Postmenopausal women frequently suffer from certain vaginally localized states including, for example, atrophic vaginitis or vulvar and vaginal atrophy (hereinafter “vulvovaginal atrophy” or “VVA”) with symptoms including, for example, dryness, itching, soreness, irritation, bleeding and dyspareunia; with urinary frequency, urgency, urinary discomfort and incontinence also occurring (singularly and collectively, “estrogen-deficient urinary state(s)”). For the sake of clarity, the terms “atrophic vaginitis” and vulvovaginal atrophy are used herein interchangeably. The molecular morphology of VVA is well known in the medical field.
Each of these VVA-related states, inter alia, are symptoms associated with decreased estrogenization of the vulvovaginal tissue, and can even occur in women treated with oral administration of an estrogen-based pharmaceutical drug product. Although VVA is most common with menopausal women, it can occur at any time in a woman's life cycle.
VVA-related states are generally treated with local administration of an estrogen-based natural or synthetic hormone in the form of a topically applied gel or cream, or through vaginal insertion of a compressed tablet. These forms of administration can provide low levels of circulating estrogen but are not intended to contribute to the treatment of other states related to estrogen deficiencies typically treated via administration of a systemically absorbed estrogen product. For example, such systemically absorbed products include orally administered formulations as well as creams, gels, sprays, and transdermally delivered products. However, vaginal gels and creams may rub, wear or wash off before the estrogen is fully absorbed into the local tissue. In addition, various commercially available estrogen-containing creams contain an alcohol such as benzyl alcohol and/or stearyl alcohol. The use of such products may result in itching or burning when applied. The above referenced vaginal creams and gels require insertion via a reusable vaginal applicator/plunger for which patients complain of difficulty to accurately dose, discomfort or pain upon insertion, and increased trauma to the genital mucosa all in relation to the vaginal applicator. Furthermore, the reusable applicator/plunger is also difficult to clean resulting in hygienic concerns as well as increased rates of infection all decreasing the ongoing compliance of the therapy.
Similarly, vaginal suppositories in the form of inserted tablets may not fully dissolve, reducing the effective dose of absorbed estrogen; may cause unwanted and unnecessary vaginal discharge; may cause an increase of vulvovaginal pruritus and/or back pain; and the insertion, itself, using the applicator provided with the reference-listed tableted drug, Vagifem® (Novo Nordisk; Princeton, N.J.), may cause a rupture of the vaginal fornix.
There has been at least one attempt at providing a soluble or suspended estrogen capsule for vaginal insertion as described in U.S. Pat. No. 6,060,077 (the '077 patent). The '077 patent provides for a non-systemic treatment for vaginal dryness in menopausal women using an immediate or slow-release formulation comprising a natural estrogen compound in solution or suspension in a lipophilic agent, a hydrophilic gel-forming bioadhesive agent, a gelling agent for the lipophilic agent, and a hydrodispersible agent in a hard or soft capsule. It is specifically stated that these formulations are designed to avoid systemic passage of estradiol following administration. Once in contact with vaginal secretions, these formulations require the presence of the hydrophilic gel-forming bioadhesive agent to react with the hydrodispersible agent to form an estrogen-containing emulsion to facilitate absorption. A practical issue arises when attempting to use this medicament when vaginal secretions are required to activate the formulation while the treatment is designed to treat vaginal dryness.
Accordingly, an estrogen-based vaginal suppository that provides an ease of administration/insertion, improved safety of insertion, lacking or minimizing vaginal discharge following administration, and that does not require vaginal secretions to activate the formulation could provide a more effective dosage form with improved efficacy, safety and patient compliance.
According to various embodiments of this disclosure, encapsulated pharmaceutical formulations comprising solubilized estradiol are provided. Such formulations are encapsulated in soft capsules which are vaginally inserted for the treatment of vulvovaginal atrophy.
The subject matter of the present invention is particularly pointed out and distinctly claimed below. A more complete understanding of the present invention, however, may best be obtained by referring to the detailed description and claims when considered in connection with the figures, wherein like numerals denote like elements and wherein:
The term “active pharmaceutical ingredient” as used herein, means the active compound(s) used in formulating a drug product.
The term “AUC,” as used herein, refers to the area under the curve that represents changes in blood concentration of an active pharmaceutical ingredient (e.g., estradiol, which is also referred to in the literature as 17β-estradiol, oestradiol, or E2) over time.
The term “bioavailability”, as used herein means the concentration of an active ingredient (e.g., estradiol) in the blood (serum or plasma). The relative bioavailability may be measured as the concentration in the blood (serum or plasma) versus time. Pharmacokinetic (PK) indicators that may be used to measure and assess bioavailability are determined by suitable metrics including AUC, Cmax, and, optionally, Tmax.
The term “bioequivalent” means that a test drug product provides similar bioavailability compared to a reference drug product pursuant to the criteria set forth for bioequivalence by the United States Food and Drug Administration, as amended. In general, the bioavailability of an active pharmaceutical ingredient in a bioequivalent drug product is 80 to 125% of the bioavailability of the active pharmaceutical ingredient of the reference drug product concerning AUC and Cmax.
The term “bio-identical hormones”, as used herein, means those synthetically-derived compounds which are identical in chemical structure to the hormones naturally produced in vivo. These natural or bio-identical hormones are synthesized from various ingredients to match the chemical structure and effect of estradiol or estrone, or estriol (the 3 primary estrogens).
The term, “Cmax” as used herein, refers to the maximum value of blood concentration shown on the curve that represents changes in blood concentrations of an active pharmaceutical ingredient (e.g., estradiol) over time.
The term “co-administered” as used herein, means that two drug products are administered simultaneously or sequentially on the same or different days.
The term “drug product” as used herein means at least one active pharmaceutical ingredient in combination with at least one excipient and provided in unit dosage form.
The term “excipients,” as used herein, refer to non-active pharmaceutical ingredients such as carriers, solubilizing agents, oils, lubricants and others used in formulating pharmaceutical products. They are generally safe for administering to animals, including humans, according to established governmental standards, including those promulgated by the United States Food and Drug Administration.
The term “natural,” as used herein with reference to hormones discussed herein, means bio-identical hormones synthesized to match the chemical structure and effect of those that occur naturally in the human body (endogenous). An exemplary natural estrogen is estradiol (also described as 17β-estradiol and E2).
The term “medium chain,” as used herein means any medium chain carbon-containing substance, including C4-C18, and including C6-C12 substances, fatty acid esters of glycerol, fatty acids, and mono-, di-, and triglycerides of such substances. For further illustration, C6-C14, C6-C12 fatty acids, and C8-C10 fatty acids are all medium chain fatty acids and may be used in instances in which this specification calls for use of medium chain fatty acids, e.g., medium chain fatty acid esters of glycerol or other glycols.
The term “reference listed drug product” as used herein means Vagifem®.
The term “solubilizer,” as used herein, means any substance or mixture of substances that may be used to enhance the solubility of estradiol, including, for example and without limitation, appropriate pharmaceutically acceptable excipients, such as solvents, co-solvents, surfactants, emulsifiers, oils and carriers.
The term “treatment”, as used herein, or a derivative thereof, contemplates partial or complete inhibition of the stated disease state or condition when a formulation as described herein is administered prophylactically or following the onset of the disease state for which such formulation is administered. For the purposes of the present disclosure, “prophylaxis” refers to administration of the active ingredient(s) to an animal, typically a human, to protect the animal from any of the disorders set forth herein, as well as others.
The term, “Tmax” as used herein, refers to the time that it takes for an active pharmaceutical ingredient (e.g., estradiol) and/or estrone blood concentrations to reach the maximum value.
Provided herein are pharmaceutical formulations comprising solubilized estradiol (in various embodiments, at least 90% in solution); providing said formulations do not embrace within the fill one or more of the following components: a hydrophilic gel-forming bioadhesive (e.g., mucoadhesive) agent; a lipophilic agent; a gelling agent for the lipophilic agent, and/or a hydrodispersible agent. The hydrophilic gel-forming bioadhesive agent may provide or exclude one or more of a: carboxyvinylic acid; hydroxypropylcellulose; carboxymethylcellulose; gelatin; xanthane gum; guar gum; aluminum silicate; or mixtures thereof. The lipophilic agent may provide or exclude one or more of a: liquid triglyceride; solid triglyceride (with a melting point of about 35° C.); carnauba wax; cocoa butter; or mixtures thereof. The gelling agent may provide or exclude one or more of a hydrophobic colloidal silica. The hydrodispersible agent may provide or exclude one or more of a: polyoxyethylene glycol; polyoxyethylene glycol 7-glyceryl-cocoate and mixtures thereof.
Generally, the pharmaceutical formulations described herein are prepared and administered as filled capsules, typically soft capsules of one or more materials well known in the art including, for example and without limitation, soft gelatin capsules. However, in various embodiments, pharmaceutical formulations described herein are prepared as a gel, cream, ointment, transdermal delivery system or like preparation.
Other aspects of the present disclosure include the use of formulations as described herein for the treatment of vulvovaginal atrophy including the treatment of at least one VVA symptom including, for example and without limitation, dryness, itching, soreness, irritation, bleeding and dyspareunia.
Another aspect of the present disclosure provides uses of the formulations described herein for the treatment of estrogen-deficient urinary states.
Another aspect of the present disclosure provides alcohol-free or substantially alcohol-free formulations, and uses thereof. Among others, the formulations offer improved comfort during use, thus tending to enhance patient compliance.
The methods of treatment described herein are generally administered to a human female.
A further aspect of the present invention provides formulations of the present invention wherein circulating blood level concentrations following administration of a formulation of the present invention are bioequivalent to circulating blood level concentrations following administration of the reference listed drug product, as determined through the completion of a bioequivalence clinical study.
The formulations of the present disclosure may also be vaginally administered with or without the co-administration of an orally administered estrogen-based (or progestin-based or progestin- and estrogen-based) pharmaceutical drug product, or patch, cream, gel, spray, transdermal delivery system or other parenterally-administered estrogen-based pharmaceutical drug product, each of which can include natural, bio-similar, or other synthetic or derived estrogens and/or an administered progestin. As used herein, the term “progestin” means any natural or man-made substance that has pharmacological properties similar to progesterone.
Modulation of circulating estrogen levels provided via the administration of a formulation of the present disclosure, if any, are not intended to be additive to any co-administered estrogen product and its associated circulating blood levels.
The timing of administration of a formulation of the present disclosure may be conducted by any safe means as prescribed by an attending physician.
Typically, a patient will insert one capsule intra-vaginally each day for 14 days, then one capsule twice weekly for the remaining time prescribed by such physician. Intra-vaginal insertion may be via the use of an applicator or without an applicator via use of the patient's digits. Use of an applicator or otherwise requires due care as to not puncture or tear surrounding tissue.
Estradiol dosage strengths can vary. For formulations of the present disclosure, estradiol (or estradiol equivalent to the extent such estradiol is in a hydrated or other form requiring compensation therefore) dosage strength of is at least about 1 microgram (mcg), at least about 2.5 mcg; at least about 5 mcg; at least about 10 mcg, from about 1 mcg to about 10 mcg, from about 10 mcg to about 25 mcg, about 1 mcg, about 2.5 mcg, about 5 mcg, about 10 mcg and about 25 mcg. To protect against adverse effects of estradiol, the lowest possible dose should be used for treatment of VVA and other states set forth herein. In one embodiment, the dosage is about 10 mcg; in another the dosage is about 25 mcg.
Also provided are soft capsules designed for ease of insertion and to hold the capsule in place until the contents therein are completely released. In various embodiments, softgel capsules in accordance with various embodiments are sized to comfortably fit within a human vagina. Thus, the softgel capsules may comprise any dimension capable of fitting into a human vagina. With reference to
Estradiol can be formulated pursuant to the teachings below. These formulations can be prepared for vaginal insertion in a single unit dosage form or as otherwise specified herein.
In various embodiments, estradiol is solubilized at least once during manufacturing and, in various embodiments, estradiol is solubilized at one point following administration. Solubility may be expressed as a mass fraction (% w/w). As used herein, the term “soluble” or “solubilized” means that the estradiol is: at least about 85% soluble, at least 90% soluble, at least 95% soluble and, frequently, is 100% soluble. % Solubility is expressed herein as a mass fraction (% w/w, also referred to as wt %).
Upon release of the fill into the vaginal canal following insertion of a capsule of the present disclosure, estradiol may be locally absorbed into body tissues.
In various embodiments, the solubilizing agent is selected from at least one of a solvent or co-solvent. Suitable solvents and co-solvents include any mono-, di- or triglyceride and glycols, and combinations thereof.
Solubilized estradiol of the present disclosure is prepared via blending estradiol with a pharmaceutically acceptable solubilizing agent including for example and without limitation, at least one medium chain fatty acid such as medium chain fatty acids consisting of at least one mono-, di-, or triglyceride, or derivatives thereof, or combinations thereof (collectively, “glycerides”). In various embodiments, solubilized estradiol of the present disclosure may also comprise at least one glycol or derivatives thereof or combinations thereof (collectively, “glycols”) and/or combinations of such at least one glyceride and glycol. Glycols may be used as solubilizing agents and/or to adjust viscosity and, thus, may be considered thickening agents, as discussed further herein. Optionally added are other excipients including, for example and without limitation, anti-oxidants, lubricants and the like. Sufficient solubilizing agent(s) is/are used to solubilize estradiol.
Pharmaceutically acceptable solubilizing agents include, for example and without limitation, the use of at least one of a caproic fatty acid; a caprylic fatty acid; a capric fatty acid; a tauric acid; a myristic acid; a linoleic acid; a succinic acid; a glycerin; mono-, di-, or triglycerides and combinations and derivatives thereof; a polyethylene glycol; a polyethylene glycol glyceride (GELUCIRE (polyethylene glycol glyceride) GATTEFOSSE SAS, Saint-Priest, France); which can be used herein as a solubilizing agent or as an anionic surfactant); a propylene glycol; a caprylic/capric triglyceride (MIGLYOL (caprylic/capric triglyceride)); SASOL Germany GMBH, Hamburg); MIGLYOL includes MIGLYOL 810 (caprylic/capric triglyceride), MIGLYOL 812 (caprylic/capric triglyceride), MIGLYOL 816 (caprylic/capric triglyceride) and MIGLYOL 829 (caprylic/capric/succinic triglyceride)); a caproic/caprylic/capric/lauric triglyceride; a caprylic/capric/linoleic triglyceride; a caprylic/capric/succinic triglyceride; a propylene glycol monocaprylate; propylene glycol monocaprate; (CAPMUL PG-8 (propylene glycol monocaprylate) and CAPMUL PG-10 (propylene glycol monocaprate); the CAPMUL brands are owned by ABITEC, Columbus Ohio); a propylene glycol mono- and dicaprylate; a propylene glycol mono- and dicaprate; medium chain mono- and di-glycerides (CAPMUL MCM (medium chain mono- and diglycerides)); a diethylene glycol mono ester (including 2-(2-Ethoxyethoxy)ethanol: TRANSCUTOL (diethylene glycol monoethyl ether)); a diethylene glycol monoethyl ether; glyceryl mono- and di-caprylates; propylene glycol; 1,2,3-propanetriol (glycerol, glycerin, glycerine) esters of saturated coconut and palm kernel oil and derivatives thereof; triglycerides of fractionated vegetable fatty acids, and combinations and derivatives thereof. In various embodiments, propylene glycol is used in a cream or ointment.
These solubilizers, as defined herein, and combinations thereof, can be used to form solubilized estradiol formulations of the present disclosure.
At least one anionic and/or non-ionic surfactant can be used in additional embodiments of the presently disclosed formulations containing solubilized estradiol.
Exemplary non-ionic surfactants may include, for example and without limitation, one or more of oleic acid, linoleic acid, palmitic acid, and stearic acid. In further embodiments, the non-ionic surfactant may comprise polyethylene sorbitol esters, including polysorbate 80, which is commercially available under the trademark TWEEN 80 (polysorbate 80) (Sigma Aldrich, St. Louis, Mo.). Polysorbate 80 comprises approximately 60%-70% oleic acid with the remainder comprising primarily linoleic acids, palmitic acids, and stearic acids. Polysorbate 80 may be used in amounts ranging from about 5 to 50%, and in certain embodiments, about 30% of the formulation total mass. In various other embodiments, the non-ionic surfactant is selected from one or more of glycerol and polyethylene glycol esters of long chain fatty acids, for example, lauroyl macrogol-32 glycerides and/or lauroyl polyoxyl-32 glycerides, commercially available as GELUCIRE, including, for example, GELUCIRE 39/01 (glycerol esters of saturated C12-C18 fatty acids), GELUCIRE 43/01 (hard fat NF/JPE) and GELUCIRE 50/13 (stearoyl macrogol-32 glycerides EP, stearoyl polyoxyl-32 glycerides NF, stearoyl polyoxylglycerides (USA FDA IIG)). These surfactants may be used at concentrations greater than about 0.01%, and typically in various amounts of about 0.01%-10.0%, 10.1%-20%, and 20.1%-30%.
