Solid-state power interrupters

Information

  • Patent Grant
  • 11581725
  • Patent Number
    11,581,725
  • Date Filed
    Tuesday, December 8, 2020
    4 years ago
  • Date Issued
    Tuesday, February 14, 2023
    a year ago
Abstract
A power interrupter device includes a solid-state bidirectional switch and control circuitry to control the solid-state bidirectional switch. The bidirectional switch is connected between input and output terminals of the power interrupter device. The control circuitry includes driver circuitry and fault detection circuitry. The driver circuitry generates a regulated direct current (DC) voltage using current drawn from an input power source applied to the input terminal and applies the regulated DC voltage to a control input of the bidirectional switch. The fault detection circuitry is configured to sense a level of load current flowing in an electrical path between the input and output terminals, to detect an occurrence of a fault condition based on the sensed load current level, and to short the control input of the bidirectional switch to place the bidirectional switch in a switched-off state, in response to detecting the occurrence of a fault condition.
Description
TECHNICAL FIELD

This disclosure relates generally to power control systems and devices and, in particular, solid-state power interrupter devices and for disrupting power to loads.


BACKGROUND

Electrical power interrupters are an essential component in electrical distribution systems and are often positioned between an incoming high-current utility supply circuit and lower current branch circuits within a given building or home structure to protect branch circuit conductors and electrical loads from being exposed to over-current conditions. There are several types of over current conditions including overload conditions and fault conditions. An overload condition is defined as operation of equipment in excess of its normal, full-load rating, or a branch circuit in excess of its ampacity which, when the overload persists for a sufficient period of time, would cause damage or dangerous overheating. Fault conditions comprise unintended or accidental load conditions that typically produce much higher over-current conditions than do overloads, depending on the impedance of the fault. A fault producing the maximum over-current condition is referred to as a short-circuit or a “bolted fault.”


Conventional power interrupters are electromechanical in nature and have electrical contacts that are physically separated by either manual intervention of an operator lever or automatically upon the occurrence of a fault condition or prolonged over current condition, in which cases the circuit interrupter is deemed to be “tripped.” The separation of the electrical contacts of a circuit breaker can be performed electromagnetically or mechanically, or a combination of both. A significant problem with conventional circuit interrupters is that they are slow to react to fault conditions due to their electromechanical construction, and exhibit large variations in both the time to trip and the current trip limit in response to a fault or prolonged over-current conditions. Conventional power interrupters typically require at least several milliseconds to isolate a fault condition. The slow reaction time is undesirable since it raises the risk of hazardous fire, damage to electrical equipment, and arc-flashes, which can occur at the short-circuit location when a bolted fault is not isolated quickly enough.


SUMMARY

Embodiments of the disclosure include solid-state power interrupter devices and methods for interrupting power from a source to a load. For example, an exemplary embodiment includes a power interrupter device which comprises a solid-state bidirectional switch and control circuitry. The solid-state bidirectional switch is connected between an input terminal and an output terminal of the power interrupter device. The control circuitry configured to control the solid-state bidirectional switch. The control circuitry comprises driver circuitry and fault detection circuitry. The driver circuitry is configured to generate a regulated direct current (DC) voltage using current drawn from an input power source applied to the input terminal of the power interrupter device, and apply the regulated DC voltage to a control input of the solid-state bidirectional switch. The fault detection circuitry is configured to (i) sense a level of load current flowing in an electrical path between the input terminal and the output terminal of the power interrupter device, (ii) detect an occurrence of a fault condition based on the sensed load current level, and (iii) short the control input of the solid-state bidirectional switch to place the solid-state bidirectional switch in a switched-off state, in response to detecting the occurrence of a fault condition.


Other embodiments will be described in the following detailed description of embodiments, which is to be read in conjunction with the accompanying figures.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 schematically illustrates a solid-state power interrupter according to an exemplary embodiment of the disclosure.



FIG. 2 schematically illustrates a solid-state power interrupter according to another exemplary embodiment of the disclosure.



FIG. 3 schematically illustrates a solid-state power interrupter according to another exemplary embodiment of the disclosure.



FIG. 4 schematically illustrates a solid-state power interrupter according to another exemplary embodiment of the disclosure.



FIG. 5 schematically illustrates a solid-state power interrupter according to another exemplary embodiment of the disclosure.



FIG. 6 schematically illustrates an AC-to-DC converter and regulator circuit according to an embodiment of the disclosure.





DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENTS

Embodiments of the disclosure will now be described in further detail with regard to solid-state power interrupter devices and techniques for interrupting power from a source to a load based on, e.g., a detection of a fault condition (e.g., a short-circuit fault, an over-current fault, etc.) or in response to external control signals. It is to be understood that same or similar reference numbers are used throughout the drawings to denote the same or similar features, elements, or structures, and thus, a detailed explanation of the same or similar features, elements, or structures will not be repeated for each of the drawings. The term “exemplary” as used herein means “serving as an example, instance, or illustration”. Any embodiment or design described herein as “exemplary” is not to be construed as preferred or advantageous over other embodiments or designs.



FIG. 1 schematically illustrates a solid-state power interrupter according to an exemplary embodiment of the disclosure. In particular, FIG. 1 illustrates a solid-state power interrupter 100 connected between a utility power supply 10 (referred to herein as AC mains 10) and a load 20 which is connected to a branch circuit that is protected by the solid-state power interrupter 100. The solid-state power interrupter 100 has input terminals that are connected to a hot phase 11 (referred to as “line hot L”) and a neutral phase 12 (referred to as “line neutral N”) of the AC mains 10, and output terminals that are connected a load hot line 21 and a load neutral line 22 of the load 20. In particular, the solid-state power interrupter 100 comprises a line hot terminal 100A, a line neutral terminal 100B, a load hot terminal 100C, a load neutral terminal 100D (and optionally an earth ground terminal not shown). The line hot terminal 100A is coupled to the line hot 11 of the AC mains 10, the line neutral terminal 100B is coupled to the line neutral 12 of the AC mains 10, the load hot terminal 100C is coupled to the load hot line 21 of the load 20, and the load neutral terminal 100D is coupled to the neutral line 22 of the load 20. As further illustrated in FIG. 1, the line neutral 12 is shown bonded to earth ground 14 (GND), which provides added protection as is known in the art. The earth ground 14 is typically connected to a ground bar in a circuit breaker distribution panel, wherein the ground bar is bonded to a neutral bar in the circuit breaker distribution panel.


The solid-state power interrupter 100 comprises a double pole single throw (DPST) switch circuit which comprises a first solid-state switch 102, a second solid-state switch 104, and control circuitry 110 which comprises a first control circuit block 112, and a second control circuit block 114. In some embodiments, the first and second solid-state switches 102 and 104 comprise power MOSFET (metal-oxide semiconductor field-effect transistor) devices and, in particular, N-type enhancement MOSFET devices having gate terminals (G), drain terminals (D), and source terminals (S) as shown. The first and second solid-state switches 102 and 104 (alternatively MOSFET switches 102 and 104) comprise respective intrinsic body diodes 102-1 and 104-1, which represent P-N junctions between a P-type substrate body and N-doped drain regions of the MOSFET devices. In this regard, the body diodes 102-1 and 104-1 are intrinsic elements of the MOSFET switches 102 and 104 (i.e., not discrete elements). It is to be noted that the intrinsic body-to-source diodes of the first and second solid-state switches 102 and 104 are not shown as it is assumed that they are shorted out by connections between the source regions and the substrate bodies (e.g., N+ source and P body junction are shorted through source metallization).


The first solid-state switch 102 is serially connected in an electrical path (referred to as “hot line path”) between the line hot terminal 100A and the load hot terminal 100C of the solid-state interrupter 100. The second solid-state switch 104 is serially connected in an electrical path (referred to as “neutral line path”) between the line neutral terminal 100B and the load neutral terminal 100D of the solid-state interrupter 100. The first control circuit block 112 controls a gate-to-source voltage (VGS) that is applied to the first solid-state switch 102 to control the activation and deactivation of the first solid-state switch 102. The second control circuit block 114 controls a gate-to-source voltage that is applied to the second solid-state switch 104 to control the activation and deactivation of the second solid-state switch 104. The first and second solid-state switches 102 and 104 collectively comprise a solid-state bidirectional switch that is configured to enable bidirectional current flow between the AC mains 10 and the load 20 (i.e., conduct positive current or negative current) when the first and second solid-state switches 102 and 104 are in a switched-on state, and block current flow between the AC mains 10 and the load 20 when the first and second solid-state switches 102 and 104 are in a switched-off state.


More specifically, in normal operation of the solid-state power interrupter 100, during a positive half cycle of an AC supply voltage waveform of the AC mains 10, a positive current flows in the hot line path through the first solid-state switch 102, through the load 20, and then in the neutral line path through the forward biased body diode 104-1, and back to the AC mains 10. On the other hand, during a negative half cycle of the AC supply voltage waveform of the AC mains 10, a negative current flows in the neutral line path through the second solid-state switch 104, through the load 20, and then in the hot line path through the forward biased body diode 102-1, and back to the AC mains 10. The exemplary configuration of simultaneously controlling AC switches on both the line and the neutral is referred to as double-pole switching and is applied to the two lines (hot and neural lines) of opposite phase from the single AC energy source.


