During well completion operations, casing is run into a wellbore, and wellbore fluids may enter the inner diameter of the casing through the activity of auto-fill equipment. These wellbore fluids carry solids or debris with them into the casing. The wellbore fluid may not be of sufficient viscosity to transport the solids, and when this occurs, the solids can settle within the casing. For example, in the case of a horizontal portion of a wellbore, the solids may accumulate at the lower side of the casing when they settle out of the wellbore fluid. The accumulated solids can be difficult, if not impossible, to remove with conventional filter systems that cannot be cleaned or unplugged. As such, in conventional systems, the shoe track capacity to contain contaminate slurry during cementing operations is limited. Further, conventional systems are susceptible to bridging, plugging, or pack-off during well completion operations.
The present disclosure may be better understood, and its numerous features and advantages made apparent to those of ordinary skill in the art by referencing the accompanying drawings. The use of the same reference symbols in different drawings indicates similar or identical items.
Further, while the illustrated embodiment depicts a single weir 114, 115 per insert section 109, 110, in other embodiments, one or more of the plurality of insert sections 106, 107, 108, 109, 110, 111, 112 may not contain any weirs 114, 115. In at least one embodiment, a single insert section contains more than one weir. The weir assembly 102 is inserted into the casing 104 of the wellbore to reduce the flow of solids through the casing 104 by capturing some of the solids using the weirs 114, 115. Thus, increasing the capacity of the section of the casing 104 to contain contaminate slurry, and avoiding bridging, plugging, and pack-off during well completion operations. The plurality of weirs 114, 115 are oriented within the plurality of insert sections 106-112, and the weir assembly 102 as a whole, so as to selectively increase the velocity of fluid traveling through the weir assembly 102, such that a solids slip velocity separates solids from fluid within the desired section of the wellbore. For example, in at least one embodiment, the weirs 114, 115 are oriented such that a flow opening of the first weir 114 causes solids to deposit at the second weir 115 (if flow direction is from the first weir 114 to the second weir 115) without obstructing a flow opening of the second weir 115. During or following well completion, fluids may be circulated in the section of the casing 104 to remove captured solids from the weir assembly 102.
The weir plate 200 further comprises one or more flow openings 206, 207, 208 such that fluid can flow through the flow openings 206, 207, 208 of the weir plate 200 within the section of the wellbore. While the weir plate 200 is depicted as comprising three flow openings 206, 207, 208, other embodiments may comprise more or less flow openings. Further, the shape, location and orientation of the flow openings 206, 207, 208 may differ for different weir plates as necessary to create a desired tortuous fluid flow path within the section of the wellbore. In the illustrated embodiment, weir plate 200 comprises a slot 210 for receipt of a second weir plate to form a weir as described in greater detail with reference to
In at least one embodiment, the wings 306, 307, 308, 309 of the weir 300 are oriented so as to create a tortuous fluid flow path to increase the separation of solids from fluid within the desired section of the wellbore. For example, in the illustrated embodiment, the first weir plate 200 is oriented relative to the second weir plate 302, such that if fluid flows in the direction indicated by arrows 312, 313, the fluid would be forced through flow openings 206, 316 and then flow openings 207, 208, 317, 318, depositing solids at the portion of the first weir plate 200 between flow opening 207 and flow opening 208, and the portion of the second weir plate 302 between flow opening 317 and flow opening 318. That is, the flow opening 206 of wing 309 causes solids to deposit at wing 306 without obstructing one or more of the flow openings 317, 318 of wing 306, and the flow opening 316 of wing 308 causes solids to deposit at wing 307 without obstructing one or more of the flow openings 207, 208 of wing 307. While the illustrated embodiment depicts the weir 300 as comprising two weir plates 200, 302 of the same design, in other embodiments, the weir 300 may comprise weir plates of different designs. For example, the second weir plate 302 may comprise more or less flow openings 316, 317, 318 than the first weir plate 200, and the flow openings 316, 317, 318 may be of any size and shape as necessary to create the desired tortuous fluid flow path.
The second portion of the insert 404 is coupled to the first portion of the insert 402 using any of a variety of fasteners, for example one or more of, adhesive, screws, bolts, hinges, solder, a weld, clips, a combination of these, or the like. In the illustrated embodiment, each of the first and second portions of the insert, 402, 404 comprise coupling edges 410, 411, 412, 413 to facilitate coupling of the weir assembly 400 to another weir assembly or other apparatus. The weir assembly 400 is generally dimensioned so as to fit within the casing of a wellbore, such that fluids flowing through the relevant section of the wellbore flow through the weir assembly 400.
In the illustrated embodiment, the insert sections 506, 507, 508, 509, 510 are coupled in series to form the insert 502, and the completed weir assembly 500. In at least one embodiment, the insert sections 506, 507, 508, 509, 510 are coupled in series to form the insert 502 before the weirs 503, 504 are disposed within the insert 502. In the illustrated embodiment, insert section 506 comprises coupling edge 522 to correspond to coupling edge 523 of insert section 507, such that insert section 506 can be coupled to insert section 507. In other embodiments, the insert sections 506, 507, 508, 509, 510 may be coupled in any of a variety of arrangements using any of a variety of coupling techniques. Further, other embodiments may comprise more or less insert sections 506, 507, 508, 509, 510 than the illustrated embodiment. In at least one embodiment, the insert 502 comprises a single insert section.