Ratios of solubilizing agent(s) to surfactant(s) can vary depending upon the respective solubilizing agent(s) and the respective surfactant(s) and the desired physical characteristics of the resultant formulation of solubilized estradiol. For example and without limitation, CAPMUL MCM and a non-ionic surfactant can be used at ratios including 65:35, 70:30, 75:25, 80:20, 85:15 and 90:10. Other non-limiting examples include: CAPMUL MCM and GELUCIRE 39/01 can be used in ratios including, for example and without limitation, 6:4, 7:3, and 8:2; CAPMUL MCM and GELUCIRE 43/01 can be used in ratios including, for example and without limitation, 7:3, and 8:2; CAPMUL MCM and GELUCIRE 50/13 can be used in ratios including, for example and without limitation, 7:3, and 8:2, and 9:1.
Another exemplary non-ionic surfactant includes PEG-6 palmitostearate and ethylene glycol palmitostearate, which is available commercially as TEFOSE 63 (“Tefose 63”; GATTEFOSSE SAS, Saint-Priest, France) which can be used with, for example, CAPMUL MCM having ratios of MCM to TEFOSE 63 of, for example, 8:2 and 9:1. Additional examples of solubilizing agents with non-ionic surfactants include, for example, MIGLYOL 812:GELUCIRE 50/13 and MIGLYOL 812:TEFOSE 63.
Anionic surfactants are well known and can include, for example and without limitation: ammonium lauryl sulfate, dioctyl sodium sulfosuccinate, perfluoro-octane sulfonic acid, potassium lauryl sulfate and sodium stearate.
Non-ionic and/or anionic surfactants can be used alone or with at least one solubilizing agent or can be used in combination with other surfactants. Accordingly, such surfactants, or any other excipient as set forth herein, should be used to provide solubilized estradiol, upon release from a vaginally-inserted capsule, with consistency of the solubilized estradiol that promotes absorption and minimizes vaginal discharge, particularly when compared to the vaginal discharge frequently occurring following use of a VAGIFEM tablet.
Moreover, the estradiol in the formulations disclosed herein need not be fully solubilized (e.g., at least 98% in solution) at the time of administration/insertion but, rather, needs to be substantially solubilized at the time of release from the vaginally-inserted capsule. As such, the solubilizing agents taught herein, with or without additional excipients other than the solubilizing agents, may be in the liquid or semi-solid form upon administration providing the estradiol containing solubilizing agents and other excipients permit flow to fill capsules. To the extent the estradiol is not fully solubilized at the time of administration/insertion, the estradiol should be substantially solubilized at a temperature of about 37° C. (e.g., body temperature) and, generally, at a pH of about 4.5. In another embodiment, at least one thickening agent may be added to formulations of the present disclosure. The viscosity of the solubilized estradiol may depend upon the solubilizing agent(s) used, the addition of other excipients to the formulation preparation and the desired or required final viscosity required to optimize absorption of the solubilized estradiol. In certain embodiments, the surfactant(s) referenced herein above may provide thickening of the solubilized estradiol such that, upon release, will aid the estradiol in being absorbed by the vaginal mucosa while minimizing vaginal discharge, particularly when compared to the vaginal discharge frequently occurring following use of a Vagifem tablet. Examples of other such thickening agents include, for example and without limitation, hard fats; propylene glycol; a mixture of hard fat EP/NF/JPE, glyceryl ricinoleate, ethoxylated fatty alcohols (ceteth-20, steareth-20) EP/NF (commercially available as OVUCIRE 3460 (mixture of hard fat EP/NF/JPE (and) glyceryl ricinoleate (and) ethoxylated fatty alcohols (ceteth-20, steareth-20) EP/NF) (Gattefosse, Saint-Priest France); a mixture of hard fat EP/NF/JPE, glycerol monooleate (type 40) EP/NF (commercially available as OVUCIRE WL 3264 (mixture of hard fat EP/NF/JPE (and) glycerol monooleate (type 40) EP/NF); a mixture of hard fat EP/NF/JPE, glyceryle monooleate (type 40) EP/NF (commercially available as OVUCIRE WL 2944 (mixture of hard fat EP/NF/JPE (and) glyceryle monooleate (type 40) EP/NF)); and a mixture of various hard fats (commercially available as WITESPOL (hard fats); Sasol Germany GmbH, Hamburg). In various embodiments, the viscosity of formulations in accordance with various embodiments may comprise from about 50 cps to about 1000 cps at 25° C.
In other embodiments, one or more muco-adherent agents may be used to assist with mucosal absorption of the solubilized estradiol. For example, polycarbophil may be used as an acceptable muco-adherent agent. Other agents include, for example and without limitation, poly (ethylene oxide) polymers having a molecular weight of from about 100,000 to about 900,000, chitosans carbopols including polymers of acrylic acid crosslinked with allyl sucrose or allyl pentaerythritol, polymers of acrylic acid and C10-C30 alkyl acrylate crosslinked with allyl pentaerythritol, carbomer homopolymer or copolymer that contains a block copolymer of polyethylene glycol and a long chain alkyl acid ester and the like. Various hydrophilic polymers and hydrogels may be used. In various embodiments, the hydrophilic polymer will swell in response to contact with vaginal or other bodily secretions, enhancing moisturizing and muco-adherent effects. The selection and amount of hydrophilic polymer may be based on the selection and amount of pharmaceutically acceptable solubilizing agent chosen. The formulation includes a hydrophilic polymer but optionally excludes a gelling agent. In embodiments having a hydrogel, from about 5% to about 10% of the total mass may comprise the hydrophilic polymer. In further embodiments, hydrogels may be employed. A hydrogel may comprise chitosan, which swell in response to contact with water. In various embodiments, a cream formulation may comprise PEG-90M.
In additional embodiments, formulations of the present disclosure may include one or more thermoreversible gels, typically of the hydrophilic nature including for example and without limitation, hydrophilic sucrose and other saccharide-based monomers (U.S. Pat. No. 6,018,033, which is herein incorporated by reference).
In other embodiments, a lubricant may be used. Any suitable lubricant may be used, such as for example lecithin. Lecithin may comprise a mixture of phospholipids.
In additional embodiments, an antioxidant is used. Any suitable antioxidant may be used such as, for example and without limitation, butylated hydroxytoluene.
In various embodiments, a pharmaceutical formulation comprises about 20% to about 80% solubilizing agent by weight, about 0.1% to about 5% lubricant by weight, and about 0.01% to about 0.1% antioxidant by weight.
The choice of excipient will, to a large extent, depend on factors such as for example and without limitation, the effect of the excipient on solubility and stability. Additional excipients used in various embodiments may include colorants and preservatives. Colorants, for example, may comprise about 0.1% to about 2% by weight. Preservatives may, for example and without limitation, comprise methyl and propyl paraben, for example, in a ratio of about 10:1, and at a proportion of about 0.005% and 0.05% by weight.
As is with all solubilizing agents, excipients and any other additives used in the formulations described herein, each is to be non-toxic, pharmaceutically acceptable and compatible with all other ingredients used.
Further provided herein are methods for the treatment of VVA and/or estrogen-deficient urinary states comprising administering to a female, typically a human, in need of treatment a non-toxic and pharmaceutically effective dose of a formulation as further provided herein.
As referenced above, the formulations of the present disclosure are generally vaginally administered via capsules such as soft capsules, including soft gelatin capsules. It is desirable to prepare these soft capsules such that they disintegrate to the extent that substantially all of the solubilized estradiol is released upon disintegration, providing rapid absorption of the solubilized estradiol and minimal to no capsule residue.
Additional objects of the present disclosure include: providing increased patient ease of use while potentially minimizing certain side effects from inappropriate insertion, minimizing incidence of vulvovaginal mycotic infection compared to incidence of vulvovaginal mycotic infection due to usage of Vagifem and other currently available products and; decreased resultant genital pruritus compared to the genital pruritus and/or back pain that may be generated via the use of Vagifem and other currently available products. In illustrative embodiments of the invention, oils are used as solubilizing agents to solubilize estradiol and include medium chain fatty acid esters, (e.g., esters of glycerol, polyethylene glycol, or propylene glycol) and mixtures thereof. In illustrative embodiments, the medium chain fatty acids are C6 to C14 or C6 to C12 fatty acids. In illustrative embodiments, the medium chain fatty acids are saturated, or predominantly saturated, e.g., greater than about 60% or greater than about 75% saturated. In illustrative embodiments, estradiol is soluble in the oils at room temperature, although it may be desirable to warm certain oils initially during manufacture to improve viscosity. In illustrative embodiments, the oil or oil/thickening agent is liquid at between room temperature and about 50° C., e.g., at or below 50° C., at or below 40° C., or at or below 50° C. In illustrative embodiments, GELUCIRE 44/14 (lauroyl macrogol-32 glycerides EP lauroyl polyoxyl-32 glycerides NF lauroyl polyoxylglycerides (USA FDA IIG)) is heated to about 65° C. and CAPMUL MCM is heated to about 40° C. to facilitate mixing of the oil and non-ionic surfactant, although such heating is not necessary to dissolve the estradiol. In illustrative embodiments, the solubility of estradiol in the oil (or oil/surfactant) is at least about 0.5 wt %, e.g., 0.8 wt % or higher, or 1.0 wt % or higher. Illustrative examples of mono- and diglycerides of medium chain fatty acids include, among others, CAPMUL MCM, CAPMUL MCM C10 (glyceryl monocaprate), CAPMUL MCM C8 (glyceryl monocaprylate), and CAPMUL MCM C8 EP (glyceryl monocaprylate). These oils are C8 and C10 fatty acid mono- and diglycerides. Illustrative examples of oils that are triglycerides of medium chain fatty acids include, among others, MIGLYOL 810 and MIGLYOL 812. Illustrative examples of oils that are medium chain fatty acid esters of propylene glycol include, among others, CAPMUL PG-8, CAPMUL PG-2L EP/NF (propylene glycol dilaurate), CAPMUL PG-8 NF (propylene glycol monocaprylate), CAPMUL PG-12 EP/NF (propylene glycol monolaurate) and CAPRYOL (propylene glycol monocaprylate (type II) NF). Other illustrative examples include MIGLYOL 840 (propylene glycol dicaprylate/dicaprate).
Illustrative examples of oils that are medium chain fatty acid esters of polyethylene glycol include, among others, GELUCIRE 44/14 (PEG-32 glyceryl laurate EP), which is polyethylene glycol glycerides composed of mono-, di- and triglycerides and mono- and diesters of polyethylene glycol.
These illustrative examples comprise predominantly medium chain length, saturated, fatty acids (i.e., greater than 50% of the fatty acids are medium chain saturated fatty acids); specifically predominantly C8 to C12 saturated fatty acids.
It will be understood that commercially available fatty acid esters of glycerol and other glycols are often prepared from natural oils and therefore may comprise components additional to the fatty acid esters that comprise the predominant (by weight) component(s) and that therefore are used to characterize the product. Such other components may be, e.g., other fatty acid triglycerides, mono- and diesters, free glycerol, or free fatty acids. So, for example, when an oil/solubilizing agent is described herein as a saturated C8 fatty acid mono- or diester of glycerol, it will be understood that the predominant component of the oil, i.e., >50 wt % (e.g., >75 wt %, >85 wt % or >90 wt %) are caprylic monoglycerides and caprylic diglycerides. For example, the Technical Data Sheet by ABITEC for CAPMUL MCM C8 describes CAPMUL MCM C8 as being composed of mono and diglycerides of medium chain fatty acids (mainly caprylic) and describes the alkyl content as <=1% C6, >=95% C8, <=5% C10, and <=1.5% C12 and higher
By way of further example, MIGLYOL 812 is generally described as a C8-C10 triglyceride because the fatty acid composition is at least about 80% caprylic (C8) acid and capric (C10) acid. However, it can also comprise small amounts of other fatty acids, e.g., less than about 5% of caproic (C6) acid, lauric (C12) acid, and myristic (C14) acid.
Specifically, a product information sheet for MIGLYOL by SASOL provides the composition of fatty acids as follows:
So, if an embodiment of this invention is described as comprising (or consisting essentially of) a capsule shell, estradiol solubilized in C8-C10 triglycerides, and a thickening agent, it will be understood that the fatty acid esters component of the formulation may be, e.g., MIGLYOL 812 or a similar product.
By way of further illustration, GELUCIRE 44/14 is generally described as lauroyl polyoxyl-32 glycerides, i.e., polyoxyethylene 32 lauric glycerides (which is a mixture of mono-, di-, and triesters of glycerol and mono- and diesters of PEGs) because the fatty acid composition is 30 to 50% lauric acid and smaller amounts of other fatty acids, e.g., up to 15% caprylic acid, up to 12% capric acid, up to 25% myristic acid, up to 25% palmitic acid, and up to 35% stearic acid. The product may also contain small amounts of non-esterified glycols. So, if an embodiment of this invention is described as comprising (or consisting essentially of) a capsule shell, estradiol solubilized in triglycerides, and a thickening agent that is a non-ionic surfactant comprising C8 to C18 fatty acid esters of glycerol and polyethylene glycol, it will be understood that the thickening agent component of the formulation may be, e.g., GELUCIRE 44/14 or a similar product.
Similarly, if an embodiment of this invention is described as comprising (or consisting essentially of) a capsule shell, estradiol solubilized in triglycerides, and a thickening agent that is a non-ionic surfactant comprising PEG-6 stearate, ethylene glycol palmitostearate, and PEG-32 stearate, it will be understood that the thickening agent component of the formulation may be, e.g., TEFOSE 63 or a similar product.
Mixtures of medium chain fatty acid glycerides, e.g., C6-C12, C8-C12, or C8-C10 fatty acid mono- and diglycerides or mono-, di-, and triglycerides are very well suited for dissolving estradiol; good results have been obtained with an oil that is predominantly a mixture of C8-C10 saturated fatty acid mono- and diglycerides. Longer chain glycerides appear to be not as well suited for dissolution of estradiol.
High solubility of estradiol has been obtained in 2-(2-Ethoxyethoxy)ethanol, e.g., TRANSCUTOL and in Propylene glycol monocaprylate, e.g., Capryol™ 90 (Gattefosse).
In various embodiments, the solubilizing agent is selected from at least one of a solvent or co-solvent. Suitable solvents and co-solvents include any mono-, di- or triglyceride and glycols, and combinations thereof.
In addition, other solubilizers include, for example and without limitation, glyceryl mono- and di-caprylates, propylene glycol and 1,2,3-propanetriol (glycerol, glycerin, glycerine).
Illustrative Drug Product(s)
Through extensive trial-and-error testing of various fatty acid esters of glycerol and other glycols, embodiments of the invention have been invented that have one or more favorable characteristics for development as a human drug product. Such favorable characteristics include, e.g., lack of or reduction of irritation relative to otherwise similar formulations, lack of or reduction in vaginal discharge of drug product relative to otherwise similar formulations, lack of or reduction of drug product residue inside the vagina, etc. Non-irritating formulations are formulations that in most uses in most patients, when used as prescribed, does not cause pain, soreness, swelling or irritation inside the vagina such that most patients do not go off treatment prior to completion of a prescribed course of therapy. Non-irritating formulations are also formulations that are non-irritating, as described in the preceding sentence, relative to competing products such as tablets, creams, or other intravaginal estrogen delivery forms. Such illustrative drug products are also easily self-administered by a patient in any position by inserting the encapsulated formulation digitally approximately 2 inches into her vagina without a need for an applicator and with minimal to no corresponding discharge.
Formulations that do not create a residue are formulations that are absorbed and/or dispersed without resulting in particulates or other unpleasant remains of non-absorbed or non-dispersed drug product. Again, lack of residue can be relative to competing products.
Formulations that do not discharge from the vagina are formulations that do not flow or drip out of the vagina. Again, lack of discharge can be relative to competing products.
Such embodiments include an encapsulated liquid pharmaceutical formulation for intra-vaginal delivery of estradiol, said formulation comprising estradiol that is at least about 90% solubilized in one or more C6 to C14 fatty acid mono-, di-, or triesters of glycerol and a thickening agent.
A more specific such embodiment is such formulation wherein the estradiol is solubilized (e.g., >90% solubilized) in one or more C6 to C12 fatty acid mono-, di-, or triesters of glycerol, e.g., one or more C6 to C14 triglycerides, e.g., one or more C6 to C12 triglycerides, such as one or more C8-C10 triglycerides.
In such general and more specific embodiments, the thickening agent can be a non-ionic surfactant, e.g., a polyethylene glycol saturated or unsaturated fatty acid ester or diester. In certain such embodiments, the non-ionic surfactant comprises a polyethylene glycol long chain (C16-C20) fatty acid ester and further comprises an ethylene glycol long chain fatty acid ester, such as PEG-fatty acid esters or diesters of saturated or unsaturated C16-C18 fatty acids, e.g., oleic, lauric, palmitic, and stearic acids. In certain such embodiments, the non-ionic surfactant comprises a polyethylene glycol long chain saturated fatty acid ester and further comprises an ethylene glycol long chain saturated fatty acid ester, such as PEG- and ethylene glycol-fatty acid esters of saturated C16-C18 fatty acids, e.g., palmitic and stearic acids. Such non-ionic surfactant can comprise PEG-6 stearate, ethylene glycol palmitostearate, and PEG-32 stearate, such as but not limited to TEFOSE 63.
In certain such embodiments, the non-ionic surfactant employed as the thickening agent is not hydrophilic and has good emulsion properties. An illustrative example of such surfactant is TEFOSE 63, which has a HLB value of about 9-10.