The control circuitry 110 implements various functions for controlling the activation and deactivation of the first and second solid-state switches 102 and 104. For example, in some embodiments, the control circuitry 110 comprises self-biasing driver circuitry which is configured to utilize AC power from the AC mains 10 to generate regulated DC voltages to drive the gate terminals of the first and second solid-state switches 102 and 104. Further, in some embodiments, the control circuitry 110 comprises fault detection circuitry which is configured to sense an amount of load current flowing in the hot line path and/or the neutral line path through the solid-state interrupter 100, and detect an occurrence of a fault condition, such as short-circuit fault, an over-current fault, etc., based on the sensed current level. In response to detecting a fault condition, the fault detection circuitry is configured to short the control input (e.g., gate terminal) of at least one of the solid-state switches 102 and 104 to interrupt power to the load 20.


Furthermore, in some embodiments, the control circuitry 110 comprises a control switch to implement a forced turn-off control mode in which the solid-state power interrupter 100 is controlled by external control signals. For example, in some embodiments, the control circuitry 110 implements an optical switch which is configured to short the control inputs of the first and second solid-state switches 102 and 104 to place the first and second solid-state switches 102 and 104 in a switched-off state, in response to an optical control signal applied to the optical switch. In some embodiments, the control circuitry 110 implements a forced turn-off control mode in which the first and second solid-state switches 102 and 104 are turned-off in response to the detection of certain events including, but not limited to, detection of fault events, detection of hazardous environmental conditions, remote commands for circuit interruption, etc. As explained in further detail below, the forced turn-off control mode can be initiated on command by, e.g., direct hardware fault sensing and control, and/or through a galvanically isolated control input based on, but not limited to, optical, magnetic, capacitive, and RF isolation technologies.



FIG. 2 schematically illustrates a solid-state power interrupter according to another exemplary embodiment of the disclosure. In particular, FIG. 2 schematically illustrates a solid-state power interrupter 200 which is similar to the solid-state power interrupter 100 of FIG. 1, except that the solid-state power interrupter 200 further comprises isolation circuitry 210 to provide galvanic isolation between the solid-state power interrupter 200 and the load 20 when the first and second solid-state switches 102 and 104 are turned off. In some embodiments, the isolation circuitry 210 is connected across the load hot terminal 100C and the load neutral terminal 100D. The isolation circuitry 210 is configured to shunt the load 20 from unwanted leakage current flow from the AC mains 10 though the switched-off solid-state switches 102 and 104. When the first and second solid-state switches 102 and 104 are turned-off, the first and second solid-state switches 102 and 104 can generate a small amount of leakage current. For example, when the first and second solid-state switches 102 and 104 are in a switched-off state (e.g., cutoff mode), a small amount of leakage current (e.g., 200 uA) can flow through the first and second solid-state switches 102 and 104 and generate a sizable voltage drop across the load 20 when the load 20 comprises a high impedance load. In this regard, when activated, the isolation circuitry 210 provides a short circuit between the load hot terminal 100C and the load neutral terminal 100D to shunt the load 20 from any unwanted leakage current flow though the switched-off solid-state switches 102 and 104.


In some embodiments, the isolation circuitry 210 comprises a control circuit 220, a solid-state bidirectional switch comprising MOSFET switches 222 and 224 and associated body diodes 222-1 and 224-1. When the first and second solid-state switches 102 and 104 are turned off, the control circuit 220 generates gate control voltages to activate the MOSFET switches 222 and 224, and thereby create a short circuit path between the load hot terminal 100C and the load neutral terminal 100D, which allows any leakage current from the deactivated first and second solid-state switches 102 and 104 to flow through the isolation circuitry 210, and thereby shunt the unwanted leakage to prevent such leakage current from flowing into the load 20. The effect of bypassing or shunting leakage current away from the load 20 serves to isolate (e.g., galvanically isolate) the load 120 from the solid-state power interrupter 200 when the first and second switches 102 and 104 are in a switched-off state in a way that is equivalent to a galvanic isolation technique which implements an air-gap between the AC mains 10 and the load 20. In this configuration, the isolation circuitry 210 serves as a pseudo air-gap.



FIG. 3 schematically illustrates a solid-state power interrupter according to another exemplary embodiment of the disclosure. In particular, FIG. 3 schematically illustrates a solid-state power interrupter 300 comprising a single pole single throw (SPST) switch framework in which the first solid-state switch 102 and the second solid-state switch 104 are serially connected in the hot line path between the line hot terminal 100A and the load hot terminal 100C, thereby providing a solid-state bidirectional switch disposed in the hot line path of the solid-state power interrupter 300. The solid-state power interrupter 300 further comprises control circuitry 310 to implement an exemplary embodiment of the control circuitry 110 and associated functions (e.g., self-biasing driver circuitry, fault detection circuitry, force-turn off control circuitry) as discussed above in conjunction with FIG. 1.


For example, as schematically illustrated in FIG. 3, the control circuitry 310 comprises a current sense resistor 312, an operational amplifier 314, a first control switch 316, a second control switch 318, a first diode 320, a second diode 322, a first resistor 324, a second resistor 326, a third resistor 328, a Zener diode 330, and a capacitor 332. In some embodiments, the first and second diodes 320 and 322, the resistors 324, 326, and 328, the Zener diode 330, and the capacitor 332 collectively implement self-biasing driver circuitry that is configured to utilize AC power from the AC mains 10 to generate a regulated DC voltage at an internal node N1 to drive the control inputs (e.g., gate terminals) of the first and second solid-state switches 102 and 104 and thereby activate the first and second solid-state switches 102 and 104.


As schematically illustrated in FIG. 3, the first diode 320 and the first resistor 324 are serially connected between the hot line path (e.g., the line hot terminal 100A node) and the internal node N1. In addition, the second diode 322 and the second resistor 326 are serially connected between the neutral line path (e.g., the line neutral terminal 100B node) and the internal node N1. In operation, during a negative half cycle of the AC supply voltage waveform of the AC mains 10, the second diode 322 is activated, and current flows from the line neutral 12 to the line hot 11 through the second diode 322, the second resistor 326, the capacitor 332, and the body diode 102-1 of the first solid-state switch 102. This current flow causes a voltage across the capacitor 332 to increase until the capacitor voltage reaches a clamping voltage (i.e., Zener voltage) of the Zener diode 330. In other words, the Zener voltage of the Zener diode 330 limits the maximum level of the self-bias turn-on threshold voltage (VGS) which is generated on the internal node N1 to turn on the first and second solid-state switches 102 and 104.


In this exemplary embodiment, the voltage level on the internal node N1 is limited by the Zener voltage (i.e., reverse breakdown voltage) of the Zener diode 330 such that the Zener diode 330 serves as a solid-state clamp to limit the driving voltage on the internal node N1 to drive the control inputs (e.g., gate terminals) of the first and second solid-state switches 102 and 104. In this regard, the self-bias driving voltage is input-line voltage independent, as the level of the self-bias driving voltage is limited by the solid-state clamp. During a positive half cycle of AC supply voltage waveform of the AC mains 10, the first diode 320 is activated, and current flows from the line hot 11 to the line neutral 12 through the first diode 320, the first resistor 324, the capacitor 332, and the body diode 104-1 of the second solid-state switch 104. This current flow causes charge to trickle across the Zener diode 330 to maintain the regulated DC voltage (i.e., the Zener voltage) on the internal node N1 for driving the control terminal of the first and second solid-state switches 102 and 104.


Further, in some embodiments, the current sense resistor 312, the operational amplifier 314, and the first control switch 316 collectively comprise a fault detection circuit of the control circuitry 310. The fault detection circuit is configured to (i) sense an amount of load current flowing in the hot line path through the solid-state interrupter 300, (ii) detect an occurrence of a fault condition, such as short-circuit fault, an over-current fault, etc., based on the sensed current level, and (iii) in response to detecting the fault condition, shunt the control inputs (e.g., gate terminals) of the first and second solid-state switches 102 and 104 to thereby deactivate the first and second solid-state switches 102 and 104 and interrupt power to the load 20.


As schematically illustrated in FIG. 3, the sense resistor 312 is serially connected between the source terminals (S) (e.g., between nodes N2 and N3) of the first and second solid-state switches 102 and 104. The operational amplifier 314 comprises first and second input terminals (e.g., differential input terminals) which are connected to the nodes N2 and N3 across the sense resistor 312. The operational amplifier 314 comprises an output terminal that is connected to the first control switch 316. In some embodiments, the first control switch 316 comprises a bipolar junction transistor (BJT) device having a base terminal connected to the output terminal of the operational amplifier 314, an emitter terminal connected to the node N3, and a collector terminal connected to the gate terminals of the first and second solid-state switches 102 and 104.