The insert 502 is dimensioned to be inserted into a section of a wellbore (i.e., the casing) for example, a portion of a shoe track of the casing. For example, in at least one embodiment, the insert 502 is disposed at a lesser depth that is less than a deeper depth at which a guide shoe (or float shoe) of the shoe track is located in the wellbore. The weirs 503, 504 are spaced within the insert 502 so as to increase the separation of solids from fluid within the section of the wellbore when the fluid is flowing through the wellbore.
In the illustrated embodiment, the weirs 608, 609, 610, 611, 612, 613, 614 maintain a different orientation than their neighboring weirs. For example weir 610 is oriented differently than weir 609 or 611. The weirs 608, 609, 610, 611, 612, 613, 614 are spaced and oriented within the section of the wellbore 604 to increase the fluid velocity within the section of the wellbore 604 such that slip velocity of the solids causes them to accumulate away from flow openings of the weirs 608, 609, 610, 611, 612, 613, 614, so as to minimize the flow or movement of solids through the section of the wellbore 604 while avoiding bridging, plugging, and pack-off. For example, in the illustrated embodiment, if the fluid flows in the direction indicated by arrows 624, 626, weir 614 is oriented so as to cause solids to deposit at one of weirs 608, 609, 610, 611, 612, 613, and weir 613 is oriented so as to cause solids to deposit at one of weirs 608, 609, 610, 611, 612, and so on. In some embodiments, the weirs 608, 609, 610, 611, 612, 613, 614 are designed such that flow openings of a first wing 634 of the weir 610 cause solids to deposit on a second wing 635 of the same weir 610. The weirs 608, 609, 610, 611, 612, 613, 614 may comprise any number of weir plates or wings to create a tortuous fluid flow path within the section of the wellbore 604.
At block 704, the plurality of weirs 608, 609, 610, 611, 612, 613, 614 are inserted into a first portion of an insert 402. The first portion of the insert 402 may comprise one or more slots 406 to maintain separation and orientation of the weirs 608, 609, 610, 611, 612, 613, 614. Each slot 406 may be formed, for example, by ridges 407, 408, grooves, or other structural features. In at least one embodiment, the separation and orientation of the weirs 608, 609, 610, 611, 612, 613, 614 is maintained by a friction fit within the insert.
At block 706, the weirs 608, 609, 610, 611, 612, 613, 614 are oriented so as to create a tortuous fluid flow path within a section of a wellbore once inserted into the wellbore. For example, in at least one embodiment, the weirs 608, 609, 610, 611, 612, 613, 614 are spaced and oriented such that when fluid flows through the weirs 608, 609, 610, 611, 612, 613, 614, a flow opening of a first weir 613 causes solids suspended in the fluid to deposit at a second weir 612, or a flow opening of a first wing of a weir causes solids to deposit at a second wing of the weir. The orientation and separation of the weirs 608, 609, 610, 611, 612, 613, 614 allows the flow openings to affect the velocity of the fluid such that a slip velocity of the solids causes the solids to be separated from the fluid and deposited without obstructing flow openings of the weirs 608, 609, 610, 611, 612, 613, 614.
At block 708, the weir assembly 102, 400, 500, 602 is created. For example, in at least one embodiment, a second portion of the insert 404 is coupled to the first portion of the insert 402 to enclose the weir 300 (or a plurality of weirs 608, 609, 610, 611, 612, 613, 614). In some embodiments, a plurality of insert sections 506, 507, 508, 509, 510 are coupled to create the weir assembly 500. In at least one embodiment, the insert 502 is formed before the weirs 608, 609, 610, 611, 612, 613, 614 are disposed at the interior of the insert 502. In some embodiments, the insert 502 comprises a single section. The insert 502, and the weir assembly 500 as a whole, is dimensioned to fit within a section of the wellbore, for example within a section of the casing within the wellbore.
At block 710, the weir assembly 102, 602 is inserted into the wellbore, until the weir assembly 102, 602 is positioned so as to affect the desired section of the wellbore 104, 604. In some embodiments, the section of the wellbore 104, 604 comprises a section of the casing of the wellbore. In at least one embodiment, the section of the wellbore 104, 604 comprises a portion of a shoe track in the wellbore. For example, in at least one embodiment, the weir assembly 102, 602 is disposed at a lesser depth that is less than a deeper depth at which a guide shoe is located in the shoe track of the wellbore. In at least one embodiment, the weir assembly 102, 602 is positioned in an open-hole section of a horizontal wellbore where autofill floating equipment is used. In such an embodiment, as the tubular casing is run into the wellbore and fluids enter the inner diameter of the casing through the activity of the autofill equipment, solids carried by the fluid enter the weir assembly 102, 602. The weir assembly 102, 602 creates a tortuous fluid flow path, such that the solids are deposited within the weir assembly 102, 602, while the fluids (that have been separated from the deposited solids) continue through the casing of the wellbore. The solids are deposited at one or more of the weirs 608, 609, 610, 611, 612, 613, 614 without causing, or at least reducing incidences of bridging, plugging, and pack-off.