As noted above, such formulations are liquid at room temperature, not gels, hard fats, or any other solid form. The thickening agent serves to increase viscosity, e.g., up to 10,000 cP (10,000 mPa-s), typically to no more than 5000 cP, and more typically to between 50 and 1000 cP. In some such embodiments, the non-ionic surfactant, e.g., GELUCIRE or TEFOSE, may be solid at room temperature and require melting to effect mixing with the estradiol solubilized in fatty acid-glycol esters but the resultant formulation is advantageously liquid, not solid.
The formulation of such embodiments is typically encapsulated in a soft gelatin capsule or other soft capsule.
Typically, such formulations do not comprise a bioadhesive (i.e., mucoadhesive) agent, a gelling agent, or a dispersing agent, or, at least, do not comprise one or two of such components.
In more specific such formulations, the capsule shell, the active pharmaceutical ingredient, the fatty acid esters and the thickening agent are the only essential ingredients. Non-essential ingredients, e.g., colorants, antioxidants or other preservatives, etc., may, of course, be included but other ingredients in amounts that would materially change the solubility of the estradiol, the PK of the encapsulated formulation, the irritancy, vaginal discharge, intravaginal residue, etc., e.g., other oils or fatty acid esters, lecithin, muco-adherent agents, gelling agents, dispersing agents, or the like would not be included. Such embodiments of the invention may be described as consisting essentially of the capsule shell, the active pharmaceutical ingredient, the fatty acid esters and the thickening agent, as described in the immediately preceding paragraphs describing illustrative embodiments discovered to have favorable characteristics.
As an example of such embodiments discovered to have such favorable characteristics is mentioned the product identified in Example 3, below, as “Trial 5”.
In various embodiments, a vehicle system is created by dissolving an active pharmaceutical ingredient (e.g., estradiol) in one or more pharmaceutically acceptable solubilizing agents. A vehicle system may then be combined with a gel mass to create a final formulation suitable for use in, for example, a vaginal suppository. In that regard, in various embodiments, one or more vehicle systems may be combined with one or more gel masses. Other excipients may also be included in the vehicle system in various embodiments.
Formulation: Vehicle System
In various embodiments, estradiol active pharmaceutical ingredient is procured and combined with one or more pharmaceutically acceptable solubilizing agents. Estradiol may be in micronized form or non-micronized form. In various embodiments, the final formulation comprises estradiol in a dosage strength of from about 1 mcg to about 25 mcg.
Estradiol is combined with various pharmaceutically acceptable solubilizing agents in various embodiments. As described above, CAPMUL MCM, MIGLYOL 812, GELUCIRE 39/01, GELUCIRE 43/01, GELUCIRE 50/13, and TEFOSE 63 (\may, alone or in various combinations, be used as a pharmaceutically acceptable solubilizing agent in connection with estradiol.
Solubility of estradiol may affect final formulation stability and uniformity, so care should be taken when selecting an appropriate vehicle system. It is noted that surfactants are typically amphiphilic molecules that contain both hydrophilic and lipophilic groups. A hydrophilic-lipophilic balance (“HLB”) number is used as a measure of the ratio of these groups. It is a value between 0 and 20 which defines the affinity of a surfactant for water or oil. HLB numbers are calculated for nonionic surfactants, and these surfactants have numbers ranging from 0-20. HLB numbers >10 have an affinity for water (hydrophilic) and number <10 have an affinity of oil (lipophilic).
In that regard, GELUCIRE 39/01 and GELUCIRE 43/01 each have an HLB value of 1. GELUCIRE 50/13 has an HLB value of 13. TEFOSE 63 has an HLB value of between 9 and 10.
Various combinations of pharmaceutically acceptable solubilizing agents were combined with estradiol and examined. TABLE 1 contains the results.
TABLE 1 contains the following abbreviations: CAPMUL MCM (“MCM”), GELUCIRE 39/01 (“39/01”), GELUCIRE 43/01 (“43/01”), GELUCIRE 50/13 (“50/13”), and TEFOSE (“Tefose 63”).
Vehicle systems in TABLE 1 that were liquid or semisolid at room temperature were tested using a Brookfield viscometer (Brookfield Engineering Laboratories, Middleboro, Mass.) at room temperature. Vehicle systems appearing in TABLE 1 that were solid at ambient temperature were tested using a Brookfield viscometer at 37° C.
Vehicle systems appearing in TABLE 1 that were solid were placed at 37° C. to assess their melting characteristics. The results are in TABLE 1. It is noted that vehicle system 11 in TABLE 1 did not melt at 37° C. or 41° C.
A dispersion assessment of the vehicle systems appearing in TABLE 1 was performed. The dispersion assessment was performed by transferring 300 mg of each vehicle system in 100 ml of 37° C. water, without agitation, and observing for mixing characteristics.
Formulation: Gel Mass
In various embodiments, a vehicle system may be combined with a gel mass. A gel mass may comprise, for example, gelatin (e.g., Gelatin, NF (150 Bloom, Type B)), hydrolyzed collagen (e.g., GELITA®, GELITA AG, Eberbach, Germany), glycerin, SORBITOL SPECIAL® (a sorbitan-sorbitol based soft gel plasticizer), and/or other suitable materials in varying proportions. SORBITOL SPECIAL® may be obtained commercially and may tend to act as a plasticizer and humectant.
Gel masses A through F were prepared according to the formulations in TABLE 2. Gel masses A through F differ in the proportion of one or more components, for example.
Each gel mass A through F was prepared at a temperature range from about 45° C. to about 85° C. Each molten gelatin mass A through F was cast into a film, dried and cut into strips. The strips were cut into uniform pieces weighing about 0.5 g, with about 0.5 mm thickness. Strips were placed into a USP Type 2 dissolution vessel in either water or pH 4 buffer solution and the time for them to completely dissolve was recorded and listed in TABLE 2. It is noted that gel mass A has the fastest dissolution in both water and pH 4 buffer solution.
Formulation: Final Formulation and Encapsulation
Various combinations of vehicle systems from TABLE 1 and gel masses from TABLE 2 were prepared. The combinations are shown in TABLE 3.
Estradiol was combined with each vehicle system so that about 10 mcg of estradiol was contained within 300 mg of each vehicle system. Batch size was as listed in TABLE 3. To encapsulate the vehicle system, each 300 mg of vehicle system was combined with about 200 mg of the listed gel mass. Thus, for example, in Trial 1, MCM:39/01 in an 8:2 ratio was combined with gel A and 10 mcg of estradiol. In each final dosage, Trial 1 comprised 300 mg of vehicle system, 200 mg of gel mass and 10 mcg of estradiol. It should be noted, however, that in various embodiments the total mass of vehicle system, gel mass, and estradiol may be from about 100 mg to about 1000 mg.
Each combination of vehicle system, estradiol, and gel mass may be suitable for use in, for example, a vaginal suppository.
Estradiol Solubility
In various experiments, suitable solvents were determined for providing sufficient solubility to make 2 mg of estradiol in a 100 mg fill mass, with a desired goal of achieving ˜20 mg/g solubility for estradiol. Initial solubility experiments were done by mixing estradiol with various solvents, saturate the solution with the estradiol, equilibrate for at least 3 days and filter the un-dissolved particles and analyzing the clear supernatant for the amount of estradiol dissolved by HPLC.
Estradiol solubility experiments were performed. From this list at least one item (e.g. propylene glycol) is known to be unsuitable for encapsulation.
In further solubility studies, estradiol was soluble at least 6 mg/gm MIGLYOL TRANSCUTOL in ratios of 81:19 to 95:5, in MIGLYOL; ethanol at 91:11, and in MIGLYOLCAPMUL PG8 at 88:11, but not in MIGLYOLTRANSCUTOL at 96:4, MIGLYOLLabrasol at 70:30 to 80:20, or MIGLYOLCAPMUL PG8 at 86:14.
Process
With reference to
Step 104 comprises mixing GELUCIRE with the solubilizing agent. As used herein, any form of GELUCIRE may be used in step 104. For example, one or more of GELUCIRE 39/01, GELUCIRE 43/01, GELUCIRE 50/13. may be used in step 104. Mixing may be facilitated by an impeller, agitator, or other suitable means. Step 104 may be performed under an inert or relatively inert gas atmosphere, such as nitrogen gas. Mixing may be performed in any suitable vessel, such as a stainless steel vessel.
Step 106 comprises mixing estradiol into the mixture of the solubilizing agent and GELUCIRE. The estradiol may be mixed in micronized or nonmicronized form. Mixing may occur in a steel tank or other acceptable container. Mixing may be facilitated by an impeller, agitator, or other suitable means. Step 106 may be performed under an inert or relatively inert gas atmosphere, such as nitrogen gas. In various embodiments, however, the addition of estradiol may be performed prior to step 104. In that regard, in various embodiments, step 106 is performed prior to step 104.
Step 110 comprises preparing the gel mass. Any of the gel masses described herein may be used in step 110. In that regard, gelatin (e.g., Gelatin, NF (150 Bloom, Type B)), hydrolyzed collagen, glyercin, and/or other suitable materials may be combined at a temperature range from about 45° C. to about 85° C. and prepared as a film. Mixing may occur in a steel tank or other acceptable container. Mixing may be facilitated by an impellor, agitator, or other suitable means. Step 110 may be performed under an inert or relatively inert gas atmosphere, such as nitrogen gas. Step 112 comprises degasing. The resulting mixture from step 112 may comprise a fill material suitable for production into a softgel capsule.
In step 112, a soft gel capsule is prepared by combining the material obtained in step 106 with the gel mass of step 110. The gel film may be wrapped around the material, partially or fully encapsulating it. The gel film may also be injected or otherwise filled with the material obtained in step 106.
Step 112 may be performed in a suitable die to provide a desired shape. Vaginal soft gel capsules may be prepared in a variety of geometries. For example, vaginal soft gel capsules may be shaped as a tear drop, a cone with frustoconical end, a cylinder, a cylinder with larger “cap” portion, or other shapes suitable for insertion into the vagina. Vaginal soft gel capsules in accordance with various embodiments may or may not be used in connection with an applicator.
It will be apparent to those skilled in the art that various modifications and variations can be made in the present disclosure without departing from the spirit or scope of the disclosure. Thus, it is intended that the present disclosure cover the modifications and variations of this disclosure provided they come within the scope of the appended claims and their equivalents.
Likewise, numerous characteristics and advantages have been set forth in the preceding description, including various alternatives together with details of the structure and function of the devices and/or methods. This disclosure is intended as illustrative only and as such is not intended to be exhaustive. It will be evident to those skilled in the art that various modifications may be made, especially in matters of structure, materials, elements, components, shape, size and arrangement of parts including combinations within the principles of the disclosure, to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed. To the extent that these various modifications do not depart from the spirit and scope of the appended claims, they are intended to be encompassed therein.
This application claims priority to the following U.S. Patent Applications: U.S. Provisional Application Ser. No. 61/661,302, entitled “ESTRADIOL FORMULATIONS,” which was filed on Jun. 18, 2012; U.S. Provisional Application Ser. No. 61/662,265, entitled “PROGESTERONE FORMULATIONS,” which was filed on Jun. 20, 2012; U.S. patent application Ser. No. 13/684,002, entitled “NATURAL COMBINATION HORMONE REPLACEMENT FORMULATIONS AND THERAPIES,” which was filed Nov. 21, 2012; U.S. Provisional Application Ser. No. 61/745,313, entitled “SOLUBLE ESTRADIOL CAPSULE FOR VAGINAL INSERTION,” which was filed on Dec. 21, 2012; U.S. Patent Application Serial No. PCT/US2013/023309, entitled “TRANSDERMAL HORMONE REPLACEMENT THERAPIES,” which was filed Jan. 25, 2013; and U.S. patent application Ser. No. 13/843,428, entitled “NATURAL COMBINATION HORMONE REPLACEMENT FORMULATIONS AND THERAPIES,” which was filed Mar. 15, 2013. All aforementioned applications are hereby incorporated by reference herein in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