During operation, the sense resistor 312 generates a burden voltage or sense voltage as a result of load current flowing in the hot line path through the sense resistor 312. The sense voltage is applied to the differential inputs of the operational amplifier 314, and the operational amplifier 314 amplifies the sense voltage to generate an output voltage that is applied to the base terminal of the first control switch 316. When the output voltage of operational amplifier 314 is high enough (e.g., base-emitter voltage VBE is about 0.7 V), the first control switch 316 will turn on, which shunts the gate and source terminals of the first and second solid-state switches 102 and 104, and thereby causes the first and second solid-state switches 102 and 104 to turn off and interrupt power to the load 20.


In some embodiments, the sense resistor 312 has a very small resistance value such as on the order of 1 milliohm or less (e.g., 10× less than 1 milliohm). In this regard, the sense voltage across the sense resistors 312 is negligible in terms of causing minimal power dissipation, but yet sufficient for current sensing. The operational amplifier 314 is configured to have sufficient gain to be able to drive the first control switch 316, even with a relatively small voltage input corresponding to the voltage drop across the sense resistor 312. In this regard, the resistance value of the sense resistor 312 and the gain of the operational amplifier 314 are selected for a target load current limit (e.g., 100 amperes) to ensure that the output of the operational amplifier 314 generates a sufficient voltage to turn on the first control switch 316 when the magnitude of load current that flows through the sense resistor 312 reaches or exceeds the target current limit. In other words, the sense resistor 312 can have a relatively small resistance value (e.g., 1 milliohm) which generates a relatively small sense voltage and minimizes power dissipation for normal circuit operation, but which is amplified by the operational amplifier 314 to enable over-current detection using the small sense voltage. Moreover, the resistance value of the sense resistor 312 can remain fixed (e.g., 1 milliohm) while the gain of the operational amplifier 314 is adjusted as desired to adjust the target load current level for over-current and short circuit detection.


Furthermore, in some embodiments, the control circuitry 310 includes the second control switch 318 to implement a forced turn-off control circuit in which the solid-state power interrupter 300 is controlled by a control signal 318-s (e.g., optical signal) which is generated by, e.g., an external control system or device. In particular, the second control switch 318 is activated in response to the control signal 318-s, wherein activation of the second control switch 318 serves to shunt the gate and source terminals of the first and second solid-state switches 102 and 104, which thereby causes the first and second solid-state switches 102 and 104 to turn off and interrupt power to the load 20.


In some embodiments, the second control switch 318 comprises a phototransistor (e.g., an optical BJT device which includes a photodiode junction) or other types of optically controlled switches which receive optical signals from complementary light emitting diodes (LED) that are controlled by, e.g., a sensor device or a microcontroller. The control signal 318-s can be generated in response to remote commands (e.g., alarm signals) received from a local or a remote controller that is configured to detect fault conditions, or in response to remote commands received from an individual who can control operation of the solid-state power interrupter 300 through smart technologies implemented using, for example, an Internet-of-Things (IoT) wireless computing network, wherein the solid-state power interrupter 300 comprises a smart wireless IoT device.


In some embodiments, the control signal 318-s is generated in response to the detection of hazardous environmental conditions by one or more sensors that are configured to sense environmental conditions. For example, such sensors can include one or more of (i) a chemical sensitive detector that is configured to detect the presence of hazardous chemicals, (ii) a gas sensitive detector that is configured to detect the presence of hazardous gases, (iii) a temperature sensor that is configured to detect high temperatures indicative of, e.g., a fire, (iv) a piezoelectric detector that is configured to detect large vibrations associated with, e.g., explosions, earthquakes, etc., (v) a humidity sensor or water sensor that is configured to detect floods or damp conditions, and other types of sensors that are configured to detect for the presence or occurrence of hazardous environmental conditions that would warrant power interruption to the load 20.


In some embodiments, the control signal 318-s comprises ambient light that is sensed by the second control switch 318 which operates as a light sensor when implemented as a phototransistor. In this instance, the solid-state power interrupter 300 can be a component of an electrical light switch device such that when the intensity of the ambient light (e.g., intensity of the optical signal 318-3) reaches a certain level, the second control switch 318 is activated to turn off the first and second solid-state switches 102 and 104 an interrupt power that is delivered to a lighting element.


The optical coupling between second control switch 318 and the external control system which control the generation of the control signal 318-s essentially provides galvanic isolation between the solid-state power interrupter 300 and the external control system. In other embodiments, galvanic isolation can be implemented using magnetic, capacitive, or radio frequency (RF) isolation technologies.



FIG. 4 schematically illustrates a solid-state power interrupter according to another exemplary embodiment of the disclosure. In particular, FIG. 4 schematically illustrates a solid-state power interrupter 400 which is similar to the solid-state power interrupter 300 of FIG. 3, except the solid-state power interrupter 400 comprises the second solid-state switch 104 serially connected in the neutral line path between the line neutral terminal 100B and the load neutral terminal 100D of the solid-state interrupter 400 (similar to the exemplary embodiment of FIG. 1). In addition, the solid-state power interrupter 400 comprises control circuitry 410 which is similar to the control circuitry 310 of the solid-state power interrupter 300 of FIG. 3, except that the control circuitry 410 further comprises an additional resistor 428, Zener diode 430, and capacitor 432 to implement a separate self-biasing driver circuit that is configured to utilize AC power from the AC mains 10 to generate a regulated DC voltage (e.g., turn-on threshold voltage) at an internal node N4 to drive the gate terminal of second solid-state switch 104.


Similar to the operation of the control circuitry 310 of FIG. 3, during a negative half cycle of the AC supply voltage waveform of the AC mains 10, the second diode 322 is activated, and current flows from the line neutral 12 to the line hot 11 through the second diode 322, the second resistor 326, the capacitor 332, and the body diode 102-1 of the first solid-state switch 102. This current flow causes a voltage across the capacitor 332 to increase until the capacitor voltage reaches the Zener voltage of the Zener diode 330, whereby the Zener diode 330 serves as a solid-state clamp to limit the level of the regulated DC voltage that is maintained on the internal node N1 to drive the first solid-state switch 102.


On the other hand, during a positive half cycle of AC supply voltage waveform of the AC mains 10, the first diode 320 is activated, and current flows from the line hot 11 to the line neutral 12 through the first diode 320, the first resistor 324, the capacitor 432, and the body diode 104-1 of the second solid-state switch 104. This current flow causes a voltage across the capacitor 432 to increase until the capacitor voltage reaches the Zener voltage of the Zener diode 430, whereby the Zener diode 430 serves as a solid-state clamp to limit the level of the regulated DC voltage that is maintained on the internal node N4 to drive the second solid-state switch 104.


Furthermore, while not specifically shown in FIG. 4, a second fault detection circuit block and a second forced turn-off control circuit block (which comprise the same components, circuit connections, and functionalities as the current sense resistor 312, the operational amplifier 314, and the first and second control switches 316 and 318) can be implemented on the neutral line path to provide a separate fault detection block for sensing load current flowing on the neutral line path, and to implement a forced turn-off control of the second solid-state switch 104, using the same techniques as discussed above in conjunction with FIG. 3.



FIG. 5 schematically illustrates a solid-state power interrupter according to another exemplary embodiment of the disclosure. In particular, FIG. 5 schematically illustrates a solid-state power interrupter 500 which is similar to the solid-state power interrupter 400 of FIG. 4, except that the solid-state power interrupter 500 implements a different circuit configuration of the fault detection circuitry. In particular, as schematically illustrated in FIG. 5, the fault detection circuitry comprises a current sense resistor 512 and the first control switch 316, which are configured to (i) sense an amount of load current flowing in the hot line path through the solid-state interrupter 100, (ii) detect an occurrence of a fault condition, such as short-circuit fault, an over-current fault, etc., based on the sensed current level, and (iii) in response to detecting a fault condition, shunt the control input of the first solid-state switch 102 to thereby deactivate the first solid-state switch 102 and interrupt power to the load 20.


As schematically illustrated in FIG. 5, the sense resistor 512 is connected between nodes N2 and N3. In addition, the base terminal of the first control switch 316 (BJT device) is connected to the node N2, and the emitter terminal of the first control switch 316 is connected to the node N3. In this configuration, during operation, the sense resistor 512 generates a burden voltage or sense voltage as a result of load current flowing in the hot line path through the sense resistor 512. When the sense voltage is high enough (e.g., base-emitter voltage VBE is about 0.7 V), the first control switch 316 will turn on, which shunts the gate and source terminal of the first solid-state switch 102, and thereby causes the first solid-state switch 102 to turn off and interrupt power to the load 20.


In some embodiments, the sense resistor 512 has a resistance value that is selected for a target load current limit (e.g., 100 amperes) to ensure that the first control switch 316 is activated when the magnitude of the load current that flows through the sense resistor 512 reaches or exceeds the target load current limit. For example, assuming that the first control switch 316 is activated when the base-emitter voltage VBE reaches 0.7 V, and assuming that the load current limit is selected to be 100 amperes, the sense resistor would have a resistance of 0.007 ohms (i.e., V=IR, where 0.7 V=100 A×0.007 ohms).