At block 712, fluid is circulated through the section of the wellbore 104, 604 to clean the weir assembly 102, 602, in at least one embodiment, the weir assembly 102, 602 is designed to be self-cleaning with fluid circulation once casing running operations are complete. In at least one embodiment, the weir assembly 102, 602 maximizes the capacity of the section of the wellbore 104, 604 to contain contaminate slurry during cementing operations by removing at least a portion of the deposited solids. In at least one embodiment the weir assembly 102, 602 can be rotated within the wellbore to change the location of the solids as a result of gravity.
Casing operations help ensure that the wellbore 802 will not collapse when drilling fluids are removed from the wellbore 802 and protect the drilling fluids from contamination by other materials of the wellbore 802. The casing operations generally comprise joining sections of tube (or joints), for example steel or other metal, to form a casing 806. The casing 806 is then run into the wellbore 802. Different diameters of casing 806 may be used at different locations within the wellbore 802. For example, a casing program may include production casing, intermediate casing, surface casing, conductor casing, or the like, each comprising a different diameter tube for the casing 806. An accurate casing program is essential to ensuring that the well can flow properly given the wellbore conditions.
A guide shoe 808 guides the first joint of the casing 806 into the wellbore 802. The space between the guide shoe 808 and a float collar 810 (e.g., an auto-fill float collar) define a shoe track 812. The purpose of the shoe track 812 is to avoid over-displacing cement during cementing operations. The float collar 810 (e.g., an auto-fill float collar) and the guide shoe 808 prevent reverse flow of cement back into the casing after placement. The shoe track 812 may comprise a single section of the casing 806 or multiple joints of the casing 806. In some applications, one or more centralizers 814, 815 keep the casing 806 off the wall of the wellbore 802 to ensure proper cementing operations. Some applications may further utilize scratchers to remove wall cake and ensure that the cement bonds to the wall of the wellbore 802. In at least one embodiment, the solids control system 800 comprises an open-hole completion.
A weir assembly 818 (which may comprise one or more of the features described with reference to
The weir assembly 818 creates a tortuous fluid flow path as fluids from the wellbore 802 flow through the casing 806 as it is being run into the wellbore 802. The tortuous fluid flow path is created by flow openings of one or more weirs within an insert of the weir assembly 818. The weirs are spaced and oriented within the insert so as to increase the separation of solids from fluids within a section of the wellbore 802 as the fluid passes through. In the example of a horizontal section of the wellbore 802, gravity causes the solids to deposit on the lower side of the casing 806, and the weirs can be arranged such that one or more weirs catch the solids, while still allowing the fluids to flow through the casing 806 unobstructed. This helps to avoid bridging, plugging or pack-off while casing running operations are performed. In at least one embodiment, the weir assembly 818 is self-cleaning, such that fluids can be circulated through the weir assembly to dislodge some or all of the deposited solids from the weir assembly 818. As a result of the function of the weir assembly 818, the shoe track 812 maintains a greater capacity for containing contaminated slurry during the cementing portion of the completion operations.
In the foregoing Detailed Description, it can be seen that various features are grouped together in a single embodiment for the purpose of streamlining the disclosure. This method of disclosure is not to be interpreted as reflecting an intention that the claimed embodiments require more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive subject matter lies in less than all features of a single disclosed embodiment. Thus the following claims are hereby incorporated into the Detailed Description, with each claim standing on its own as a separate embodiment.
Note that not all of the activities or elements described above in the general description are required, that a portion of a specific activity or device may not be required, and that one or more further activities may be performed, or elements included, in addition to those described. Still further, the order in which activities are listed are not necessarily the order in which they are performed. Also, the concepts have been described with reference to specific embodiments. However, one of ordinary skill in the art appreciates that various modifications and changes can be made without departing from the scope of the present disclosure as set forth in the claims below. Accordingly, the specification and figures are to be regarded in an illustrative rather than a restrictive sense, and all such modifications are intended to be included within the scope of the present disclosure.
Benefits, other advantages, and solutions to problems have been described above with regard to specific embodiments. However, the benefits, advantages, solutions to problems, and any feature(s) that may cause any benefit, advantage, or solution to occur or become more pronounced are not to be construed as a critical, required, or essential feature of any or all the claims. Moreover, the particular embodiments disclosed above are illustrative only, as the disclosed subject matter may be modified and practiced in different but equivalent manners apparent to those skilled in the art having the benefit of the teachings herein. No limitations are intended to the details of construction or design herein shown, other than as described in the claims below. It is therefore evident that the particular embodiments disclosed above may be altered or modified and all such variations are considered within the scope of the disclosed subject matter. Accordingly, the protection sought herein is as set forth in the claims below.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2014/064118 | 11/5/2014 | WO | 00 |