1967351 | Doisy | Jan 1934 | A |
2232438 | Butenandt | Feb 1941 | A |
2379832 | Serini et al. | Jul 1945 | A |
2649399 | Beall et al. | Aug 1953 | A |
3198707 | Nomine et al. | Aug 1965 | A |
3478070 | Stein et al. | Nov 1969 | A |
3526648 | Bertin et al. | Sep 1970 | A |
3710795 | Higuchi et al. | Jan 1973 | A |
3729560 | Hagerman | Apr 1973 | A |
3729566 | Ericsson et al. | Apr 1973 | A |
3755573 | Berman | Aug 1973 | A |
3755575 | Lerner | Aug 1973 | A |
3903880 | Higuchi et al. | Sep 1975 | A |
3916898 | Robinson | Nov 1975 | A |
3916899 | Theeuwes et al. | Nov 1975 | A |
3921636 | Zaffaroni | Nov 1975 | A |
3923997 | Meuly | Dec 1975 | A |
3948254 | Zaffaroni | Apr 1976 | A |
3971367 | Zaffaroni | Jun 1976 | A |
3977404 | Theeuwes | Aug 1976 | A |
3993072 | Zaffaroni | Nov 1976 | A |
4008719 | Theeuwes et al. | Feb 1977 | A |
4012496 | Schopflin et al. | Mar 1977 | A |
4014334 | Theeuwes et al. | Mar 1977 | A |
4014987 | Heller et al. | Mar 1977 | A |
4016251 | Higuchi et al. | Aug 1977 | A |
4071623 | van der Vies | Jan 1978 | A |
4093709 | Choi et al. | Jun 1978 | A |
4154820 | Simoons | May 1979 | A |
4155991 | Schopflin et al. | May 1979 | A |
4196188 | Besins | Apr 1980 | A |
4215691 | Wong | Aug 1980 | A |
4237885 | Wong et al. | Dec 1980 | A |
4310510 | Sherman et al. | Jan 1982 | A |
4327725 | Cortese et al. | May 1982 | A |
4372951 | Vorys | Feb 1983 | A |
4384096 | Sonnabend | May 1983 | A |
4393871 | Vorhauer et al. | Jul 1983 | A |
4402695 | Wong | Sep 1983 | A |
4423151 | Baranczuk | Dec 1983 | A |
4449980 | Millar et al. | May 1984 | A |
4610687 | Fogwell | Sep 1986 | A |
4629449 | Wong | Dec 1986 | A |
4732763 | Beck et al. | Mar 1988 | A |
4738957 | Laurent et al. | Apr 1988 | A |
4756907 | Beck et al. | Jul 1988 | A |
4762717 | Crowley, Jr. | Aug 1988 | A |
4788062 | Gale et al. | Nov 1988 | A |
4816257 | Buster et al. | Mar 1989 | A |
4822616 | Zimmermann et al. | Apr 1989 | A |
4865848 | Cheng et al. | Sep 1989 | A |
4900734 | Maxson et al. | Feb 1990 | A |
4906475 | Kim | Mar 1990 | A |
4942158 | Sarpotdar et al. | Jul 1990 | A |
4961931 | Wong | Oct 1990 | A |
5030629 | Rajadhyaksha | Jul 1991 | A |
5043331 | Hirvonen et al. | Aug 1991 | A |
5059426 | Chiang | Oct 1991 | A |
5064654 | Berner et al. | Nov 1991 | A |
5108995 | Casper | Apr 1992 | A |
5128138 | Blank | Jul 1992 | A |
5130137 | Crowley, Jr. | Jul 1992 | A |
5140021 | Maxson et al. | Aug 1992 | A |
5164416 | Nagai et al. | Nov 1992 | A |
5208225 | Boissonneault et al. | May 1993 | A |
5211952 | Spicer et al. | May 1993 | A |
5252334 | Chiang et al. | Oct 1993 | A |
5280023 | Ehrlich et al. | Jan 1994 | A |
5288496 | Lewis | Feb 1994 | A |
5295945 | Miller | Mar 1994 | A |
5340584 | Spicer et al. | Aug 1994 | A |
5340585 | Pike et al. | Aug 1994 | A |
5340586 | Pike et al. | Aug 1994 | A |
5362497 | Yamada et al. | Aug 1994 | A |
5382573 | Casper | Jan 1995 | A |
5393528 | Staab | Feb 1995 | A |
5393529 | Hoffmann et al. | Feb 1995 | A |
5419910 | Lewis | May 1995 | A |
5453279 | Lee et al. | Sep 1995 | A |
5468736 | Hodgen | Nov 1995 | A |
5474783 | Miranda et al. | Dec 1995 | A |
5480776 | Dullien | Jan 1996 | A |
5514673 | Heckenmueller et al. | May 1996 | A |
5516528 | Hughes et al. | May 1996 | A |
5527534 | Myhling | Jun 1996 | A |
5529782 | Staab | Jun 1996 | A |
5538736 | Hoffmann et al. | Jul 1996 | A |
5543150 | Bologna et al. | Aug 1996 | A |
5547948 | Barcomb | Aug 1996 | A |
5556635 | Istin et al. | Sep 1996 | A |
5565199 | Page et al. | Oct 1996 | A |
5567831 | Li | Oct 1996 | A |
5569652 | Beier et al. | Oct 1996 | A |
5580572 | Mikler et al. | Dec 1996 | A |
5582592 | Kendrick | Dec 1996 | A |
5585370 | Casper | Dec 1996 | A |
5595759 | Wright et al. | Jan 1997 | A |
5595970 | Garfield et al. | Jan 1997 | A |
5605702 | Teillaud et al. | Feb 1997 | A |
5607691 | Hale et al. | Mar 1997 | A |
5607693 | Bonte et al. | Mar 1997 | A |
5609617 | Shealy et al. | Mar 1997 | A |
5620705 | Dong et al. | Apr 1997 | A |
5626866 | Ebert et al. | May 1997 | A |
5629021 | Wright | May 1997 | A |
5633011 | Dong et al. | May 1997 | A |
5633242 | Oettel et al. | May 1997 | A |
5639743 | Kaswan et al. | Jun 1997 | A |
5645856 | Lacy et al. | Jun 1997 | A |
5653983 | Meybeck et al. | Aug 1997 | A |
5656286 | Miranda et al. | Aug 1997 | A |
5660839 | Allec et al. | Aug 1997 | A |
5662927 | Ehrlich et al. | Sep 1997 | A |
5663160 | Meybeck et al. | Sep 1997 | A |
5676968 | Lipp et al. | Oct 1997 | A |
5677292 | Li et al. | Oct 1997 | A |
5686097 | Taskovich et al. | Nov 1997 | A |
5693335 | Xia et al. | Dec 1997 | A |
5694947 | Lehtinen et al. | Dec 1997 | A |
5700480 | Hille et al. | Dec 1997 | A |
5709844 | Arbeit et al. | Jan 1998 | A |
5719197 | Kanios et al. | Feb 1998 | A |
5735801 | Caillouette | Apr 1998 | A |
5739176 | Dunn et al. | Apr 1998 | A |
5744463 | Bair | Apr 1998 | A |
5747058 | Tipton et al. | May 1998 | A |
5762614 | Caillouette | Jun 1998 | A |
5770176 | Nargessi | Jun 1998 | A |
5770219 | Chiang et al. | Jun 1998 | A |
5770220 | Meconi et al. | Jun 1998 | A |
5770227 | Dong et al. | Jun 1998 | A |
5776495 | Duclos et al. | Jul 1998 | A |
5780044 | Yewey et al. | Jul 1998 | A |
5780050 | Jain et al. | Jul 1998 | A |
5788980 | Nabahi | Aug 1998 | A |
5788984 | Guenther et al. | Aug 1998 | A |
5789442 | Garfield et al. | Aug 1998 | A |
5811416 | Chwalisz et al. | Sep 1998 | A |
5811547 | Nakamichi et al. | Sep 1998 | A |
5814329 | Shah | Sep 1998 | A |
5820878 | Hirano et al. | Oct 1998 | A |
5827200 | Caillouette | Oct 1998 | A |
5840327 | Gale et al. | Nov 1998 | A |
5843468 | Burkoth et al. | Dec 1998 | A |
5843979 | Wille et al. | Dec 1998 | A |
5858394 | Lipp et al. | Jan 1999 | A |
5863552 | Yue | Jan 1999 | A |
5866603 | Li et al. | Feb 1999 | A |
5869084 | Paradissis et al. | Feb 1999 | A |
5882676 | Lee et al. | Mar 1999 | A |
5885612 | Meconi et al. | Mar 1999 | A |
5888533 | Dunn | Mar 1999 | A |
5891462 | Carrara | Apr 1999 | A |
5891868 | Cummings et al. | Apr 1999 | A |
5898038 | Yallampalli et al. | Apr 1999 | A |
5902603 | Chen et al. | May 1999 | A |
5904931 | Lipp et al. | May 1999 | A |
5906830 | Farinas et al. | May 1999 | A |
5912010 | Wille et al. | Jun 1999 | A |
5916176 | Caillouette | Jun 1999 | A |
RE36247 | Plunkett et al. | Jul 1999 | E |
5919477 | Bevan et al. | Jul 1999 | A |
5922349 | Elliesen et al. | Jul 1999 | A |
5928666 | Farinas et al. | Jul 1999 | A |
5942243 | Shah | Aug 1999 | A |
5942531 | Diaz et al. | Aug 1999 | A |
5952000 | Venkateshwaran et al. | Sep 1999 | A |
5958446 | Miranda et al. | Sep 1999 | A |
5962445 | Stewart | Oct 1999 | A |
5968919 | Samour et al. | Oct 1999 | A |
5972372 | Saleh et al. | Oct 1999 | A |
5985311 | Cordes et al. | Nov 1999 | A |
5985850 | Falk et al. | Nov 1999 | A |
5985861 | Levine et al. | Nov 1999 | A |
5993856 | Ragavan et al. | Nov 1999 | A |
5989568 | Breton et al. | Dec 1999 | A |
6001846 | Edwards et al. | Dec 1999 | A |
6007835 | Bon-Lapillonne et al. | Dec 1999 | A |
6010715 | Wick et al. | Jan 2000 | A |
6013276 | Math et al. | Jan 2000 | A |
6022562 | Autant et al. | Feb 2000 | A |
6024974 | Li Chensheng | Feb 2000 | A |
6024976 | Miranda et al. | Feb 2000 | A |
6028057 | Burns | Feb 2000 | A |
6030948 | Mann | Feb 2000 | A |
6039968 | Nabahi | Mar 2000 | A |
6040340 | Chwalisz et al. | Mar 2000 | A |
6056972 | Hermsmeyer | May 2000 | A |
6060077 | Meignant | May 2000 | A |
6068853 | Giannos et al. | May 2000 | A |
6074625 | Hawthorne et al. | Jun 2000 | A |
6077531 | Salin-Drouin | Jun 2000 | A |
6080118 | Blythe | Jun 2000 | A |
6083178 | Caillouette | Jul 2000 | A |
6086916 | Agnus et al. | Jul 2000 | A |
6087352 | Trout | Jul 2000 | A |
6090404 | Meconi et al. | Jul 2000 | A |
6096338 | Lacy et al. | Jul 2000 | A |
6106848 | Preuilh et al. | Aug 2000 | A |
6117446 | Place | Sep 2000 | A |
6117450 | Dittgen et al. | Sep 2000 | A |
6124362 | Bradbury et al. | Sep 2000 | A |
6133251 | Dittgen et al. | Oct 2000 | A |
6133320 | Yallampalli et al. | Oct 2000 | A |
6139868 | Hoffmann | Oct 2000 | A |
6139873 | Hughes, Jr. et al. | Oct 2000 | A |
6149935 | Chiang et al. | Nov 2000 | A |
6153216 | Cordes et al. | Nov 2000 | A |
6165491 | Grasset et al. | Dec 2000 | A |
6165975 | Adams et al. | Dec 2000 | A |
6187323 | Aiache et al. | Feb 2001 | B1 |
6187339 | de Haan et al. | Feb 2001 | B1 |
6190331 | Caillouette | Feb 2001 | B1 |
6201072 | Rathi et al. | Mar 2001 | B1 |
6217886 | Onyueksel et al. | Apr 2001 | B1 |
6225297 | Stockemann et al. | May 2001 | B1 |
6227202 | Matapurkar | May 2001 | B1 |
6228383 | Hansen et al. | May 2001 | B1 |
6228852 | Shaak | May 2001 | B1 |
6242509 | Berger et al. | Jun 2001 | B1 |
6245811 | Horrobin et al. | Jun 2001 | B1 |
6262115 | Guittard et al. | Jul 2001 | B1 |
6267984 | Beste et al. | Jul 2001 | B1 |
6274165 | Meconi et al. | Aug 2001 | B1 |
6277418 | Marakverich et al. | Aug 2001 | B1 |
6283927 | Caillouette | Sep 2001 | B1 |
6284263 | Place | Sep 2001 | B1 |
6287588 | Shih et al. | Sep 2001 | B1 |
6287693 | Savoir et al. | Sep 2001 | B1 |
6294188 | Ragavan et al. | Sep 2001 | B1 |
6294192 | Patel et al. | Sep 2001 | B1 |
6294550 | Place et al. | Sep 2001 | B1 |
6299900 | Reed et al. | Oct 2001 | B1 |
6303132 | Nelson | Oct 2001 | B1 |
6303588 | Danielov | Oct 2001 | B1 |
6306841 | Place et al. | Oct 2001 | B1 |
6306914 | de Ziegler et al. | Oct 2001 | B1 |
6309669 | Setterstrom et al. | Oct 2001 | B1 |
6309848 | Howett et al. | Oct 2001 | B1 |
6312703 | Orthoefer | Nov 2001 | B1 |
6328987 | Marini | Dec 2001 | B1 |
6342491 | Dey et al. | Jan 2002 | B1 |
6344211 | Hille | Feb 2002 | B1 |
6372209 | Chrisope | Apr 2002 | B1 |
6372245 | Bowman et al. | Apr 2002 | B1 |
6372246 | Wei et al. | Apr 2002 | B1 |
6387390 | Deaver et al. | May 2002 | B1 |
6402705 | Caillouette | Jun 2002 | B1 |
6416778 | Ragavan et al. | Jul 2002 | B1 |
6420352 | Knowles | Jul 2002 | B1 |
6423039 | Rathbone et al. | Jul 2002 | B1 |
6423683 | Heaton et al. | Jul 2002 | B1 |
6432438 | Shukla | Aug 2002 | B1 |
6436633 | Kreider et al. | Aug 2002 | B1 |
6440454 | Santoro et al. | Aug 2002 | B1 |
6444224 | Rathbone et al. | Sep 2002 | B1 |
6444234 | Kirby et al. | Sep 2002 | B1 |
6451300 | Dunlop et al. | Sep 2002 | B1 |
6451339 | Patel et al. | Sep 2002 | B2 |
6451779 | Hesch | Sep 2002 | B1 |
6455246 | Howett et al. | Sep 2002 | B1 |
6455517 | Tanabe et al. | Sep 2002 | B1 |
6465004 | Rossi Montero et al. | Oct 2002 | B1 |
6465005 | Biali et al. | Oct 2002 | B1 |
6465006 | Zhang et al. | Oct 2002 | B1 |
6468526 | Chrisope | Oct 2002 | B2 |
6469016 | Place et al. | Oct 2002 | B1 |
6472434 | Place et al. | Oct 2002 | B1 |
6479232 | Howett et al. | Nov 2002 | B1 |
6495160 | Esposito et al. | Dec 2002 | B2 |
6500814 | Hesch | Dec 2002 | B1 |
6503896 | Tanabe et al. | Jan 2003 | B1 |
6511969 | Hermsmeyer | Jan 2003 | B1 |
6521250 | Meconi et al. | Feb 2003 | B2 |
6526980 | Tracy et al. | Mar 2003 | B1 |
6528094 | Savoir et al. | Mar 2003 | B1 |
6531149 | Kirstgen et al. | Mar 2003 | B1 |
6537580 | Savoir et al. | Mar 2003 | B1 |
6538039 | Laurent | Mar 2003 | B2 |
6544196 | Caillouette | Apr 2003 | B2 |
6544553 | Hsia et al. | Apr 2003 | B1 |
6548053 | Stewart et al. | Apr 2003 | B1 |
6548491 | Tanabe et al. | Apr 2003 | B2 |
6551611 | Elliesen et al. | Apr 2003 | B2 |
6555131 | Wolff et al. | Apr 2003 | B1 |
6562367 | Wolff et al. | May 2003 | B1 |
6562370 | Luo et al. | May 2003 | B2 |
6562790 | Chein | May 2003 | B2 |
6569463 | Patel et al. | May 2003 | B2 |
6583129 | Mazer et al. | Jun 2003 | B1 |
6586006 | Roser et al. | Jul 2003 | B2 |
6589549 | Shih et al. | Jul 2003 | B2 |
6593317 | de Ziegler et al. | Jul 2003 | B1 |
6599519 | Seo et al. | Jul 2003 | B1 |
6610325 | Meignant et al. | Aug 2003 | B1 |
6610652 | Adams et al. | Aug 2003 | B2 |
6610670 | Backensfeld et al. | Aug 2003 | B2 |
6610674 | Schreiber | Aug 2003 | B1 |
6635274 | Masiz et al. | Oct 2003 | B1 |
6638528 | Kanios | Oct 2003 | B1 |
6638536 | Savoir et al. | Oct 2003 | B2 |
6645528 | Straub et al. | Nov 2003 | B1 |
6649155 | Dunlop et al. | Nov 2003 | B1 |
6653298 | Potter et al. | Nov 2003 | B2 |
6656929 | Agnus et al. | Dec 2003 | B1 |
6660726 | Hill et al. | Dec 2003 | B2 |
6663608 | Rathbone et al. | Dec 2003 | B2 |
6663895 | Savoir et al. | Dec 2003 | B2 |
6664296 | Meignant | Dec 2003 | B1 |
6682757 | Wright | Jan 2004 | B1 |
6692763 | Cununings et al. | Feb 2004 | B1 |
6708822 | Muni | Mar 2004 | B1 |
6716454 | Meignant et al. | Apr 2004 | B2 |
6720001 | Chen et al. | Apr 2004 | B2 |