Furthermore, while not specifically shown in FIG. 5, a second fault detection circuit block and a second forced turn-off control circuit block (which comprise the same components, circuit connections, and functionalities as the current sense resistor 512, and the first and second control switches 316 and 318) can be implemented on the neutral line path to provide a separate fault detection block for sensing load current flowing on the neutral line path, and to implement a forced turn-off control of the second solid-state switch 104, using the same techniques as discussed above.


As further shown in FIG. 5, the solid-state power interrupter 500 further comprises isolation circuitry 520, which is connected across the load hot terminal 100C and the load neutral terminal 100D, to provide galvanic isolation between the solid-state power interrupter 500 and the load 20 when the solid-state switches 102 and 104 are turned off. In some embodiments, the isolation circuitry 520 implements the isolation circuitry 210 shown in FIG. 2. It is to be understood that the isolation circuitry 210 of FIG. 2 can be implemented in the exemplary embodiments of the solid-state power interrupters 300 and 400 shown in FIGS. 3 and 4.



FIG. 6 schematically illustrates an AC-to-DC converter and regulator circuit according to an embodiment of the disclosure. In particular, FIG. 6 schematically illustrates an AC-to-DC converter and regulator circuit 600 which has a circuit framework that is based on the self-biasing driver circuitry of the solid-state power interrupter 500 of FIG. 5. The AC-to-DC converter and regulator circuit 600 is configured to utilize AC power from the AC mains 10 to generate two regulated DC voltages VDC1 and VDC2 at nodes N1 and N2, respectively. In FIG. 5, the regulated DC voltages VDC1 and VDC2 are utilized to drive the gate terminals of the respective first and second solid-state switches 102 and 104. However, the AC-to-DC converter and regulator circuit 600 can be implemented in other applications to generate regulated DC voltages from AC power.


As shown in FIG. 6, the AC-to-DC converter and regulator circuit 600 comprises discrete diodes 602 and 604, which correspond to the parasitic body diodes 102-1 and 104-1, respectively, in FIG. 5. The AC-to-DC converter and regulator circuit 600 further comprises a first clamping circuit block comprising a first Zener diode 610 and a first capacitor 612 connected to the first node N1, and a second clamping circuit block comprising a second Zener diode 614 and a second capacitor 616 connected to the second node N2. The AC-to-DC converter and regulator circuit 600 further comprises a diode 620 and resistor 622 serially connected between an AC line input terminal 600A and the second node N2, and a diode 624 and resistor 626 serially connected between an AC neutral line input terminal 600B and the first node N1.


During a negative half cycle of an AC supply voltage waveform of the AC mains 10, the diodes 624 and 602 are activated, and current flows from the line neutral 12 to the line hot 11 through the diode 624, the resistor 626, the first capacitor 612, and the diode 602. This current flow causes a voltage across the first capacitor 612 to increase until the capacitor voltage reaches a Zener voltage of the first Zener diode 610. In this regard, the first Zener diode 610 serves as a solid-state clamp to limit the level of the regulated DC voltage VDC1 that is maintained on the first node N1. On the other hand, during a positive half cycle of AC supply voltage waveform of the AC mains 10, the diodes 620 and 604 are activated, and current flows from the line hot 11 to the line neutral 12 through the diode 620, the resistor 622, the second capacitor 616, and the diode 604. This current flow causes a voltage across the second capacitor 616 to increase until the capacitor voltage reaches the Zener voltage of the second Zener diode 614. In this regard, the second Zener diode 614 serves as a solid-state clamp to limit the level of the regulated DC voltage VDC2 that is maintained on the second node N2.


Exemplary embodiments of the disclosure as shown in FIGS. 1, 2, 3, 4, and 5 include novel architectures for solid-state power interrupter devices that can be disposed between an input energy source and an output load. While the exemplary solid-state power interrupters are generically depicted as connecting the AC mains 10 to a load 20, it is to be understood that the exemplary power interrupters can be embodied in various devices and applications. For example, in some embodiments, the power interrupters shown in FIGS. 1-5 can be implemented in an electrical circuit breaker device (e.g., intelligent circuit breaker device), which is disposed in a circuit breaker distribution panel. In addition, in some embodiments, the power interrupters shown in FIGS. 1-5 can be implemented in an electrical receptacle device, or an electrical light switch (e.g., a wall-mounted light switch or a light switch implemented in a smart light fixture or smart ceiling light bulb socket, etc.). In other embodiments, the power interrupters shown in FIGS. 1-5 may comprise standalone devices that can be disposed within a gang box in an electrical network of a home or building and configured to protect one or more electrical devices, appliances, loads, etc., that are connected in a branch circuit downstream of the standalone power interrupter device.


Although exemplary embodiments have been described herein with reference to the accompanying figures, it is to be understood that the invention is not limited to those precise embodiments, and that various other changes and modifications may be made therein by one skilled in the art without departing from the scope of the appended claims.

