2 |
8182590 | Striemer et al. | May 2012 | B2 |
8307992 | Noda et al. | Nov 2012 | B2 |
20050068608 | Campbell et al. | Mar 2005 | A1 |
20050102721 | Barth | May 2005 | A1 |
20070020146 | Young et al. | Jan 2007 | A1 |
20070284682 | Laming et al. | Dec 2007 | A1 |
20090162989 | Cho et al. | Jun 2009 | A1 |
20110316100 | Kim et al. | Dec 2011 | A1 |
20120013989 | Choi et al. | Jan 2012 | A1 |
20130037410 | Xu et al. | Feb 2013 | A1 |
Entry |
---|
Office Action dated Mar. 19, 2015 in related U.S. Appl. No. 14/024,165, 9 pages. |
Number | Date | Country | |
---|---|---|---|
20150056732 A1 | Feb 2015 | US |