6737081 | Savoir et al. | May 2004 | B2 |
6740333 | Beckett et al. | May 2004 | B2 |
6743448 | Kryger | Jun 2004 | B2 |
6743815 | Huebner et al. | Jun 2004 | B2 |
6747018 | Tanabe et al. | Jun 2004 | B2 |
6750291 | Kim et al. | Jun 2004 | B2 |
6756208 | Griffin et al. | Jun 2004 | B2 |
6776164 | Bunt et al. | Aug 2004 | B2 |
6787152 | Kirby et al. | Sep 2004 | B2 |
6805877 | Massara et al. | Oct 2004 | B2 |
6809085 | Elson et al. | Oct 2004 | B1 |
6818226 | Reed et al. | Nov 2004 | B2 |
6821524 | Marini | Nov 2004 | B2 |
6841716 | Tsutsumi | Jan 2005 | B1 |
6844334 | Hill et al. | Jan 2005 | B2 |
6855703 | Hill et al. | Feb 2005 | B1 |
6860859 | Mehrotra et al. | Mar 2005 | B2 |
6866865 | Hsia et al. | Mar 2005 | B2 |
6869969 | Heubner et al. | Mar 2005 | B2 |
6878518 | Whitehead | Apr 2005 | B2 |
6901278 | Notelovitz | May 2005 | B1 |
6905705 | Palm et al. | Jun 2005 | B2 |
6911211 | Eini et al. | Jun 2005 | B2 |
6911438 | Wright | Jun 2005 | B2 |
6923988 | Patel et al. | Aug 2005 | B2 |
6924274 | Lardy et al. | Aug 2005 | B2 |
6932983 | Straub et al. | Aug 2005 | B1 |
6939558 | Massara et al. | Sep 2005 | B2 |
6943021 | Klausner et al. | Sep 2005 | B2 |
6958327 | Hillisch et al. | Oct 2005 | B1 |
6960337 | Daniels et al. | Nov 2005 | B2 |
6962691 | Lulla et al. | Nov 2005 | B1 |
6962908 | Aloba et al. | Nov 2005 | B2 |
6967194 | Matsuo et al. | Nov 2005 | B1 |
6974569 | Dunlop et al. | Dec 2005 | B2 |
6977250 | Rodriguez | Dec 2005 | B2 |
6978945 | Wong et al. | Dec 2005 | B2 |
6987129 | Mak et al. | Jan 2006 | B2 |
6995149 | Endrikat et al. | Feb 2006 | B1 |
7004321 | Palm et al. | Feb 2006 | B1 |
7005429 | Dey et al. | Feb 2006 | B2 |
7011846 | Shojaei et al. | Mar 2006 | B2 |
7018992 | Koch et al. | Mar 2006 | B2 |
7030104 | Gray et al. | Apr 2006 | B2 |
7030157 | Ke et al. | Apr 2006 | B2 |
RE39104 | Duclos et al. | May 2006 | E |
7074779 | Sui et al. | Jul 2006 | B2 |
7083590 | Bunt et al. | Aug 2006 | B1 |
7091213 | Metcalf, III et al. | Aug 2006 | B2 |
7094228 | Zhang et al. | Aug 2006 | B2 |
7097853 | Garbe et al. | Aug 2006 | B1 |
7101342 | Caillouette | Sep 2006 | B1 |
7105573 | Krajcik et al. | Sep 2006 | B2 |
7135190 | Piao et al. | Nov 2006 | B2 |
7153522 | Yasuhiro et al. | Dec 2006 | B1 |
7163681 | Giles-Komar et al. | Jan 2007 | B2 |
7163699 | Besse | Jan 2007 | B2 |
7175850 | Cevc | Feb 2007 | B2 |
7179799 | Hill et al. | Feb 2007 | B2 |
7196074 | Blye et al. | Mar 2007 | B2 |
7198800 | Ko | Apr 2007 | B1 |
7198801 | Carrara et al. | Apr 2007 | B2 |
7226910 | Wilson et al. | Jun 2007 | B2 |
7247625 | Zhang et al. | Jul 2007 | B2 |
7250446 | Sangita et al. | Jul 2007 | B2 |
7267829 | Kirby et al. | Sep 2007 | B2 |
7300926 | Prokai et al. | Nov 2007 | B2 |
7303763 | Ho | Dec 2007 | B2 |
7317037 | Fensome et al. | Jan 2008 | B2 |
7329654 | Kanojia et al. | Feb 2008 | B2 |
7335650 | Potter et al. | Feb 2008 | B2 |
7374779 | Chen et al. | May 2008 | B2 |
7378404 | Peters et al. | May 2008 | B2 |
7381427 | Ancira et al. | Jun 2008 | B2 |
7387789 | Klose et al. | Jun 2008 | B2 |
7388006 | Schmees et al. | Jun 2008 | B2 |
7414043 | Kosemund et al. | Aug 2008 | B2 |
7427413 | Savoir et al. | Sep 2008 | B2 |
7427609 | Leonard | Sep 2008 | B2 |
7429576 | Labrie | Sep 2008 | B2 |
7431941 | Besins et al. | Oct 2008 | B2 |
7456159 | Houze et al. | Nov 2008 | B2 |
7459445 | Hill et al. | Dec 2008 | B2 |
7465587 | Imrich | Dec 2008 | B2 |
7470433 | Carrara et al. | Dec 2008 | B2 |
7485666 | Villaneuva et al. | Feb 2009 | B2 |
7497855 | Ausiello et al. | Mar 2009 | B2 |
7498303 | Arnold et al. | Mar 2009 | B2 |
7534765 | Gregg et al. | May 2009 | B2 |
7534780 | Wyrwa et al. | May 2009 | B2 |
7550142 | Giles-Komar et al. | Jun 2009 | B2 |
7563565 | Matsuo et al. | Jul 2009 | B1 |
7569274 | Besse et al. | Aug 2009 | B2 |
7572779 | Aloba et al. | Aug 2009 | B2 |
7572780 | Hermsmeyer | Aug 2009 | B2 |
7589082 | Savoir et al. | Sep 2009 | B2 |
7671027 | Loumaye | Mar 2010 | B2 |
7674783 | Hermsmeyer | Mar 2010 | B2 |
7687281 | Roth et al. | Mar 2010 | B2 |
7687485 | Levinson et al. | Mar 2010 | B2 |
7694683 | Callister et al. | Apr 2010 | B2 |
7704983 | Hodgen et al. | Apr 2010 | B1 |
7727720 | Dhallan | Jun 2010 | B2 |
7732408 | Josephson et al. | Jun 2010 | B2 |
7749989 | Hill et al. | Jul 2010 | B2 |
7767656 | Shoichet et al. | Aug 2010 | B2 |
7799769 | White et al. | Sep 2010 | B2 |
7815936 | Hasenzahl et al. | Oct 2010 | B2 |
7815949 | Cohen | Oct 2010 | B2 |
7829115 | Besins et al. | Nov 2010 | B2 |
7829116 | Griswold et al. | Nov 2010 | B2 |
RE42012 | Deaver et al. | Dec 2010 | E |
7850992 | Kim et al. | Dec 2010 | B2 |
7854753 | Kraft et al. | Dec 2010 | B2 |
7858607 | Mamchur | Dec 2010 | B2 |
RE42072 | Deaver et al. | Jan 2011 | E |
7862552 | McIntyre et al. | Jan 2011 | B2 |
7867990 | Schultz et al. | Jan 2011 | B2 |
7871643 | Lizio et al. | Jan 2011 | B2 |
7879830 | Wiley | Feb 2011 | B2 |
7884093 | Creasy et al. | Feb 2011 | B2 |
7925519 | Greene | Apr 2011 | B2 |
7939104 | Barbera et al. | May 2011 | B2 |
7943602 | Bunschoten et al. | May 2011 | B2 |
7943604 | Coelingh Bennink et al. | May 2011 | B2 |
7945459 | Grace et al. | May 2011 | B2 |
7960368 | Nickisch et al. | Jun 2011 | B2 |
7989436 | Hill et al. | Aug 2011 | B2 |
7989487 | Welsh et al. | Aug 2011 | B2 |
8022053 | Mueller et al. | Sep 2011 | B2 |
8048017 | Xu | Nov 2011 | B2 |
8048869 | Bunschoten et al. | Nov 2011 | B2 |
8063030 | Ellman | Nov 2011 | B2 |
8071576 | Coelingh Bennink et al. | Dec 2011 | B2 |
8071729 | Giles-Komar et al. | Dec 2011 | B2 |
8075916 | Song et al. | Dec 2011 | B2 |
8075917 | Chung et al. | Dec 2011 | B2 |
8076317 | Kulmann | Dec 2011 | B2 |
8076319 | Leonard | Dec 2011 | B2 |
8080553 | Keith et al. | Dec 2011 | B2 |
8088605 | Beudet et al. | Jan 2012 | B2 |
8096940 | Josephson et al. | Jan 2012 | B2 |
8101209 | Legrand et al. | Jan 2012 | B2 |
8101773 | Smith et al. | Jan 2012 | B2 |
8114152 | Furst | Feb 2012 | B2 |
8114434 | Sasaki et al. | Feb 2012 | B2 |
8114442 | Tucker et al. | Feb 2012 | B2 |
8119741 | Pavlin | Feb 2012 | B2 |
8121886 | Azar | Feb 2012 | B2 |
8124118 | Lennernaes et al. | Feb 2012 | B2 |
8124595 | Boissonneault | Feb 2012 | B2 |
8147561 | Binmoeller | Apr 2012 | B2 |
8148546 | Schuster et al. | Apr 2012 | B2 |
8158613 | Staniforth et al. | Apr 2012 | B2 |
8158614 | Lambert et al. | Apr 2012 | B2 |
8163722 | Savoir et al. | Apr 2012 | B2 |
8177449 | Watkinson et al. | May 2012 | B2 |
8182833 | Hermsmeyer | May 2012 | B2 |
8187615 | Friedman | May 2012 | B2 |
8187640 | Dunn | May 2012 | B2 |
8195403 | Ishikawa et al. | Jun 2012 | B2 |
8202736 | Mousa et al. | Jun 2012 | B2 |
8217024 | Ahmed et al. | Jul 2012 | B2 |
8221785 | Chien | Jul 2012 | B2 |
8222008 | Thoene | Jul 2012 | B2 |
8222237 | Nickisch et al. | Jul 2012 | B2 |
8227454 | Hill et al. | Jul 2012 | B2 |
8227509 | Castro et al. | Jul 2012 | B2 |
8241664 | Dudley et al. | Aug 2012 | B2 |
8247393 | Ahmed et al. | Aug 2012 | B2 |
8257724 | Cromack et al. | Sep 2012 | B2 |
8257725 | Cromack et al. | Sep 2012 | B2 |
8268352 | Vaya et al. | Sep 2012 | B2 |
8268806 | Labrie | Sep 2012 | B2 |
8268878 | Armer et al. | Sep 2012 | B2 |
8273730 | Fernandez et al. | Sep 2012 | B2 |
8287888 | Song et al. | Oct 2012 | B2 |
8288366 | Chochinov et al. | Oct 2012 | B2 |
8318898 | Fasel et al. | Nov 2012 | B2 |
8324193 | Lee Sepsick et al. | Dec 2012 | B2 |
8329680 | Evans et al. | Dec 2012 | B2 |
8337814 | Reitz et al. | Dec 2012 | B2 |
8344007 | Tang et al. | Jan 2013 | B2 |
8349820 | Zeun et al. | Jan 2013 | B2 |
8353863 | Imran | Jan 2013 | B2 |
8357723 | Satyam | Jan 2013 | B2 |
8361995 | Schramm | Jan 2013 | B2 |
8362091 | Tamarkin et al. | Jan 2013 | B2 |
8372424 | Berry et al. | Feb 2013 | B2 |
8372806 | Boehler et al. | Feb 2013 | B2 |
8377482 | Laurie et al. | Feb 2013 | B2 |
8377994 | Gray et al. | Feb 2013 | B2 |
8394759 | Bookout et al. | Mar 2013 | B2 |
8415332 | Diliberti et al. | Apr 2013 | B2 |
8420111 | Hermsmeyer | Apr 2013 | B2 |
8435561 | Besins et al. | May 2013 | B2 |
8435972 | Stein et al. | May 2013 | B2 |
8449879 | Laurent Applegate et al. | May 2013 | B2 |
8450108 | Boyce | May 2013 | B2 |
8454945 | Mccook et al. | Jun 2013 | B2 |
8455468 | Hoffman et al. | Jun 2013 | B2 |
8461138 | Boissonneault | Jun 2013 | B2 |
8476252 | Achleitner et al. | Jul 2013 | B2 |
8481488 | Carter | Jul 2013 | B2 |
8486374 | Tamarkin et al. | Jul 2013 | B2 |
8486442 | Matsushita et al. | Jul 2013 | B2 |
8492368 | Vanlandingham et al. | Jul 2013 | B2 |
8507467 | Matsui et al. | Aug 2013 | B2 |
8512693 | Capito et al. | Aug 2013 | B2 |
8512754 | Needham | Aug 2013 | B2 |
8518376 | Tamarkin et al. | Aug 2013 | B2 |
8536159 | Li et al. | Sep 2013 | B2 |
8540967 | Trivedi et al. | Sep 2013 | B2 |
8541400 | Johnsson | Sep 2013 | B2 |
8551462 | Goldstein et al. | Oct 2013 | B2 |
8551508 | Lee et al. | Oct 2013 | B2 |
8557281 | Halliday et al. | Oct 2013 | B2 |
8568374 | De Graaff et al. | Oct 2013 | B2 |
8591951 | Kohn et al. | Nov 2013 | B2 |
8613951 | Zale et al. | Dec 2013 | B2 |
8633178 | Bernick et al. | Jan 2014 | B2 |
8633180 | Li et al. | Jan 2014 | B2 |
8636787 | Sabiria | Jan 2014 | B2 |
8636982 | Tamarkin et al. | Jan 2014 | B2 |
8653129 | Fein et al. | Feb 2014 | B2 |
8658627 | Voskuhl | Feb 2014 | B2 |
8658628 | Baucom | Feb 2014 | B2 |
8663681 | Ahmed et al. | Mar 2014 | B2 |
8663692 | Mueller et al. | Mar 2014 | B1 |
8663703 | Lerner et al. | Mar 2014 | B2 |
8664207 | Li et al. | Mar 2014 | B2 |
8669293 | Levy et al. | Mar 2014 | B2 |
8679552 | Guthery | Mar 2014 | B2 |
8694358 | Tryfon | Apr 2014 | B2 |
8697127 | Sah | Apr 2014 | B2 |
8697710 | Li et al. | Apr 2014 | B2 |
8703105 | Tamarkin et al. | Apr 2014 | B2 |
8709385 | Tamarkin et al. | Apr 2014 | B2 |
8709451 | Nam et al. | Apr 2014 | B2 |
8715735 | Funke et al. | May 2014 | B2 |
8721331 | Raghuprasad | May 2014 | B2 |
8722021 | Friedman et al. | May 2014 | B2 |
8734846 | Ali et al. | May 2014 | B2 |
8735381 | Podolski | May 2014 | B2 |
8741336 | Dipierro et al. | Jun 2014 | B2 |
8741373 | Bromley et al. | Jun 2014 | B2 |
8753661 | Steinmueller Nethl et al. | Jun 2014 | B2 |
8784882 | Mattern | Jul 2014 | B2 |
8846648 | Bernick et al. | Sep 2014 | B2 |
8846649 | Bernick et al. | Sep 2014 | B2 |
8933059 | Bernick et al. | Jan 2015 | B2 |
8987237 | Bernick et al. | Mar 2015 | B2 |
8987238 | Bernick et al. | Mar 2015 | B2 |
8993548 | Bernick et al. | Mar 2015 | B2 |
8993549 | Bernick et al. | Mar 2015 | B2 |
9005597 | Hansen et al. | Apr 2015 | B2 |
9006222 | Bernick et al. | Apr 2015 | B2 |
9012434 | Bernick et al. | Apr 2015 | B2 |
9114145 | Bernick et al. | Aug 2015 | B2 |
9114146 | Bernick et al. | Aug 2015 | B2 |
9180091 | Bernick et al. | Nov 2015 | B2 |
9248136 | Bernick et al. | Feb 2016 | B2 |
9289382 | Bernick et al. | Mar 2016 | B2 |
9301920 | Bernick et al. | Apr 2016 | B2 |
9931349 | Shadiack et al. | Apr 2018 | B2 |
10052386 | Bernick et al. | Aug 2018 | B2 |
10098894 | Amadio et al. | Oct 2018 | B2 |
10206932 | Bernick et al. | Feb 2019 | B2 |
10258630 | Mirkin et al. | Apr 2019 | B2 |
10398708 | Mirkin et al. | Sep 2019 | B2 |
10471072 | Bernick et al. | Nov 2019 | B2 |
10568891 | Mirkin et al. | Feb 2020 | B2 |
20010005728 | Guittard et al. | Feb 2001 | A1 |
20010009673 | Lipp et al. | Jul 2001 | A1 |
20010021816 | Caillouette | Sep 2001 | A1 |
20010023261 | Ryoo et al. | Sep 2001 | A1 |
20010027189 | Bennink et al. | Oct 2001 | A1 |
20010029357 | Bunt et al. | Oct 2001 | A1 |
20010031747 | de Ziegler et al. | Oct 2001 | A1 |
20010032125 | Bhan et al. | Oct 2001 | A1 |
20010034340 | Pickar | Oct 2001 | A1 |
20120269878 | Cantor et al. | Oct 2001 | A2 |
20010053383 | Miranda et al. | Dec 2001 | A1 |
20010056068 | Chwalisz et al. | Dec 2001 | A1 |
20020012710 | Lansky | Jan 2002 | A1 |
20020026158 | Rathbone et al. | Feb 2002 | A1 |
20020028788 | Bunt et al. | Mar 2002 | A1 |
20020035070 | Gardlik et al. | Mar 2002 | A1 |
20020058648 | Hammerly | May 2002 | A1 |
20020058926 | Rathbone et al. | May 2002 | A1 |
20020064541 | Lapidot et al. | May 2002 | A1 |
20020076441 | Shih et al. | Jun 2002 | A1 |
20020102308 | Wei et al. | Aug 2002 | A1 |
20020107230 | Waldon et al. | Aug 2002 | A1 |
20020114803 | Deaver et al. | Aug 2002 | A1 |
20020119174 | Gardlik et al. | Aug 2002 | A1 |
20020119198 | Gao et al. | Aug 2002 | A1 |
20020132801 | Heil et al. | Sep 2002 | A1 |
20020137749 | Levinson et al. | Sep 2002 | A1 |
20020142017 | Simonnet | Oct 2002 | A1 |
20020151530 | Leonard et al. | Oct 2002 | A1 |
20020156394 | Mehrotra et al. | Oct 2002 | A1 |
20020169150 | Pickar | Nov 2002 | A1 |
20020169205 | Chwalisz et al. | Nov 2002 | A1 |
20020173510 | Levinson et al. | Nov 2002 | A1 |
20020193356 | Van Beek et al. | Dec 2002 | A1 |
20020193758 | Sandberg | Dec 2002 | A1 |
20020197286 | Brandman et al. | Dec 2002 | A1 |