Claims
  • 1. A power interrupter device, comprising: a solid-state bidirectional switch connected between a first input terminal and an output terminal of the power interrupter device, wherein the first input terminal and a second input terminal of the power interrupter device are configured to couple to an alternating current (AC) power source; andcontrol circuitry configured to control the solid-state bidirectional switch, wherein the control circuitry comprises: driver circuitry configured to generate a regulated direct current (DC) voltage using current drawn from positive and negative half-cycles of the AC power source when the AC power source is coupled to the first and second input terminals of the power interrupter device, and apply the regulated DC voltage to a control input of the solid-state bidirectional switch to place the solid-state bidirectional switch in an on state; andfault detection circuitry configured to (i) sense a level of current flowing in an electrical path between the first input terminal and the output terminal of the power interrupter device, (ii) detect an occurrence of a fault condition based on the sensed current level, and (iii) couple the control input to a second terminal of the solid-state bidirectional switch to place the solid-state bidirectional switch in an off state, in response to detecting the occurrence of the fault condition;wherein the driver circuitry comprises: a voltage clamping circuit comprising a capacitor and a Zener diode connected in parallel between a first node and a second node, wherein the first node is coupled to the control input of the solid-state bidirectional switch and the second node is coupled to the second terminal of the solid-state bidirectional switch, wherein the regulated DC voltage comprises a Zener voltage of the Zener diode;a first branch circuit coupling the first input terminal of the power interrupter device to the first node and configured to apply current to the voltage clamping circuit during positive half-cycles of the AC power source; anda second branch circuit coupling the second input terminal of the power interrupter device to the first node and configured to apply current to the voltage clamping circuit during negative half-cycles of the AC power source.
  • 2. The power interrupter device of claim 1, wherein: the first branch circuit comprises a first diode and a first resistor connected in series between the first input terminal of the power interrupter device and the first node; andthe second branch circuit comprises a second diode and a second resistor connected in series between the second input terminal of the power interrupter device and the first node.
  • 3. The power interrupter device of claim 1, wherein the fault detection circuitry comprises: a current sense resistor serially connected between the second node and a third node in the electrical path between the first input terminal and the output terminal of the power interrupter device;an operational amplifier comprising differential input terminals connected to the second and third nodes across the current sense resistor; anda first control switch having a control input connected to an output of the operational amplifier.
  • 4. The power interrupter device of claim 3, wherein the current sense resistor comprises a resistance that is no greater than about one milliohm.
  • 5. The power interrupter device of claim 3, wherein the first control switch comprises a bipolar junction transistor (BJT) device having a base terminal connected to the output terminal of the operational amplifier, an emitter terminal connected to the third node in the electrical path between the first input terminal and the output terminal of the power interrupter device, and a collector terminal connected to the control input of the solid-state bidirectional switch.
  • 6. The power interrupter device of claim 1, wherein the fault detection circuitry comprises: a current sense resistor serially connected between the second node and a third node in the electrical path between the first input terminal and the output terminal of the power interrupter device; anda first control switch having a first terminal connected the second node in the electrical path, a second terminal connected to the third node in the electrical path, and a third terminal connected to connected to the control input of the solid-state bidirectional switch.
  • 7. The power interrupter device of claim 6, wherein the first control switch comprises a bipolar junction transistor (BJT) device having a base terminal connected to the second node, an emitter terminal connected to the third node, and a collector terminal connected to the control input of the solid-state bidirectional switch.
  • 8. The power interrupter device of claim 1, wherein the control circuitry further comprises a forced turn-off control circuit configured to (i) receive an external control signal and (ii) couple the control input to the second terminal of the solid-state bidirectional switch to place the solid-state bidirectional switch in the off state, in response to the external control signal.
  • 9. The power interrupter device of claim 8, wherein the forced turn-off control circuit comprises a second control switch having a first control terminal configured to receive the external control signal, a second terminal connected to a third node in the electrical path between the first input terminal and the output terminal of the power interrupter device, and a third terminal connected to the control input of the solid-state bidirectional switch.
  • 10. The power interrupter device of claim 9, wherein the second control switch comprises a phototransistor device having a base terminal configured to receive an optical control signal, an emitter terminal connected to the third node in the electrical path, and a collector terminal connected to the control input of the solid-state bidirectional switch.
  • 11. The power interrupter device of claim 1, further comprising an isolation circuit which is configured to shunt leakage current from a load circuit connected to the power interrupter device, when the solid-state bidirectional switch is in the off state.
  • 12. The power interrupter device of claim 1, wherein: the solid-state bidirectional switch comprises a first metal-oxide-semiconductor field-effect transistor (MOSFET) switch and a second MOSFET switch;the control input of the solid-state bidirectional switch comprises commonly connected gate terminals of the first and second MOSFET switches; andthe second terminal of the solid-state bidirectional switch comprises source terminals of the first and second MOSFET switches.
  • 13. The power interrupter device of claim 12, wherein the solid-state bidirectional switch is implemented in a single pole single throw configuration wherein the first MOSFET switch and the second MOSFET switch are serially connected in the electrical path between the first input terminal and the output terminal of the power interrupter device.
  • 14. A method comprising: controlling a solid-state bidirectional switch, which is connected between a first input terminal and an output terminal of a power interrupter device, to place the solid-state bidirectional switch in one of (i) an on state to provide an electrical connection in an electrical path between the first input terminal and the output terminal, and (ii) an off state;wherein controlling the solid-state bidirectional switch comprises: generating a regulated direct current (DC) voltage using current drawn from positive and negative half-cycles of an alternating current (AC) power source when the AC power source is coupled to the first input terminal and a second input terminal of the power interrupter device, and applying the regulated DC voltage to a control input of the solid-state bidirectional switch to place the solid-state bidirectional switch in the on state; anddetecting for a fault condition by (i) sensing a level of current flowing in the electrical path between the first input terminal and the output terminal of the power interrupter device, (iii) detecting an occurrence of the fault condition based on the sensed current level, and (iii) coupling the control input to a second terminal of the solid-state bidirectional switch to place the solid-state bidirectional switch in the off state, in response to detecting the occurrence of the fault condition;wherein generating the regulated DC voltage comprises applying current drawn from the positive and negative half-cycles of the AC power source to a voltage clamping circuit which comprises a capacitor and a Zener diode connected in parallel between a first node and a second node, to charge the capacitor to a Zener voltage of a Zener diode, wherein the regulated DC voltage comprises the Zener voltage of the Zener diode, and wherein the first node is coupled to the control input of the solid-state bidirectional switch and the second node is coupled to the second terminal of the solid-state bidirectional switch; andwherein applying the current drawn from the positive and negative half-cycles of the AC power source to the voltage clamping circuit comprises:utilizing a first branch circuit to couple the first input terminal of the power interrupter device to the first node and apply current to the voltage clamping circuit during positive half-cycles of the AC power source; andutilizing a second branch circuit to couple the second input terminal of the power interrupter device to the first node and apply current to the voltage clamping circuit during negative half-cycles of the AC power source.
  • 15. The method of claim 14, wherein: the first branch circuit comprises a first diode and a first resistor connected in series between the first input terminal of the power interrupter device and the first node; andthe second branch circuit comprises a second diode and a second resistor connected in series between the second input terminal of the power interrupter device and the first node.
  • 16. The method of claim 14, wherein: sensing the level of current flowing in the electrical path between the first input terminal and the output terminal of the power interrupter device comprises sensing a voltage that is generated by a current sense resistor in response to the current flowing in the electrical path through the current sense resistor; anddetecting for the occurrence of the fault condition based on the sensed current level, and coupling the control input to the second terminal of the solid-state bidirectional switch to place the solid-state bidirectional switch in the off state, in response detecting the occurrence of the fault condition comprises: amplifying the sensed voltage to generate an amplified voltage;applying the amplified voltage to a control input of a first control switch; andactivating the first control switch in response to the amplified voltage, wherein activation of the first control switch causes the coupling of the control input to the second terminal of the solid-state bidirectional switch.
  • 17. The method of claim 14, further comprising: applying an optical control signal to activate an optical switch of the power interrupter device; andcoupling the control input to the second terminal of the solid-state bidirectional switch to place the solid-state bidirectional switch in the off state, in response the activation of the optical switch.
  • 18. A power interrupter device, comprising: a solid-state bidirectional switch connected between a first input terminal and an output terminal of the power interrupter device, wherein the first input terminal and a second input terminal of the power interrupter device are configured to couple to an alternating current (AC) power source;driver circuitry configured to generate a regulated direct current (DC) voltage using current drawn from positive and negative half-cycles of the AC power source when the AC power source is coupled to the first and second input terminals of the power interrupter device, and apply the regulated DC voltage to a control input of the solid-state bidirectional switch to place the solid-state bidirectional switch in an on state; andfault detection circuitry configured to detect an occurrence of a fault condition and place the solid-state bidirectional switch in an off state, in response to detecting the occurrence of the fault condition;wherein the driver circuitry comprises: a voltage clamping circuit comprising a capacitor and a Zener diode connected in parallel between a first node and a second node, wherein the first node is coupled to the control input of the solid-state bidirectional switch and the second node is coupled to a second terminal of the solid-state bidirectional switch, wherein the regulated DC voltage comprises a Zener voltage of the Zener diode;a first branch circuit coupling the first input terminal of the power interrupter device to the first node and configured to apply current to the voltage clamping circuit during positive half-cycles of the AC power source; anda second branch circuit coupling the second input terminal of the power interrupter device to the first node and configured to apply current to the voltage clamping circuit during negative half-cycles of the AC power source.
  • 19. The power interrupter device of claim 18, wherein: the first branch circuit comprises a first diode and a first resistor connected in series between the first input terminal of the power interrupter device and the first node; andthe second branch circuit comprises a second diode and a second resistor connected in series between the second input terminal of the power interrupter device and the first node.
  • 20. The power interrupter device of claim 18, wherein the fault detection circuitry comprises: a current sense resistor serially connected between the second node and a third node in an electrical path between the first input terminal and the output terminal of the power interrupter device; andcontrol circuitry configured to (i) sense a level of current flowing through the current sense resistor, (ii) detect an occurrence of a fault condition based on the sensed level of current flowing through the current sense resistor, and (iii) place the solid-state bidirectional switch in the off state, in response to detecting the occurrence of the fault condition based on the sensed level of current flowing through the current sense resistor.
CROSS-REFERENCE TO RELATED APPLICATION

This application is a Continuation-in-Part of U.S. patent application Ser. No. 16/029,549, filed on Jul. 7, 2018, the disclosure of which is incorporated herein by reference.