20030003139 | Lipp et al. | Jan 2003 | A1 |
20030004145 | Leonard | Jan 2003 | A1 |
20030007994 | Bunt et al. | Jan 2003 | A1 |
20030027772 | Breton | Feb 2003 | A1 |
20030091620 | Fikstad et al. | Feb 2003 | A1 |
20030044453 | Dittgen et al. | Mar 2003 | A1 |
20030049307 | Gyurik | Mar 2003 | A1 |
20030064097 | Patel et al. | Apr 2003 | A1 |
20030064975 | Koch et al. | Apr 2003 | A1 |
20030072760 | Sirbasku | Apr 2003 | A1 |
20030073248 | Roth et al. | Apr 2003 | A1 |
20030073673 | Hesch | Apr 2003 | A1 |
20030077297 | Chen et al. | Apr 2003 | A1 |
20030078245 | Bennink et al. | Apr 2003 | A1 |
20030091640 | Ramanathan et al. | May 2003 | A1 |
20030092691 | Besse et al. | May 2003 | A1 |
20030096012 | Besse et al. | May 2003 | A1 |
20030104048 | Patel et al. | Jun 2003 | A1 |
20030109507 | Franke et al. | Jun 2003 | A1 |
20030113268 | Buenafae et al. | Jun 2003 | A1 |
20030114420 | Salvati et al. | Jun 2003 | A1 |
20030114430 | MacLeod et al. | Jun 2003 | A1 |
20030124182 | Shojaei et al. | Jul 2003 | A1 |
20030124191 | Besse et al. | Jul 2003 | A1 |
20030130558 | Massara et al. | Jul 2003 | A1 |
20030144258 | Heil et al. | Jul 2003 | A1 |
20030157157 | Luo et al. | Aug 2003 | A1 |
20030166509 | Edwards et al. | Sep 2003 | A1 |
20030170295 | Kim et al. | Sep 2003 | A1 |
20030175329 | Azarnoff et al. | Sep 2003 | A1 |
20030175333 | Shefer et al. | Sep 2003 | A1 |
20030180352 | Patel et al. | Sep 2003 | A1 |
20030181353 | Nyce | Sep 2003 | A1 |
20030181728 | Salvati et al. | Sep 2003 | A1 |
20030191096 | Leonard et al. | Oct 2003 | A1 |
20030195177 | Leonard et al. | Oct 2003 | A1 |
20030215496 | Patel et al. | Nov 2003 | A1 |
20030219402 | Rutter | Nov 2003 | A1 |
20030220297 | Bernstein et al. | Nov 2003 | A1 |
20030224057 | Martin-Letellier et al. | Dec 2003 | A1 |
20030224059 | Lerner et al. | Dec 2003 | A1 |
20030225047 | Caubel et al. | Dec 2003 | A1 |
20030225048 | Caubel et al. | Dec 2003 | A1 |
20030225050 | Eichardt et al. | Dec 2003 | A1 |
20030228686 | Klausner et al. | Dec 2003 | A1 |
20030229057 | Caubel et al. | Dec 2003 | A1 |
20030235596 | Gao et al. | Dec 2003 | A1 |
20030236236 | Chen et al. | Dec 2003 | A1 |
20040009960 | Heil et al. | Jan 2004 | A1 |
20040022820 | Anderson | Feb 2004 | A1 |
20040034001 | Karara | Feb 2004 | A1 |
20040037881 | Guittard et al. | Feb 2004 | A1 |
20040039356 | Maki et al. | Feb 2004 | A1 |
20040043043 | Schlyter et al. | Mar 2004 | A1 |
20040043943 | Guittard et al. | Mar 2004 | A1 |
20040044080 | Place et al. | Mar 2004 | A1 |
20040048900 | Flood | Mar 2004 | A1 |
20040052824 | Chacra-Vernet et al. | Mar 2004 | A1 |
20040073024 | Metcalf, III et al. | Apr 2004 | A1 |
20040077605 | Salvati et al. | Apr 2004 | A1 |
20040077606 | Salvati et al. | Apr 2004 | A1 |
20040087548 | Salvati et al. | May 2004 | A1 |
20040087564 | Wright et al. | May 2004 | A1 |
20040089308 | Welch | May 2004 | A1 |
20040092494 | Dudley | May 2004 | A9 |
20040092583 | Shanahan-Prendergast | May 2004 | A1 |
20040093261 | Jain et al. | May 2004 | A1 |
20040097468 | Wimalawansa | May 2004 | A1 |
20040101557 | Gibson et al. | May 2004 | A1 |
20040106542 | Deaver et al. | Jun 2004 | A1 |
20040110732 | Masini Eteve et al. | Jun 2004 | A1 |
20040131670 | Gao | Jul 2004 | A1 |
20040138103 | Patt | Jul 2004 | A1 |
20040142012 | Bunt et al. | Jul 2004 | A1 |
20040146539 | Gupta | Jul 2004 | A1 |
20040146894 | Warrington et al. | Jul 2004 | A1 |
20040147578 | Calvet | Jul 2004 | A1 |
20040161435 | Gupta | Aug 2004 | A1 |
20040176324 | Salvati et al. | Sep 2004 | A1 |
20040176336 | Rodriguez | Sep 2004 | A1 |
20040185104 | Piao et al. | Sep 2004 | A1 |
20040191207 | Lipari et al. | Sep 2004 | A1 |
20040191276 | Muni | Sep 2004 | A1 |
20040198706 | Carrara et al. | Oct 2004 | A1 |
20040210280 | Liedtke | Oct 2004 | A1 |
20040213744 | Lulla et al. | Oct 2004 | A1 |
20040219124 | Gupta | Nov 2004 | A1 |
20040225140 | Fernandez et al. | Nov 2004 | A1 |
20040234606 | Levine et al. | Nov 2004 | A1 |
20040241219 | Hille et al. | Dec 2004 | A1 |
20040243437 | Grace et al. | Dec 2004 | A1 |
20040253319 | Netke et al. | Dec 2004 | A1 |
20040259817 | Waldon et al. | Dec 2004 | A1 |
20040266745 | Schwanitz et al. | Dec 2004 | A1 |
20050003003 | Deaver et al. | Jan 2005 | A1 |
20050004088 | Hesch | Jan 2005 | A1 |
20050009800 | Thumbeck et al. | Jan 2005 | A1 |
20050014729 | Pulaski | Jan 2005 | A1 |
20050020550 | Morris et al. | Jan 2005 | A1 |
20050020552 | Aschkenasay et al. | Jan 2005 | A1 |
20050021009 | Massara et al. | Jan 2005 | A1 |
20050025833 | Aschkenasay et al. | Feb 2005 | A1 |
20050031651 | Gervais et al. | Feb 2005 | A1 |
20050042173 | Besse et al. | Feb 2005 | A1 |
20050042268 | Aschkenasay et al. | Feb 2005 | A1 |
20050048116 | Straub et al. | Mar 2005 | A1 |
20050054991 | Tobyn et al. | Mar 2005 | A1 |
20050079138 | Chickering, III et al. | Apr 2005 | A1 |
20050085453 | Govindarajan | Apr 2005 | A1 |
20050101579 | Shippen | May 2005 | A1 |
20050113350 | Duesterberg et al. | May 2005 | A1 |
20050118244 | Rubenacher et al. | Jun 2005 | A1 |
20050118272 | Besse et al. | Jun 2005 | A1 |
20050129756 | Podhaisky et al. | Jun 2005 | A1 |
20050152956 | Dudley | Jul 2005 | A1 |
20050153946 | Hirsh et al. | Jul 2005 | A1 |
20050164977 | Coelingh Bennink | Jul 2005 | A1 |
20050182105 | Nirschl et al. | Aug 2005 | A1 |
20050186141 | Gonda et al. | Aug 2005 | A1 |
20050187267 | Hamann et al. | Aug 2005 | A1 |
20050192253 | Salvati et al. | Sep 2005 | A1 |
20050192310 | Gavai et al. | Sep 2005 | A1 |
20050196434 | Brierre | Sep 2005 | A1 |
20050207990 | Funke et al. | Sep 2005 | A1 |
20050209209 | Koch et al. | Sep 2005 | A1 |
20050214384 | Juturu et al. | Sep 2005 | A1 |
20050220825 | Funke et al. | Oct 2005 | A1 |
20050220900 | Popp et al. | Oct 2005 | A1 |
20050222106 | Bracht | Oct 2005 | A1 |
20050228692 | Hodgdon | Oct 2005 | A1 |
20050228718 | Austin | Oct 2005 | A1 |
20050239747 | Yang et al. | Oct 2005 | A1 |
20050239758 | Roby | Oct 2005 | A1 |
20050244360 | Billoni | Nov 2005 | A1 |
20050244522 | Carrara et al. | Nov 2005 | A1 |
20050245902 | Cornish et al. | Nov 2005 | A1 |
20050250746 | Iammatteo | Nov 2005 | A1 |
20050250750 | Cummings et al. | Nov 2005 | A1 |
20050250753 | Fink et al. | Nov 2005 | A1 |
20050256028 | Yun et al. | Nov 2005 | A1 |
20050266078 | Jorda et al. | Nov 2005 | A1 |
20050266088 | Hinrichs et al. | Dec 2005 | A1 |
20050271597 | Keith | Dec 2005 | A1 |
20050271598 | Friedman et al. | Dec 2005 | A1 |
20050272685 | Hung | Dec 2005 | A1 |
20050272712 | Grubb et al. | Dec 2005 | A1 |
20060009428 | Constantine et al. | Jan 2006 | A1 |
20060014728 | Chwalisz et al. | Jan 2006 | A1 |
20060018937 | Friedman et al. | Jan 2006 | A1 |
20060019978 | Balog | Jan 2006 | A1 |
20060020002 | Salvati et al. | Jan 2006 | A1 |
20060030615 | Fensome et al. | Feb 2006 | A1 |
20060034889 | Jo et al. | Feb 2006 | A1 |
20060034904 | Weimann | Feb 2006 | A1 |
20060040904 | Ahmed et al. | Feb 2006 | A1 |
20060051391 | Dvoskin et al. | Mar 2006 | A1 |
20060052341 | Cornish et al. | Mar 2006 | A1 |
20060052799 | Middleman | Mar 2006 | A1 |
20060069031 | Loumaye | Mar 2006 | A1 |
20060078618 | Constantinides et al. | Apr 2006 | A1 |
20060083778 | Allison et al. | Apr 2006 | A1 |
20060084704 | Shih et al. | Apr 2006 | A1 |
20060088580 | Meconi et al. | Apr 2006 | A1 |
20060089337 | Casper et al. | Apr 2006 | A1 |
20060093678 | Chickering, III et al. | May 2006 | A1 |
20060100180 | Bohlmann et al. | May 2006 | A1 |
20060106004 | Brody et al. | May 2006 | A1 |
20060110415 | Gupta | May 2006 | A1 |
20060111424 | Salvati et al. | May 2006 | A1 |
20060121102 | Chiang | Jun 2006 | A1 |
20060121626 | Imrich | Jun 2006 | A1 |
20060134188 | Podhaisky et al. | Jun 2006 | A1 |
20060135619 | Kick et al. | Jun 2006 | A1 |
20060165744 | Jamil et al. | Jul 2006 | A1 |
20060193789 | Tamarkin et al. | Aug 2006 | A1 |
20060194775 | Tofovic et al. | Aug 2006 | A1 |
20060204557 | Gupta et al. | Sep 2006 | A1 |
20060233743 | Kelly | Oct 2006 | A1 |
20060233841 | Brodbeck et al. | Oct 2006 | A1 |
20060235037 | Purandare et al. | Oct 2006 | A1 |
20060240111 | Fernandez et al. | Oct 2006 | A1 |
20060246122 | Langguth et al. | Nov 2006 | A1 |
20060247216 | Haj-Yehia | Nov 2006 | A1 |
20060247221 | Coelingh Bennink et al. | Nov 2006 | A1 |
20060251581 | McIntyre et al. | Nov 2006 | A1 |
20060252049 | Shuler et al. | Nov 2006 | A1 |
20060257472 | Neilsen | Nov 2006 | A1 |
20060275218 | Tamarkin et al. | Dec 2006 | A1 |
20060275360 | Ahmed et al. | Dec 2006 | A1 |
20060276414 | Coelingh Bennink et al. | Dec 2006 | A1 |
20060280771 | Groenewegen et al. | Dec 2006 | A1 |
20060280797 | Shoichet et al. | Dec 2006 | A1 |
20060280800 | Nagi et al. | Dec 2006 | A1 |
20060292223 | Woolfson et al. | Dec 2006 | A1 |
20070004693 | Woolfson et al. | Jan 2007 | A1 |
20070004694 | Woolfson et al. | Jan 2007 | A1 |
20070009559 | Li et al. | Jan 2007 | A1 |
20070009594 | Constantine et al. | Jan 2007 | A1 |
20070010550 | Mckenzie | Jan 2007 | A1 |
20070014839 | Bracht | Jan 2007 | A1 |
20070015698 | Kleinman et al. | Jan 2007 | A1 |
20070021360 | Nyce et al. | Jan 2007 | A1 |
20070027201 | McComas et al. | Feb 2007 | A1 |
20070031491 | Levine et al. | Feb 2007 | A1 |
20070036843 | Hirsh et al. | Feb 2007 | A1 |
20070037780 | Ebert et al. | Feb 2007 | A1 |
20070037782 | Hibino et al. | Feb 2007 | A1 |
20070042038 | Besse | Feb 2007 | A1 |
20070049567 | Wiley | Mar 2007 | A1 |
20070060589 | Purandare et al. | Mar 2007 | A1 |
20070066628 | Zhang et al. | Mar 2007 | A1 |
20070066637 | Zhang et al. | Mar 2007 | A1 |
20070066675 | Zhang et al. | Mar 2007 | A1 |
20070071777 | Bromer et al. | Mar 2007 | A1 |
20070078091 | Hubler et al. | Apr 2007 | A1 |
20070088029 | Balog et al. | Apr 2007 | A1 |
20070093548 | Diffendal et al. | Apr 2007 | A1 |
20070116729 | Palepu | May 2007 | A1 |
20070116829 | Prakash et al. | May 2007 | A1 |
20070128263 | Gargiulo et al. | Jun 2007 | A1 |
20070154533 | Dudley | Jul 2007 | A1 |
20070167418 | Ferguson | Jul 2007 | A1 |
20070178166 | Bernstein et al. | Aug 2007 | A1 |
20070184558 | Roth et al. | Aug 2007 | A1 |
20070185068 | Ferguson et al. | Aug 2007 | A1 |
20070190022 | Bicopoulos et al. | Aug 2007 | A1 |
20070191319 | Ke et al. | Aug 2007 | A1 |
20070191321 | Ahmed | Aug 2007 | A1 |
20070196415 | Chen et al. | Aug 2007 | A1 |
20070196433 | Ron et al. | Aug 2007 | A1 |
20070207225 | Squadrito | Sep 2007 | A1 |
20070225281 | Zhang et al. | Sep 2007 | A1 |
20070232574 | Galey et al. | Oct 2007 | A1 |
20070238713 | Gast et al. | Oct 2007 | A1 |
20070243229 | Smith et al. | Oct 2007 | A1 |
20070248658 | Zurdo Schroeder et al. | Oct 2007 | A1 |
20070254858 | Cronk | Nov 2007 | A1 |
20070255197 | Humberstone et al. | Nov 2007 | A1 |
20070264309 | Chollet et al. | Nov 2007 | A1 |
20070264345 | Eros et al. | Nov 2007 | A1 |
20070264349 | Lee et al. | Nov 2007 | A1 |
20070270394 | El-Alfy et al. | Nov 2007 | A1 |
20070281008 | Lin et al. | Dec 2007 | A1 |
20070286819 | DeVries et al. | Dec 2007 | A1 |
20070287688 | Chan et al. | Dec 2007 | A1 |
20070287789 | Jones et al. | Dec 2007 | A1 |
20070292359 | Friedman et al. | Dec 2007 | A1 |
20070292387 | Jon et al. | Dec 2007 | A1 |
20070292461 | Tamarkin et al. | Dec 2007 | A1 |
20070292493 | Brierre | Dec 2007 | A1 |
20070298089 | Saeki et al. | Dec 2007 | A1 |
20080026035 | Chollet et al. | Jan 2008 | A1 |
20080026040 | Farr et al. | Jan 2008 | A1 |
20080026062 | Farr et al. | Jan 2008 | A1 |
20080038219 | Carlson et al. | Feb 2008 | A1 |
20080038350 | Gerecke et al. | Feb 2008 | A1 |
20080039405 | Langley et al. | Feb 2008 | A1 |
20080050317 | Tamarkin et al. | Feb 2008 | A1 |
20080051351 | Ghisalberti | Feb 2008 | A1 |
20080063607 | Tamarkin et al. | Mar 2008 | A1 |
20080069779 | Tamarkin et al. | Mar 2008 | A1 |
20080069791 | Beissert | Mar 2008 | A1 |
20080085877 | Bortz | Apr 2008 | A1 |
20080095831 | McGraw | Apr 2008 | A1 |
20080095838 | Abou Chacra-Vernet | Apr 2008 | A1 |
20080119537 | Zhang et al. | May 2008 | A1 |
20080125402 | Dilberti | May 2008 | A1 |
20080138379 | Jennings-Spring | Jun 2008 | A1 |
20080138390 | Hsu et al. | Jun 2008 | A1 |
20080139392 | Acosta-Zara et al. | Jun 2008 | A1 |
20080145423 | Khan et al. | Jun 2008 | A1 |
20080153789 | Dmowski et al. | Jun 2008 | A1 |
20080175814 | Phiasivongsa et al. | Jul 2008 | A1 |
20080175905 | Liu et al. | Jul 2008 | A1 |
20080175908 | Liu et al. | Jul 2008 | A1 |
20080188829 | Creasy | Aug 2008 | A1 |
20080206156 | Cronk | Aug 2008 | A1 |
20080206159 | Tamarkin et al. | Aug 2008 | A1 |
20080206161 | Tamarkin et al. | Aug 2008 | A1 |
20080214512 | Seitz et al. | Sep 2008 | A1 |
20080220069 | Allison | Sep 2008 | A1 |
20080226698 | Tang et al. | Sep 2008 | A1 |
20080227763 | Lanquetin et al. | Sep 2008 | A1 |
20080234199 | Katamreddy | Sep 2008 | A1 |
20080234240 | Duesteberg et al. | Sep 2008 | A1 |
20080255078 | Katamreddy | Oct 2008 | A1 |
20080255089 | Katamreddy | Oct 2008 | A1 |
20080261931 | Hedner et al. | Oct 2008 | A1 |
20080113953 | DeVries et al. | Dec 2008 | A1 |
20080114050 | Fensome et al. | Dec 2008 | A1 |
20080299220 | Tamarkin et al. | Dec 2008 | A1 |
20080306036 | Katamreddy | Dec 2008 | A1 |
20080312197 | Rodriguez | Dec 2008 | A1 |
20080312198 | Rodriguez | Dec 2008 | A1 |
20080319078 | Katamreddy | Dec 2008 | A1 |
20090004246 | Woolfson et al. | Jan 2009 | A1 |
20090010968 | Allart et al. | Jan 2009 | A1 |
20090011041 | Musaeva et al. | Jan 2009 | A1 |
20090017120 | Trimble et al. | Jan 2009 | A1 |
20090022683 | Song et al. | Jan 2009 | A1 |
20090047357 | Tomohira et al. | Feb 2009 | A1 |
20090053294 | Prendergast | Feb 2009 | A1 |
20090060982 | Ron et al. | Mar 2009 | A1 |
20090060997 | Seitz et al. | Mar 2009 | A1 |
20090068118 | Eini et al. | Mar 2009 | A1 |
20090074859 | Patel | Mar 2009 | A1 |
20090081206 | Leibovitz | Mar 2009 | A1 |
20090081278 | De Graaff et al. | Mar 2009 | A1 |
20090081303 | Savoir et al. | Mar 2009 | A1 |
20090092656 | Klamerus et al. | Apr 2009 | A1 |
20090093440 | Murad | Apr 2009 | A1 |
20090098069 | Vacca | Apr 2009 | A1 |
20090099106 | Phiasivongsa et al. | Apr 2009 | A1 |
20090099149 | Liu et al. | Apr 2009 | A1 |
20090130029 | Tamarkin et al. | May 2009 | A1 |
20090131385 | Voskuhl | May 2009 | A1 |
20090136574 | Diaz-Astruc et al. | May 2009 | A1 |
20090137478 | Bernstein et al. | May 2009 | A1 |
20090137538 | Klamerus et al. | May 2009 | A1 |
20090143344 | Chang | Jun 2009 | A1 |
20090164341 | Sunvoid et al. | Jun 2009 | A1 |
20090175799 | Tamarkin et al. | Jul 2009 | A1 |
20090181088 | Song et al. | Jul 2009 | A1 |
20090186081 | Holm et al. | Jul 2009 | A1 |
20090197843 | Notelovitz et al. | Aug 2009 | A1 |
20090203658 | Marx et al. | Aug 2009 | A1 |
20090214474 | Jennings | Aug 2009 | A1 |
20090227025 | Nichols et al. | Sep 2009 | A1 |
20090227550 | Mattern | Sep 2009 | A1 |
20090232897 | Sahoo et al. | Sep 2009 | A1 |
20090258096 | Cohen | Oct 2009 | A1 |
20090264395 | Creasy | Oct 2009 | A1 |
20090269403 | Shaked et al. | Oct 2009 | A1 |
20090285772 | Phiasivongsa et al. | Nov 2009 | A1 |
20090285869 | Trimble | Nov 2009 | A1 |
20090318558 | Kim et al. | Dec 2009 | A1 |
20090324714 | Liu et al. | Dec 2009 | A1 |
20090325916 | Zhang et al. | Dec 2009 | A1 |
20100008985 | Pellikaan et al. | Jan 2010 | A1 |
20100028360 | Atwood | Feb 2010 | A1 |
20100034838 | Staniforth et al. | Feb 2010 | A1 |
20100034880 | Sintov et al. | Feb 2010 | A1 |
20100040671 | Ahmed et al. | Feb 2010 | A1 |
20100048523 | Bachman et al. | Feb 2010 | A1 |
20100055138 | Margulies et al. | Mar 2010 | A1 |
20100074959 | Hansom et al. | Mar 2010 | A1 |
20100086501 | Chang | Apr 2010 | A1 |
20100086599 | Huempel et al. | Apr 2010 | A1 |
20100092568 | Lerner et al. | Apr 2010 | A1 |
20100105071 | Laufer et al. | Apr 2010 | A1 |
20100119585 | Hille et al. | May 2010 | A1 |
20100129320 | Phiasivongsa et al. | May 2010 | A1 |
20100136105 | Chen et al. | Jun 2010 | A1 |
20100137265 | Leonard | Jun 2010 | A1 |
20100137271 | Chen et al. | Jun 2010 | A1 |
20100143420 | Shenoy et al. | Jun 2010 | A1 |
20100143481 | Shenoy et al. | Jun 2010 | A1 |
20100150993 | Eifler et al. | Jun 2010 | A1 |
20100152144 | Hermsmeyer | Jun 2010 | A1 |
20100168228 | Bose et al. | Jul 2010 | A1 |
20100183723 | Laurent-Applegate et al. | Jul 2010 | A1 |
20100184736 | Coelingh Bennink et al. | Jul 2010 | A1 |
20100190758 | Fauser et al. | Jul 2010 | A1 |
20100204326 | D Souza | Aug 2010 | A1 |
20100210994 | Zarif | Aug 2010 | A1 |
20100221195 | Tamarkin et al. | Sep 2010 | A1 |
20100227797 | Axelson et al. | Sep 2010 | A1 |
20100240626 | Kulkarni et al. | Sep 2010 | A1 |
20100247482 | Cui et al. | Sep 2010 | A1 |
20100247632 | Dong et al. | Sep 2010 | A1 |
20100247635 | Rosenberg et al. | Sep 2010 | A1 |
20100255085 | Liu et al. | Oct 2010 | A1 |
20100273730 | Hsu et al. | Oct 2010 | A1 |
20100278759 | Murad | Nov 2010 | A1 |
20100279988 | Setiawan et al. | Nov 2010 | A1 |
20100291191 | Shoichet et al. | Nov 2010 | A1 |
20100292199 | Leverd et al. | Nov 2010 | A1 |
20100303825 | Sirbasku | Dec 2010 | A9 |
20100312137 | Gilmour et al. | Dec 2010 | A1 |
20100316724 | Whitfield et al. | Dec 2010 | A1 |
20100322884 | Dipietro et al. | Dec 2010 | A1 |
20100330168 | Gicquel et al. | Dec 2010 | A1 |
20110028439 | Witt-Enderby et al. | Feb 2011 | A1 |
20110039814 | Huatan et al. | Feb 2011 | A1 |
20110053845 | Levine et al. | Mar 2011 | A1 |
20110066473 | Bernick et al. | Mar 2011 | A1 |
20110076775 | Stewart et al. | Mar 2011 | A1 |
20110076776 | Stewart et al. | Mar 2011 | A1 |
20110086825 | Chatroux | Apr 2011 | A1 |
20110087192 | Uhland et al. | Apr 2011 | A1 |
20110091555 | De Luigi Bruschi et al. | Apr 2011 | A1 |
20110098258 | Masini-Eteve et al. | Apr 2011 | A1 |
20110098631 | McIntyre et al. | Apr 2011 | A1 |
20110104268 | Pachot et al. | May 2011 | A1 |
20110104289 | Savoir Vilboeuf et al. | May 2011 | A1 |
20110130372 | Agostinacchio et al. | Jun 2011 | A1 |
20110135719 | Besins et al. | Jun 2011 | A1 |
20110142945 | Chen et al. | Jun 2011 | A1 |
20110152840 | Lee et al. | Jun 2011 | A1 |
20110158920 | Morley et al. | Jun 2011 | A1 |
20110171140 | Illum et al. | Jul 2011 | A1 |
20110182997 | Lewis et al. | Jul 2011 | A1 |
20110190201 | Hyde et al. | Aug 2011 | A1 |
20110195031 | Du | Aug 2011 | A1 |
20110195114 | Carrara et al. | Aug 2011 | A1 |
20110195944 | Mura et al. | Aug 2011 | A1 |
20110217341 | Sah | Sep 2011 | A1 |
20110238003 | Bruno-Raimondi et al. | Sep 2011 | A1 |
20110244043 | Xu et al. | Oct 2011 | A1 |
20110250256 | Hyun Oh et al. | Oct 2011 | A1 |
20110250259 | Buckman | Oct 2011 | A1 |
20110250274 | Shaked et al. | Oct 2011 | A1 |
20110256092 | Phiasivongsa et al. | Oct 2011 | A1 |
20110262373 | Umbert Millet | Oct 2011 | A1 |
20110262494 | Achleitner et al. | Oct 2011 | A1 |
20110268665 | Tamarkin et al. | Nov 2011 | A1 |
20110275584 | Wilckens et al. | Nov 2011 | A1 |
20110281832 | Li et al. | Nov 2011 | A1 |
20110287094 | Penhasi et al. | Nov 2011 | A1 |
20110293720 | General et al. | Dec 2011 | A1 |
20110294738 | Ren et al. | Dec 2011 | A1 |
20110300167 | Mcmurry et al. | Dec 2011 | A1 |
20110301087 | Mcbride et al. | Dec 2011 | A1 |
20110306579 | Stein | Dec 2011 | A1 |
20110311592 | Birbara | Dec 2011 | A1 |
20110312927 | Nachaegari et al. | Dec 2011 | A1 |
20110312928 | Nachaegari et al. | Dec 2011 | A1 |
20110318405 | Erwin | Dec 2011 | A1 |
20110318431 | Gulati | Dec 2011 | A1 |
20120009276 | De Groote | Jan 2012 | A1 |
20120015350 | Nabatiyan et al. | Jan 2012 | A1 |
20120021041 | Rossi et al. | Jan 2012 | A1 |
20120028888 | Janz et al. | Feb 2012 | A1 |
20120028910 | Takruri et al. | Feb 2012 | A1 |
20120028936 | Gloger et al. | Feb 2012 | A1 |
20120045532 | Cohen | Feb 2012 | A1 |
20120046264 | Simes et al. | Feb 2012 | A1 |
20120046518 | Yoakum et al. | Feb 2012 | A1 |
20120052077 | Truitt, III et al. | Mar 2012 | A1 |
20120058171 | De Graaff et al. | Mar 2012 | A1 |
20120058962 | Cumming et al. | Mar 2012 | A1 |
20120058979 | Keith et al. | Mar 2012 | A1 |
20120064135 | Levin et al. | Mar 2012 | A1 |
20120065179 | Andersson | Mar 2012 | A1 |
20120065221 | Babul | Mar 2012 | A1 |
20120087872 | Tamarkin et al. | Apr 2012 | A1 |
20120101073 | Mannion et al. | Apr 2012 | A1 |
20120121517 | Song et al. | May 2012 | A1 |
20120121692 | Xu et al. | May 2012 | A1 |
20120122829 | Taravella et al. | May 2012 | A1 |
20120128625 | Shalwitz et al. | May 2012 | A1 |
20120128654 | Terpstra et al. | May 2012 | A1 |
20120128683 | Shantha | May 2012 | A1 |
20120128733 | Perrin et al. | May 2012 | A1 |
20120128777 | Keck et al. | May 2012 | A1 |
20120129773 | Geier et al. | May 2012 | A1 |
20120129819 | Vancaillie et al. | May 2012 | A1 |
20120136013 | Li et al. | May 2012 | A1 |
20120142645 | Marx | Jun 2012 | A1 |
20120148670 | Kim et al. | Jun 2012 | A1 |
20120149748 | Shanler et al. | Jun 2012 | A1 |
20120172343 | Lindenthal et al. | Jul 2012 | A1 |
20120184515 | Klar et al. | Jul 2012 | A1 |
20120231052 | Sitruk-Ware et al. | Sep 2012 | A1 |
20120232011 | Kneissel et al. | Sep 2012 | A1 |
20120232042 | Klar et al. | Sep 2012 | A1 |
20120263679 | Marlow et al. | Oct 2012 | A1 |
20120269721 | Weng et al. | Oct 2012 | A1 |
20120277249 | Andersson et al. | Nov 2012 | A1 |
20120277727 | Doshi et al. | Nov 2012 | A1 |
20120283671 | Shibata et al. | Nov 2012 | A1 |
20120295911 | Mannion et al. | Nov 2012 | A1 |
20120301517 | Zhang et al. | Nov 2012 | A1 |
20120301538 | Gordon-Beresford et al. | Nov 2012 | A1 |
20120302535 | Caufriez et al. | Nov 2012 | A1 |
20120316130 | Hendrix | Dec 2012 | A1 |
20120316496 | Hoffmann et al. | Dec 2012 | A1 |
20120321579 | Edelson et al. | Dec 2012 | A1 |
20120322779 | Voskuhl | Dec 2012 | A9 |
20120328549 | Edelson et al. | Dec 2012 | A1 |
20120329738 | Liu | Dec 2012 | A1 |
20130004619 | Chow et al. | Jan 2013 | A1 |
20130011342 | Tamarkin et al. | Jan 2013 | A1 |
20130017239 | Viladot Petit et al. | Jan 2013 | A1 |
20130022674 | Dudley et al. | Jan 2013 | A1 |
20130023505 | Garfield et al. | Jan 2013 | A1 |
20130023823 | Simpson et al. | Jan 2013 | A1 |
20130028850 | Tamarkin et al. | Jan 2013 | A1 |
20130029947 | Nachaegari et al. | Jan 2013 | A1 |
20130029957 | Giliyar et al. | Jan 2013 | A1 |
20130045266 | Choi et al. | Feb 2013 | A1 |
20130045953 | Sitruk-Ware et al. | Feb 2013 | A1 |
20130059795 | Lo et al. | Mar 2013 | A1 |
20130064897 | Binay | Mar 2013 | A1 |
20130072466 | Choi et al. | Mar 2013 | A1 |
20130084257 | Ishida et al. | Apr 2013 | A1 |
20130085123 | Li et al. | Apr 2013 | A1 |
20130089574 | Schmidt Gollwitzer et al. | Apr 2013 | A1 |
20130090318 | Ulmann et al. | Apr 2013 | A1 |
20130102781 | Bevill et al. | Apr 2013 | A1 |
20130108551 | Langereis et al. | May 2013 | A1 |
20130116215 | Coma et al. | May 2013 | A1 |
20130116222 | Arnold et al. | May 2013 | A1 |
20130122051 | Abidi et al. | May 2013 | A1 |
20130123175 | Hill et al. | May 2013 | A1 |
20130123220 | Queiroz | May 2013 | A1 |
20130123351 | Dewitt | May 2013 | A1 |
20130129818 | Bernick et al. | May 2013 | A1 |
20130131027 | Pakkalin et al. | May 2013 | A1 |
20130131028 | Snyder et al. | May 2013 | A1 |
20130131029 | Geertman et al. | May 2013 | A1 |
20130149314 | Bullerdiek et al. | Jun 2013 | A1 |
20130150334 | Sun et al. | Jun 2013 | A1 |
20130164225 | Tamarkin et al. | Jun 2013 | A1 |
20130164346 | Lee et al. | Jun 2013 | A1 |
20130165744 | Carson et al. | Jun 2013 | A1 |
20130178452 | King | Jul 2013 | A1 |
20130183254 | Zhou et al. | Jul 2013 | A1 |
20130183325 | Bottoni et al. | Jul 2013 | A1 |
20130189193 | Tamarkin et al. | Jul 2013 | A1 |
20130189196 | Tamarkin et al. | Jul 2013 | A1 |
20130189230 | Shoichet et al. | Jul 2013 | A1 |
20130189368 | Mosqueira et al. | Jul 2013 | A1 |
20130210709 | McMurry et al. | Aug 2013 | A1 |
20130216550 | Penninger et al. | Aug 2013 | A1 |
20130216596 | Viladot Petit et al. | Aug 2013 | A1 |
20130224177 | Kim et al. | Aug 2013 | A1 |
20130224257 | Sah et al. | Aug 2013 | A1 |
20130224268 | Alam et al. | Aug 2013 | A1 |
20130224300 | Maggio | Aug 2013 | A1 |
20130225412 | Sardari Lodriche et al. | Aug 2013 | A1 |
20130225542 | Poegh et al. | Aug 2013 | A1 |
20130226113 | Schumacher et al. | Aug 2013 | A1 |
20130243696 | Wang et al. | Sep 2013 | A1 |
20130245253 | Marx et al. | Sep 2013 | A1 |
20130245570 | Jackson | Sep 2013 | A1 |
20130261096 | Merian et al. | Oct 2013 | A1 |
20130266645 | Becker et al. | Oct 2013 | A1 |
20130267485 | Da Silva Maia Filho | Oct 2013 | A1 |
20130273167 | Lee et al. | Oct 2013 | A1 |
20130274211 | Burman et al. | Oct 2013 | A1 |
20130280213 | Voskuhl | Oct 2013 | A1 |
20130316374 | Penninger et al. | Nov 2013 | A1 |
20130317065 | Tatani et al. | Nov 2013 | A1 |
20130317315 | Lu et al. | Nov 2013 | A1 |
20130324565 | Li et al. | Dec 2013 | A1 |
20130331363 | Li et al. | Dec 2013 | A1 |
20130338122 | Bernick et al. | Dec 2013 | A1 |
20130338123 | Bernick et al. | Dec 2013 | A1 |
20130338124 | Li et al. | Dec 2013 | A1 |
20130345187 | Rodriguez Oquendo | Dec 2013 | A1 |
20140018335 | Tatani et al. | Jan 2014 | A1 |
20140024590 | Weidhaas et al. | Jan 2014 | A1 |
20140031289 | Song et al. | Jan 2014 | A1 |
20140031323 | Perez | Jan 2014 | A1 |
20140066416 | Leunis et al. | Mar 2014 | A1 |
20140072531 | Kim et al. | Mar 2014 | A1 |
20140079686 | Prouty et al. | Mar 2014 | A1 |
20140088051 | Bernick et al. | Mar 2014 | A1 |
20140088058 | Maurizio | Mar 2014 | A1 |
20140088059 | Perumal et al. | Mar 2014 | A1 |
20140094426 | Drummond et al. | Apr 2014 | A1 |
20140094440 | Bernick et al. | Apr 2014 | A1 |
20140094441 | Bernick et al. | Apr 2014 | A1 |