US Referenced Citations (352)
Number Name Date Kind
3638102 Pelka Jan 1972 A
3777253 Callan Dec 1973 A
4074345 Ackermann Feb 1978 A
4127895 Krueger Nov 1978 A
4245148 Gisske et al. Jan 1981 A
4245184 Billings et al. Jan 1981 A
4245185 Mitchell et al. Jan 1981 A
4257081 Sauer et al. Mar 1981 A
4466071 Russell, Jr. Aug 1984 A
4487458 Janutka Dec 1984 A
4581540 Guajardo Apr 1986 A
4631625 Alexander et al. Dec 1986 A
4636907 Howell Jan 1987 A
4649302 Damiano et al. Mar 1987 A
4653084 Ahuja Mar 1987 A
4682061 Donovan Jul 1987 A
4685046 Sanders Aug 1987 A
4709296 Hung et al. Nov 1987 A
4760293 Hebenstreit Jul 1988 A
4766281 Buhler Aug 1988 A
4812995 Girgis et al. Mar 1989 A
4888504 Kinzer Dec 1989 A
5121282 White Jun 1992 A
5276737 Micali Jan 1994 A
5307257 Fukushima Apr 1994 A
5371646 Biegelmeier Dec 1994 A
5410745 Friesen et al. Apr 1995 A
5559656 Chokhawala Sep 1996 A
5646514 Tsunetsugu Jul 1997 A
5654880 Brkovic et al. Aug 1997 A
5731732 Williams Mar 1998 A
5793596 Jordan et al. Aug 1998 A
5796274 Willis et al. Aug 1998 A
5859756 Pressman Jan 1999 A
5870009 Serpinet et al. Feb 1999 A
5933305 Schmalz et al. Aug 1999 A
6081123 Kasbarian et al. Jun 2000 A
6111494 Fischer et al. Aug 2000 A
6115267 Herbert Sep 2000 A
6141197 Kim et al. Oct 2000 A
6160689 Stolzenberg Dec 2000 A
6167329 Engel et al. Dec 2000 A
6169391 Lei Jan 2001 B1
6188203 Rice et al. Feb 2001 B1
6300748 Miller Oct 2001 B1
6369554 Aram Apr 2002 B1
6483290 Hemminger et al. Nov 2002 B1
6515434 Biebl Feb 2003 B1
6538906 Ke et al. Mar 2003 B1
6756998 Bilger Jun 2004 B1
6788512 Vicente et al. Sep 2004 B2
6813720 Leblanc Nov 2004 B2
6839208 Macbeth et al. Jan 2005 B2
6843680 Gorman Jan 2005 B2
6906476 Beatenbough et al. Jun 2005 B1
6984988 Yamamoto Jan 2006 B2
7045723 Projkovski May 2006 B1
7053626 Monter et al. May 2006 B2
7110225 Hick Sep 2006 B1
7164238 Kazanov et al. Jan 2007 B2
7292419 Nemir Nov 2007 B1
7297603 Robb et al. Nov 2007 B2
7304828 Shvartsman Dec 2007 B1
D558683 Pape et al. Jan 2008 S
7319574 Engel Jan 2008 B2
D568253 Gorman May 2008 S
7367121 Gorman May 2008 B1
7586285 Gunji Sep 2009 B2
7595680 Morita et al. Sep 2009 B2
7610616 Masuouka et al. Oct 2009 B2
7633727 Zhou et al. Dec 2009 B2
7643256 Wright et al. Jan 2010 B2
7693670 Durling et al. Apr 2010 B2
7715216 Liu et al. May 2010 B2
7729147 Wong et al. Jun 2010 B1
7731403 Lynam et al. Jun 2010 B2
7746677 Unkrich Jun 2010 B2
7821023 Yuan et al. Oct 2010 B2
D638355 Chen May 2011 S
7936279 Tang et al. May 2011 B2
7948719 Xu May 2011 B2
8124888 Etemad-Moghadam et al. Feb 2012 B2
8256675 Baglin et al. Sep 2012 B2
8374729 Chapel et al. Feb 2013 B2
8463453 Parsons, Jr. Jun 2013 B2
8482885 Billingsley et al. Jul 2013 B2
8560134 Lee Oct 2013 B1
8649883 Lu et al. Feb 2014 B2
8664886 Ostrovsky Mar 2014 B2
8717720 DeBoer May 2014 B2
8718830 Smith May 2014 B2
8781637 Eaves Jul 2014 B2
8817441 Callanan Aug 2014 B2
8890371 Gotou Nov 2014 B2
D720295 Dodal et al. Dec 2014 S
8947838 Yamai et al. Feb 2015 B2
9054587 Neyman Jun 2015 B2
9055641 Shteynberg et al. Jun 2015 B2
9287792 Telefus et al. Mar 2016 B2
9325516 Pera et al. Apr 2016 B2
9366702 Steele et al. Jun 2016 B2
9439318 Chen Sep 2016 B2
9443845 Stafanov et al. Sep 2016 B1
9502832 Ullahkhan et al. Nov 2016 B1
9509083 Yang Nov 2016 B2
9515560 Telefus et al. Dec 2016 B1
9577420 Ostrovsky et al. Feb 2017 B2
9621053 Telefus Apr 2017 B1
9755630 Urciuoli Sep 2017 B2
9774182 Phillips Sep 2017 B2
9836243 Chanler et al. Dec 2017 B1
D814424 DeCosta Apr 2018 S
9965007 Amelio et al. May 2018 B2
9990786 Ziraknejad Jun 2018 B1
9991633 Robinet Jun 2018 B2
10072942 Wootton et al. Sep 2018 B2
10101716 Kim Oct 2018 B2
10187944 MacAdam et al. Jan 2019 B2
10469077 Telefus et al. Nov 2019 B2
D879056 Telefus Mar 2020 S
D881144 Telefus Apr 2020 S
10615713 Telefus et al. Apr 2020 B2
10645536 Barnes et al. May 2020 B1
10756662 Steiner et al. Aug 2020 B2
10812072 Telefus et al. Oct 2020 B2
10812282 Telefus et al. Oct 2020 B2
10819336 Telefus et al. Oct 2020 B2
10834792 Telefus et al. Nov 2020 B2
10887447 Jakobsson et al. Jan 2021 B2
10936749 Jakobsson Mar 2021 B2
10951435 Jakobsson Mar 2021 B2
10985548 Telefus Apr 2021 B2
10992236 Telefus et al. Apr 2021 B2
10993082 Jakobsson Apr 2021 B2
20020109487 Telefus et al. Aug 2002 A1
20030052544 Yamamoto et al. Mar 2003 A1
20030063420 Pahl et al. Apr 2003 A1
20030151865 Maio Aug 2003 A1
20040032756 Van Den Bossche Feb 2004 A1
20040251884 Steffie et al. Dec 2004 A1
20050128657 Covault Jun 2005 A1
20050162139 Hirst Jul 2005 A1
20050185353 Rasmussen et al. Aug 2005 A1
20050286184 Campolo Dec 2005 A1
20060285366 Radecker et al. Dec 2006 A1
20070008747 Soldano et al. Jan 2007 A1
20070143826 Sastry et al. Jun 2007 A1
20070159745 Berberich et al. Jul 2007 A1
20070188025 Keagy et al. Aug 2007 A1
20070236152 Davis et al. Oct 2007 A1
20080006607 Boeder et al. Jan 2008 A1
20080136581 Heilman et al. Jun 2008 A1
20080151444 Upton Jun 2008 A1
20080174922 Kimbrough Jul 2008 A1
20080180866 Wong Jul 2008 A1
20080197699 Yu Aug 2008 A1
20080204950 Zhou et al. Aug 2008 A1
20080253153 Wu et al. Oct 2008 A1
20080281472 Podgorny et al. Nov 2008 A1
20090034139 Martin Feb 2009 A1
20090067201 Cai Mar 2009 A1
20090168273 Yu et al. Jul 2009 A1
20090195349 Frader-Thompson et al. Aug 2009 A1
20090203355 Clark Aug 2009 A1
20090213629 Liu et al. Aug 2009 A1
20090284385 Tang et al. Nov 2009 A1
20100091418 Xu Apr 2010 A1
20100145479 Griffiths Jun 2010 A1
20100145542 Chapel et al. Jun 2010 A1
20100156369 Kularatna et al. Jun 2010 A1
20100188054 Asakura et al. Jul 2010 A1
20100231135 Hum et al. Sep 2010 A1
20100231373 Romp Sep 2010 A1
20100244730 Nerone Sep 2010 A1
20100261373 Roneker Oct 2010 A1
20100284207 Watanabe et al. Nov 2010 A1
20100296207 Schumacher et al. Nov 2010 A1
20100320840 Fridberg Dec 2010 A1
20110062936 Bartelous Mar 2011 A1
20110121752 Newman, Jr. et al. May 2011 A1
20110127922 Sauerlaender Jun 2011 A1
20110156610 Ostrovsky et al. Jun 2011 A1
20110273103 Hong Nov 2011 A1
20110292703 Cuk Dec 2011 A1
20110299547 Diab et al. Dec 2011 A1
20110301894 Sanderford, Jr. Dec 2011 A1
20110305054 Yamagiwa et al. Dec 2011 A1
20110307447 Sabaa et al. Dec 2011 A1
20120026632 Acharya et al. Feb 2012 A1
20120075897 Fujita Mar 2012 A1
20120089266 Tomimbang et al. Apr 2012 A1
20120095605 Tran Apr 2012 A1
20120133289 Hum et al. May 2012 A1
20120275076 Shono Nov 2012 A1
20120311035 Guha et al. Dec 2012 A1
20130051102 Huang et al. Feb 2013 A1
20130057247 Russell et al. Mar 2013 A1
20130063851 Stevens et al. Mar 2013 A1
20130066478 Smith Mar 2013 A1
20130088160 Chai et al. Apr 2013 A1
20130119958 Gasperi May 2013 A1
20130128396 Danesh et al. May 2013 A1
20130170261 Lee et al. Jul 2013 A1
20130174211 Aad et al. Jul 2013 A1
20130245841 Ahn et al. Sep 2013 A1
20130253898 Meagher et al. Sep 2013 A1
20130261821 Lu et al. Oct 2013 A1
20130300534 Myllymaki Nov 2013 A1
20130329331 Erger et al. Dec 2013 A1
20140043732 McKay et al. Feb 2014 A1
20140067137 Amelio et al. Mar 2014 A1
20140074730 Arensmeier et al. Mar 2014 A1
20140085940 Lee et al. Mar 2014 A1
20140096272 Makofsky et al. Apr 2014 A1
20140097809 Follic et al. Apr 2014 A1
20140159593 Chu et al. Jun 2014 A1
20140203718 Yoon et al. Jul 2014 A1
20140246926 Cruz et al. Sep 2014 A1
20140266698 Hall et al. Sep 2014 A1
20140268935 Chiang Sep 2014 A1
20140276753 Wham et al. Sep 2014 A1
20150042274 Kim et al. Feb 2015 A1
20150055261 Lubick et al. Feb 2015 A1
20150097430 Scruggs Apr 2015 A1
20150116886 Zehnder et al. Apr 2015 A1
20150154404 Patel et al. Jun 2015 A1
20150155789 Freeman et al. Jun 2015 A1
20150180469 Kim Jun 2015 A1
20150185261 Frader-Thompson et al. Jul 2015 A1
20150216006 Lee et al. Jul 2015 A1
20150236587 Kim et al. Aug 2015 A1
20150253364 Hieda et al. Sep 2015 A1
20150256355 Pera et al. Sep 2015 A1
20150256665 Pera et al. Sep 2015 A1
20150282223 Wang et al. Oct 2015 A1
20150309521 Pan Oct 2015 A1
20150317326 Bandarupalli et al. Nov 2015 A1
20150355649 Ovadia Dec 2015 A1
20150362927 Giorgi Dec 2015 A1
20160012699 Lundy Jan 2016 A1
20160018800 Gettings et al. Jan 2016 A1
20160035159 Ganapathy Achari et al. Feb 2016 A1
20160057841 Lenig Feb 2016 A1
20160069933 Cook et al. Mar 2016 A1
20160077746 Muth et al. Mar 2016 A1
20160081143 Wang Mar 2016 A1
20160110154 Qureshi et al. Apr 2016 A1
20160117917 Prakash et al. Apr 2016 A1
20160126031 Wootton et al. May 2016 A1
20160178691 Simonin Jun 2016 A1
20160181941 Gratton et al. Jun 2016 A1
20160195864 Kim Jul 2016 A1
20160247799 Stafanov et al. Aug 2016 A1
20160259308 Fadell et al. Sep 2016 A1
20160260135 Zomet et al. Sep 2016 A1
20160277528 Guilaume et al. Sep 2016 A1
20160294179 Kennedy et al. Oct 2016 A1
20160343083 Hering et al. Nov 2016 A1
20160360586 Yang et al. Dec 2016 A1
20160374134 Kweon et al. Dec 2016 A1
20170004948 Leyh Jan 2017 A1
20170019969 O'Neil et al. Jan 2017 A1
20170026194 Vijayrao et al. Jan 2017 A1
20170033942 Koeninger Feb 2017 A1
20170063225 Guo et al. Mar 2017 A1
20170086281 Avrahamy Mar 2017 A1
20170099647 Shah et al. Apr 2017 A1
20170170730 Sugiura Jun 2017 A1
20170171802 Hou et al. Jun 2017 A1
20170179946 Turvey Jun 2017 A1
20170195130 Landow et al. Jul 2017 A1
20170212653 Kanojia et al. Jul 2017 A1
20170230193 Apte et al. Aug 2017 A1
20170244241 Wilson et al. Aug 2017 A1
20170256934 Kennedy et al. Sep 2017 A1
20170256941 Bowers et al. Sep 2017 A1
20170256956 Irish et al. Sep 2017 A1
20170277709 Strauss et al. Sep 2017 A1
20170314743 Del Castillo et al. Nov 2017 A1
20170322049 Wootton et al. Nov 2017 A1
20170322258 Miller et al. Nov 2017 A1
20170338809 Stefanov et al. Nov 2017 A1
20170347415 Cho et al. Nov 2017 A1
20170366950 Arbon Dec 2017 A1
20180026534 Turcan Jan 2018 A1
20180054862 Takagimoto et al. Feb 2018 A1
20180061158 Greene Mar 2018 A1
20180146369 Kennedy, Jr. May 2018 A1
20180174076 Fukami Jun 2018 A1
20180196094 Fishburn et al. Jul 2018 A1
20180201302 Sonoda et al. Jul 2018 A1
20180254959 Mantyjarvi et al. Sep 2018 A1
20180285198 Dantkale et al. Oct 2018 A1
20180287802 Brickell Oct 2018 A1
20180301006 Flint et al. Oct 2018 A1
20180307609 Qiang et al. Oct 2018 A1
20180342329 Rufo et al. Nov 2018 A1
20180359039 Daoura et al. Dec 2018 A1
20180359223 Maier et al. Dec 2018 A1
20190003855 Wootton et al. Jan 2019 A1
20190020477 Antonatos et al. Jan 2019 A1
20190028869 Kaliner Jan 2019 A1
20190036928 Meriac et al. Jan 2019 A1
20190050903 DeWitt et al. Feb 2019 A1
20190052174 Gong Feb 2019 A1
20190068716 Lauer Feb 2019 A1
20190086979 Kao et al. Mar 2019 A1
20190087835 Schwed et al. Mar 2019 A1
20190104138 Storms et al. Apr 2019 A1
20190122834 Wootton et al. Apr 2019 A1
20190140640 Telefus et al. May 2019 A1
20190165691 Telefus et al. May 2019 A1
20190207375 Telefus et al. Jul 2019 A1
20190238060 Telefus et al. Aug 2019 A1
20190245457 Telefus et al. Aug 2019 A1
20190253243 Zimmerman et al. Aug 2019 A1
20190268176 Pognant Aug 2019 A1
20190280887 Telefus et al. Sep 2019 A1
20190306953 Joyce et al. Oct 2019 A1
20190334999 Ryhorchuk et al. Oct 2019 A1
20190355014 Gerber Nov 2019 A1
20190372331 Liu et al. Dec 2019 A1
20200007126 Telefus et al. Jan 2020 A1
20200014301 Telefus Jan 2020 A1
20200014379 Telefus Jan 2020 A1
20200044883 Telefus et al. Feb 2020 A1
20200052607 Telefus et al. Feb 2020 A1
20200053100 Jakobsson Feb 2020 A1
20200106259 Telefus Apr 2020 A1
20200106260 Telefus Apr 2020 A1
20200106637 Jakobsson Apr 2020 A1
20200120202 Jakobsson et al. Apr 2020 A1
20200145247 Jakobsson May 2020 A1
20200153245 Jakobsson et al. May 2020 A1
20200159960 Jakobsson May 2020 A1
20200193785 Berglund et al. Jun 2020 A1
20200196110 Jakobsson Jun 2020 A1
20200196412 Telefus et al. Jun 2020 A1
20200260287 Hendel Aug 2020 A1
20200275266 Jakobsson Aug 2020 A1
20200287537 Telefus et al. Sep 2020 A1
20200314233 Mohalik et al. Oct 2020 A1
20200328694 Telefus et al. Oct 2020 A1
20200344596 Dong et al. Oct 2020 A1
20200365345 Telefus et al. Nov 2020 A1
20200365346 Telefus et al. Nov 2020 A1
20200365356 Telefus et al. Nov 2020 A1
20200366078 Telefus et al. Nov 2020 A1
20200366079 Telefus et al. Nov 2020 A1
20200394332 Jakobsson et al. Dec 2020 A1
20210014947 Telefus et al. Jan 2021 A1
20210119528 Telefus Apr 2021 A1
Foreign Referenced Citations (33)
Number Date Country
109075551 Jan 2021 CN
19712261 Oct 1998 DE
0016646 Oct 1980 EP
0398026 Nov 1990 EP
2560063 Feb 2013 EP
1302357 Jan 1973 GB
2458699 Sep 2009 GB
06-053779 Feb 1994 JP
2012244716 Dec 2012 JP
2013230034 Nov 2013 JP
2014030355 Feb 2014 JP
2010110951 Sep 2010 WO
2016010529 Jan 2016 WO
2016105505 Jun 2016 WO
2016110833 Jul 2016 WO
2017196571 Nov 2017 WO
2017196572 Nov 2017 WO
2017196649 Nov 2017 WO
2018075726 Apr 2018 WO
2018080604 May 2018 WO
2018080614 May 2018 WO
2018081619 May 2018 WO
2018081619 May 2018 WO
2019133110 Jul 2019 WO
2020014158 Jan 2020 WO
2020014161 Jan 2020 WO
PCTUS1954102 Feb 2020 WO
2020072516 Apr 2020 WO
PCTUS1967004 Apr 2020 WO
2020131977 Jun 2020 WO
PCTUS2033421 Sep 2020 WO
2020236726 Nov 2020 WO
PCTUS2114320 Apr 2021 WO
Non-Patent Literature Citations (54)
Entry
L. Shengyuan et al., “Instantaneous Value Sampling AC-DC Converter and its Application in Power Quantity Detection,” 2011 Third International Conference on Measuring Technology and Mechatronics Automation, Jan. 6-7, 2011, 4 pages.
H.-H. Chang et al., “Load Recognition for Different Loads with the Same Real Power and Reactive Power in a Non-intrusive Load-monitoring System,” 2008 12th International Conference on Computer Supported Cooperative Work in Design, Apr. 16-18, 2008, 6 pages.
F. Stajano et al., “The Resurrecting Duckling: Security Issues for Ad-hoc Wireless Networks,” International Workshop on Security Protocols, 1999, 11 pages.
L. Sweeney, “Simple Demographics Often Identify People Uniquely,” Carnegie Mellon University, Data Privacy Working Paper 3, 2000, 34 pages.
A. Narayanan et al., “Robust De-anonymization of Large Sparse Datasets,” IEEE Symposium on Security and Privacy, May 2008, 15 pages.
M. Alahmad et al., “Non-lntrusive Electrical Load Monitoring and Profiling Methods for Applications in Energy Management Systems,” IEEE Long Island Systems, Applications and Technology Conference, 2011, 7 pages.
K. Yang et al. “Series Arc Fault Detection Algorithm Based on Autoregressive Bispecturm Analysis,” Algorithms, vol. 8, Oct. 16, 2015, pp. 929-950.
J.-E. Park et al., “Design on Topologies for High Efficiency Two-Stage AC-DC Converter,” 2012 IEEE 7th International Power Electronics and Motion Control Conference—ECCE Asia, Jun. 2-5, 2012, China, 6 pages.
S. Cuk, “98% Efficient Single-Stage AC/DC Converter Topologies,” Power Electronics Europe, Issue 4, 2011, 6 pages.
E. Carvou et al., “Electrical Arc Characterization for Ac-Arc Fault Applications,” 2009 Proceedings of the 55th IEEE Holm Conference on Electrical Contacts, IEEE Explore Oct. 9, 2009, 6 pages.
C. Restrepo, “Arc Fault Detection and Discrimination Methods,” 2007 Proceedings of the 53rd IEEE Holm Conference on Electrical Contacts, IEEE Explore Sep. 24, 2007, 8 pages.
K. Eguchi et al., “Design of a Charge-Pump Type AC-DC Converter for RF-ID Tags,” 2006 International Symposium on Communications and Information Technologies, F4D-3, IEEE, 2006, 4 pages.
A. Ayari et al., “Active Power Measurement Comparison Between Analog and Digital Methods,” International Conference on Electrical Engineering and Software Applications, 2013, 6 pages.
G. D. Gregory et al., “The Arc-Fault Circuit Interrupter, an Emerging Product,” IEEE, 1998, 8 pages.
D. Irwin et al., “Exploiting Home Automation Protocols for Load Monitoring in Smart Buildings,” BuildSys '11: Proceedings of the Third ACM Workshop on Embedded Sensing Systems for Energy-Efficiency in Buildings, Nov. 2011, 6 pages.
B. Mrazovac et al., “Towards Ubiquitous Smart Outlets for Safety and Energetic Efficiency of Home Electric Appliances,” 2011 IEEE International Conference on Consumer Electronics, Berlin, German, Sep. 6-8, 2011, 5 pages.
J. K. Becker et al., “Tracking Anonymized Bluetooth Devices,” Proceedings on Privacy Enhancing Technologies, vol. 3, 2019, pp. 50-65.
H. Siadati et al., “Mind your SMSes: Mitigating Social Engineering in Second Factor Authentication,” Computers & Security, vol. 65, Mar. 2017, 12 pages.
S. Jerde, “The New York Times Can Now Predict Your Emotions and Motivations After Reading a Story,” https://www.adweek.com/tv-video/the-new-york-times-can-now-predict-your-emotions-and-motivations-after-reading-a-story/, Apr. 29, 2019, 3 pages.
K. Mowery et al., “Pixel Perfect: Fingerprinting Canvas in HTML5,” Proceedings of W2SP, 2012, 12 pages.
S. Kamkar, “Evercookie,” https://samy.pl/evercookie/, Oct. 11, 2010, 5 pages.
M. K. Franklin et al., “Fair Exchange with a Semi-Trusted Third Party,” Association for Computing Machinery, 1997, 6 pages.
J. Camenisch et al., “Digital Payment Systems with Passive Anonymity-Revoking Trustees,” Journal of Computer Security, vol. 5, No. 1, 1997, 11 pages.
L. Coney et al., “Towards a Privacy Measurement Criterion for Voting Systems,” Proceedings of the 2005 National Conference on Digital Government Research, 2005, 2 pages.
L. Sweeney, “k-anonymity: A Model for Protecting Privacy,” International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, vol. 1, No. 5, 2002, 14 pages.
C. Dwork, “Differential Privacy,” Encyclopedia of Cryptography and Security, 2011, 12 pages.
A. P. Felt et al., “Android Permissions: User Attention, Comprehension, and Behavior,” Symposium on Usable Privacy and Security, Jul. 11-13, 2012, 14 pages.
S. Von Solms et al., “On Blind Signatures and Perfect Crimes,” Computers & Security, vol. 11, No. 6, 1992, 3 pages.
R. Wyden, “Wyden Releases Discussion Draft of Legislation to Provide Real Protections for Americans' Privacy,” https://www.wyden.senate.gov/news/press-releases/wyden-releases-discussion-draft-of-legislation-to-provide-real-protections-for-americans-privacy, Nov. 1, 2018, 3 pages.
M. Rubio, “Rubio Introduces Privacy Bill to Protect Consumers While Promoting Innovation,” https://www.rubio.senate.gov/public/index.cfm/2019/1/rubio-introduces-privacy-bill-to-protect-consumers-while-promoting-innovation#:%7E:text=Washingt%E2%80%A6, Jan. 16, 2019, 2 pages.
C. Dwork et al., “Differential Privacy and Robust Statistics,” 41st ACM Symposium on Theory of Computing, 2009, 10 pages.
J. Camenisch et al., “Compact E-Cash,” Eurocrypt, vol. 3494, 2005, pp. 302-321.
D. L. Chaum, “Untraceable Electronic Mail, Return Addresses, and Digital Pseudonyms,” Communications of the ACM, vol. 24, No. 2, Feb. 1981, pp. 84-88.
J. Camenisch et al., “An Efficient System for Nontransferable Anonymous Credentials With Optional Anonymity Revocation,” International Conference on the Theory and Application of Cryptographic Techniques, May 6-10, 2001, 30 pages.
M. K. Reiter et al., “Crowds: Anonymity for Web Transactions,” ACM Transactions on Information and System Security, vol. 1, 1997, 23 pages.
I. Clarke et al., “Freenet: A Distributed Anonymous Information Storage and Retrieval System,” International Workshop on Designing Privacy Enhanching Technologies: Design Issues in Anonymity and Unobservability, 2001, 21 pages.
P. Golle et al., “Universal Re-encryption for Mixnets,” Lecture Notes in Computer Science, Feb. 2004, 15 pages.
Y. Lindell et al., “Multiparty Computation for Privacy Preserving Data Mining,” Journal of Privacy and Confidentiality, May 6, 2008, 39 pages.
J. Hollan et al., “Distributed Cognition: Toward a New Foundation for Human-Computer Interaction Research,” ACM Transactions on Computer-Human Interaction, vol. 7, No. 2, Jun. 2000, pp. 174-196.
A. Adams et al., “Users are Not the Enemy,” Communications of the ACM, Dec. 1999, 6 pages.
A. Morton et al., “Privacy is a Process, Not a Pet: a Theory for Effective Privacy Practice,” Proceedings of the 2012 New Security Paradigms Workshop, Sep. 2012, 18 pages.
G. D. Abowd et al., “Charting Past, Present and Future Research in Ubiquitous Computing,” ACM Transactions on Computer-Human Interaction, vol. 7, No. 1, Mar. 2000, pp. 29-58.
W. Mason et al., “Conducting Behavioral Research on Amazon's Mechanical Turk,” Behavior Research Methods, Jun. 2011, 23 pages.
G. M. Gray et al., “Dealing with the Dangers of Fear: The Role of Risk Communication,” Health Affairs, Nov. 2002, 11 pages.
U.S. Appl. No. 17/005,949 filed in the name of Bjorn Markus Jakobsson et al. filed Aug. 28, 2020, and entitled “Privacy and the Management of Permissions.”.
U.S. Appl. No. 17/032,759 filed in the name of Mark D. Telefus et al. filed Sep. 25, 2020, and entitled “AC-Driven Light-Emitting Diode Systems.”.
U.S. Appl. No. 17/047,613 filed in the name of Mark Telefus et al. filed Oct. 14, 2020, and entitled “Intelligent Circuit Breakers.”.
U.S. Appl. No. 62/963,230 filed in the name of Bjorn Markus Jakobsson filed Jan. 20, 2020, and entitled “Infrastructure Support to Enhance Resource-Constrained Device Capabilities.”.
U.S. Appl. No. 62/964,078 filed in the name of Mark Telefus et al. filed Jan. 21, 2020, and entitled “Intelligent Power Receptacle with Arc Fault Circuit Interruption.”.
U.S. Appl. No. 63/064,399 filed in the name of Mark Telefus et al. filed Aug. 11, 2020, and entitled “Energy Traffic Monitoring and Control System.”.
U.S. Appl. No. 17/145,291 filed in the name of Mark Telefus et al. filed Jan. 9, 2021, and entitled “Building Automation System.”.
U.S. Appl. No. 17/153,280 filed in the name of Bjorn Markus Jakobsson filed Jan. 20, 2021, and entitled “Infrastructure Support to Enhance Resource-Constrained Device Capabilities.”.
U.S. Appl. No. 17/154,625 filed in the name of Mark Telefus et al. filed Jan. 21, 2021, and entitled “Intelligent Circuit Interruption.”.
Extended European Search Report of EP19869963, dated Jul. 25, 2022, 9 pages.
Related Publications (1)
Number Date Country
20210119528 A1 Apr 2021 US
Continuation in Parts (1)
Number Date Country
Parent 16029549 Jul 2018 US
Child 17115753 US