20140099362 | Bernick et al. | Apr 2014 | A1 |
20140100159 | Conrad | Apr 2014 | A1 |
20140100204 | Bernick et al. | Apr 2014 | A1 |
20140100205 | Bernick et al. | Apr 2014 | A1 |
20140100206 | Bernick et al. | Apr 2014 | A1 |
20140113889 | Connor et al. | Apr 2014 | A1 |
20140127185 | Stein et al. | May 2014 | A1 |
20140127280 | Duesterberg et al. | May 2014 | A1 |
20140127308 | Opara et al. | May 2014 | A1 |
20140128798 | Janson et al. | May 2014 | A1 |
20140148491 | Valia et al. | May 2014 | A1 |
20140186332 | Ezrin et al. | Jul 2014 | A1 |
20140187487 | Shoichet et al. | Jul 2014 | A1 |
20140193523 | Henry | Jul 2014 | A1 |
20140194396 | Li et al. | Jul 2014 | A1 |
20140206616 | Ko et al. | Jul 2014 | A1 |
20140213565 | Bernick et al. | Jul 2014 | A1 |
20140329783 | Bernick et al. | Nov 2014 | A1 |
20140370084 | Bernick et al. | Dec 2014 | A1 |
20140371182 | Bernick et al. | Dec 2014 | A1 |
20140371183 | Bernick et al. | Dec 2014 | A1 |
20140371184 | Bernick et al. | Dec 2014 | A1 |
20140371185 | Bernick et al. | Dec 2014 | A1 |
20150031654 | Amadio | Jan 2015 | A1 |
20150045335 | Bernick et al. | Feb 2015 | A1 |
20150133421 | Bernick et al. | May 2015 | A1 |
20150148323 | Bernick et al. | May 2015 | A1 |
20150164789 | Bernick et al. | Jun 2015 | A1 |
20150224117 | Bernick et al. | Aug 2015 | A1 |
20150224118 | Bernick et al. | Aug 2015 | A1 |
20150297733 | Oberegger et al. | Oct 2015 | A1 |
20150302435 | Bernick et al. | Oct 2015 | A1 |
20150342963 | Bernick et al. | Dec 2015 | A1 |
20150352126 | Bernick et al. | Dec 2015 | A1 |
20150359737 | Bernick et al. | Dec 2015 | A1 |
20160030449 | Persicaner et al. | Feb 2016 | A1 |
20160213685 | Bernick et al. | Jul 2016 | A1 |
20170056418 | Thorsteinsson et al. | Mar 2017 | A1 |
20170216310 | Mirkin et al. | Aug 2017 | A1 |
20170281645 | Shadiack et al. | Oct 2017 | A1 |
20170281646 | Inskeep et al. | Oct 2017 | A1 |
20170281647 | Shadiack et al. | Oct 2017 | A1 |
20170281776 | Shadiack et al. | Oct 2017 | A1 |
20180161343 | Mirkin et al. | Jun 2018 | A1 |
20180161344 | Mirkin et al. | Jun 2018 | A1 |
20180161345 | Bernick et al. | Jun 2018 | A1 |
20180221389 | Amadio et al. | Aug 2018 | A1 |
20180256598 | Mirkin et al. | Sep 2018 | A1 |
20180280410 | Amadio et al. | Oct 2018 | A1 |
20180289723 | Bernick et al. | Oct 2018 | A1 |
20190022107 | Mirkin et al. | Jan 2019 | A1 |
20190046542 | Bernick et al. | Feb 2019 | A1 |
20190070197 | Amadio et al. | Mar 2019 | A1 |
20190142844 | Bernick et al. | May 2019 | A1 |
20190247401 | Amadio et al. | Aug 2019 | A1 |
20190343771 | Mirkin et al. | Nov 2019 | A1 |
20190343845 | Bernick et al. | Nov 2019 | A1 |
20190358243 | Mirkin et al. | Nov 2019 | A1 |
20200069700 | Bernick et al. | Mar 2020 | A1 |
Number | Date | Country |
---|---|---|
PI1001367-9 | Jul 2012 | BR |
2044371 | Dec 1991 | CA |
2612380 | Dec 2006 | CA |
102258455 | Nov 2011 | CN |
0261429 | Mar 1988 | EP |
275716 | Jul 1988 | EP |
0279977 | Aug 1988 | EP |
622075 | Nov 1994 | EP |
785211 | Jul 1997 | EP |
785212 | Jul 1997 | EP |
811381 | Dec 1997 | EP |
0904064 | Mar 1999 | EP |
0813412 | Dec 1999 | EP |
0750495 | Dec 2002 | EP |
1300152 | Apr 2003 | EP |
1094781 | Jul 2008 | EP |
2191833 | Jun 2010 | EP |
452238 | Aug 1936 | GB |
720561 | Dec 1954 | GB |
848881 | Sep 1960 | GB |
874368 | Aug 1961 | GB |
1589946 | May 1981 | GB |
2005KOL00053 | Aug 2005 | IN |
216026 | Mar 2008 | IN |
244217 | Nov 2010 | IN |
H4-503810 | Sep 1990 | JP |
H2-264725 | Oct 1990 | JP |
2002 510336 | Apr 2002 | JP |
2006 513182 | Apr 2006 | JP |
2155582 | Sep 2000 | RU |
199010425 | Sep 1990 | WO |
1990011064 | Oct 1990 | WO |
1993017686 | Sep 1993 | WO |
1994022426 | Oct 1994 | WO |
1995005807 | Mar 1995 | WO |
1995030409 | Nov 1995 | WO |
1996009826 | Apr 1996 | WO |
1996019975 | Jul 1996 | WO |
1996030000 | Oct 1996 | WO |
1997005491 | Feb 1997 | WO |
1997040823 | Nov 1997 | WO |
1997043989 | Nov 1997 | WO |
1998010293 | Mar 1998 | WO |
1998032465 | Jul 1998 | WO |
WO 1998041217 | Sep 1998 | WO |
1998051280 | Nov 1998 | WO |
199922680 | May 1999 | WO |
1999032072 | Jul 1999 | WO |
1999039700 | Aug 1999 | WO |
1999042109 | Aug 1999 | WO |
1999043304 | Sep 1999 | WO |
1999048477 | Sep 1999 | WO |
1999052528 | Oct 1999 | WO |
1999053910 | Oct 1999 | WO |
WO 1999055333 | Nov 1999 | WO |
1999062497 | Dec 1999 | WO |
1999063974 | Dec 1999 | WO |
2000001351 | Jan 2000 | WO |
2000006175 | Feb 2000 | WO |
2000038659 | Jun 2000 | WO |
2000045795 | Aug 2000 | WO |
2000050007 | Aug 2000 | WO |
2000059577 | Oct 2000 | WO |
2000076522 | Dec 2000 | WO |
2001037808 | May 2001 | WO |
2001054699 | Aug 2001 | WO |
2001060325 | Aug 2001 | WO |
2001087276 | Nov 2001 | WO |
2001091757 | Dec 2001 | WO |
2002007700 | Jan 2002 | WO |
2002011768 | Feb 2002 | WO |
2002022132 | Mar 2002 | WO |
2002040008 | May 2002 | WO |
2002041878 | May 2002 | WO |
2002053131 | Jul 2002 | WO |
2002078602 | Oct 2002 | WO |
2002078604 | Oct 2002 | WO |
2003028667 | Apr 2003 | WO |
2003041718 | May 2003 | WO |
2003041741 | May 2003 | WO |
2003068186 | Aug 2003 | WO |
2003077923 | Sep 2003 | WO |
2003082254 | Oct 2003 | WO |
2003092588 | Nov 2003 | WO |
2004014397 | Feb 2004 | WO |
2004014432 | Feb 2004 | WO |
2004017983 | Mar 2004 | WO |
2004032897 | Apr 2004 | WO |
WO 2004032942 | Apr 2004 | WO |
2004052336 | Jun 2004 | WO |
2004054540 | Jul 2004 | WO |
2004054576 | Jul 2004 | WO |
2004080413 | Sep 2004 | WO |
2004105694 | Dec 2004 | WO |
2004110402 | Dec 2004 | WO |
2004110408 | Dec 2004 | WO |
2005027911 | Mar 2005 | WO |
2005030175 | Apr 2005 | WO |
2005081825 | Sep 2005 | WO |
2005087194 | Sep 2005 | WO |
2005087199 | Sep 2005 | WO |
2005105059 | Nov 2005 | WO |
2005115335 | Dec 2005 | WO |
2005120470 | Dec 2005 | WO |
2005120517 | Dec 2005 | WO |
2006013369 | Feb 2006 | WO |
2006034090 | Mar 2006 | WO |
2006036899 | Apr 2006 | WO |
2006053172 | May 2006 | WO |
2006105615 | Oct 2006 | WO |
2006113505 | Oct 2006 | WO |
2006138686 | Dec 2006 | WO |
2006138735 | Dec 2006 | WO |
2007045027 | Apr 2007 | WO |
WO 2007076144 | Jul 2007 | WO |
2007103294 | Sep 2007 | WO |
2007120868 | Oct 2007 | WO |
2007123790 | Nov 2007 | WO |
2007124250 | Nov 2007 | WO |
2007144151 | Dec 2007 | WO |
2008049516 | May 2008 | WO |
2008152444 | Dec 2008 | WO |
2009002542 | Dec 2008 | WO |
2009036311 | Mar 2009 | WO |
2009040818 | Apr 2009 | WO |
2009069006 | Jun 2009 | WO |
2009098072 | Aug 2009 | WO |
2009133352 | Nov 2009 | WO |
2010033188 | Mar 2010 | WO |
2010146872 | Dec 2010 | WO |
2011000210 | Jan 2011 | WO |
2011073995 | Jun 2011 | WO |
2011120084 | Oct 2011 | WO |
2011128336 | Oct 2011 | WO |
2012009778 | Jan 2012 | WO |
2012024361 | Feb 2012 | WO |
2012055814 | May 2012 | WO |
2012055840 | May 2012 | WO |
2012065740 | May 2012 | WO |
2012098090 | Jul 2012 | WO |
2012116277 | Aug 2012 | WO |
2012118563 | Sep 2012 | WO |
2012120365 | Sep 2012 | WO |
2012127501 | Sep 2012 | WO |
2012156561 | Nov 2012 | WO |
2012156822 | Nov 2012 | WO |
2012158483 | Nov 2012 | WO |
2012166909 | Dec 2012 | WO |
2012170578 | Dec 2012 | WO |
2013011501 | Jan 2013 | WO |
2013025449 | Feb 2013 | WO |
2013028639 | Feb 2013 | WO |
2013035101 | Mar 2013 | WO |
2013044067 | Mar 2013 | WO |
2013045404 | Apr 2013 | WO |
2013059285 | Apr 2013 | WO |
2013063279 | May 2013 | WO |
2013064620 | May 2013 | WO |
2013071281 | May 2013 | WO |
WO 2013078422 | May 2013 | WO |
2013088254 | Jun 2013 | WO |
2013102665 | Jul 2013 | WO |
2013106437 | Jul 2013 | WO |
2013113690 | Aug 2013 | WO |
2013124415 | Aug 2013 | WO |
WO 2013112947 | Aug 2013 | WO |
2013127727 | Sep 2013 | WO |
2013127728 | Sep 2013 | WO |
2013144356 | Oct 2013 | WO |
2013149258 | Oct 2013 | WO |
2013158454 | Oct 2013 | WO |
2013170052 | Nov 2013 | WO |
2013178587 | Dec 2013 | WO |
2013181449 | Dec 2013 | WO |
2013192248 | Dec 2013 | WO |
2013192249 | Dec 2013 | WO |
2013192250 | Dec 2013 | WO |
2013192251 | Dec 2013 | WO |
2014001904 | Jan 2014 | WO |
2014004424 | Jan 2014 | WO |
2014009434 | Jan 2014 | WO |
2014018569 | Jan 2014 | WO |
2014018570 | Jan 2014 | WO |
2014018571 | Jan 2014 | WO |
2014018856 | Jan 2014 | WO |
2014018932 | Jan 2014 | WO |
2014031958 | Feb 2014 | WO |
2014041120 | Mar 2014 | WO |
2014052792 | Apr 2014 | WO |
2014056897 | Apr 2014 | WO |
2014066442 | May 2014 | WO |
2014074846 | May 2014 | WO |
2014076231 | May 2014 | WO |
2014076569 | May 2014 | WO |
2014081598 | May 2014 | WO |
2014086739 | Jun 2014 | WO |
2014093114 | Jun 2014 | WO |
2014104784 | Jul 2014 | WO |
2015179782 | Nov 2015 | WO |
2016018993 | Feb 2016 | WO |
Entry |
---|
US 6,214,374 B1, 04/2001, Schmirler et al. (withdrawn) |
Gullapalli, “Soft Gelatin Capsules (Softgels),” Journal of Pharmaceutical Sciences, vol. 99, Issue 10, pp. 4107-4148 (Year: 2010). |
Abbas et al., Regression of endometrial implants treated with vitamin D3 in a rat model of endometriosis, European J of Pharma, 715 (2013) 72-75, Elsevier. |
Abitec, CapmulMCM, EP, Technical Data Sheet, version 10, 2014, Columbus, OH. |
Abitec, CapmulMCM, NF, Technical Data Sheet, version 6, 2014, Columbus, OH. |
Abitec, CapmulMCM, Saftey Data Sheet, 2011, Janesville, WI. |
Abitec, CapmulMCM, Technical Data Sheet, version 17, 2014, Columbus, OH. |
Abitec, CapmulPG8, CAS No. 31565-12-5, version 11, 2006, Columbus, OH. |
Abitec, Excipients for the Pharmaceutical Industry—Regulatory and Product Information, 2013, 2 pages. |
Acarturk, Fusun, Mucoadhesive Vaginal Drug Delivery System, Recent Patents on Drug Delivery & Formulation, 2009, vol. 3, pp. 193-195. |
Alabi, K. A., et al., Analysis of Fatty Acid Composition of Thevetia peruviana and Hura crepitans Seed oils using GC-FID, Fountain Journal of Nat. and Appl. Sciences, vol. 2(2), pp. 32-37, 2013, Osogbo. |
Alexander, KS, Corn Oil, CAS No. 8001-30-7, Jan. 2009. |
Alvarez et al., Ectopic uterine tissue as a chronic pain generator, Neuroscience, Dec. 6, 2012, 225: 269-272. |
Application Note FT-IR: JI-Ap-FT0508-008, CD spectra of pharmaceuticals substances—Steroids (2), JASCO International Co., Ltd., 2 pages. |
Araya-Sibija et al., Crystallization of progesterone polymorphs using polymer-induced heteronucleation (PIHn) method, Drug Development and Industrial Pharmacy, Early Online, pp. 1-8, 2014, Informa Healthcare. |
Araya-Sibija, Andrea M.A., Morphology Study of Progesterone Polymorphs Prepared by Polymer-Induced Heteronucleation (PIHn), Scanning vol. 35 pp. 213-221, 2013, Wiley Period., Inc. |
Araya-Sibija, Andrea Manela, et al., Chemical Properties of Progesterone Selected Refer., SciFinder, 2014, American Chemical Society & US Natl. Lib. of Med. |
Araya-Sibija, Andrea Manela, et al., Polymorphism in Progesterone Selected References, SciFinder, Feb. 24, 2014, pp. 1-12, American Chem. Society & Natl. Lib. of Med. |
Araya-Sibija, Andrea Manela, et al., Polymorphism in Progesterone, SciFinder, pp. 1-46, Feb. 24, 2014, American Chem. Society & Natl. Lib. of Med. |
Archer et al., Effects of ospemifene on the female reproductive and urinary tracts: translation from preclinical models into clinical evidence, Menopause: The Journal of the North American Menopause Society, vol. 22, No. 77, pp. 1-11 (2015). |
Archer et al., Estrace® vs Premarin® for Treatment of Menopausal Symptoms: Dosage Comparison Study, Advances In Therapy®, vol. 9 No. 1, Jan./Feb. 1992. |
Ashburn et al., Cardiovascular, Hepatic and Renal Lesions in Mice Receiving Cortisone, Estrone and Progesterone, Yale J Bilogy and Medicine, vol. 35, Feb. 1963, pp. 329-340. |
Azeem, Adnan et al., Microemulsions as a Surrogate Carrier for Dermal Drug Delivery, Drug Development and Industrial Pharmacy, May 2000, vol. 35, No. 5, pp. 525-547 (abstract only). http://informahealthcare.com/doi/abs/10.1080/03639040802448646. |
Azure Pharma, Inc., ELESTRIN™—Estradiol Gel, Drug Info, http://dailymed.nlm.nih.gov/dailymed/archives/fdaDrugInfo.cfm?archiveid=11885, 26 pages, Aug. 2009. |
Bakhmutova-Albert, Ekaterina, et al., Enhancing Aqueous Dissolution Rates of Progesterone via Cocrystallization, SSCI, Division of Aptuit, Poster No. R6247, West Lafayette. |
Banerjee, Sila, et al., On the Stability of Salivary Progesterone Under Various Conditions of Storage, Steroids, vol. 46(6), pp. 967-974, Dec. 1985. |
Barnett, Steven M, Pressure-tuning infared and solution Raman spectroscopic studies of 17B-estradiol and several A-ring . . . , Vibrational Spectroscopy 8, Elsevier, pp. 263, 1995. |
Bartosova, Transdermal Drug Delivery In Vitro Using Diffusion Cells, Current Medicinal Chemistry, 2012, 19, 4671-4677, Bentham Science Publishers. |
Benbow et al., Distribution and Metabolism of Maternal Progesterone in the Uterus, Placenta, and Fetus during Rat Pregnancy, Biology of Reproduction 52, 1327-1333 (1995). |
Bernabei, M.T., et al., Release of progesterone polymorphs from dimethylpolysiloxane polymeric matrixes, Bollettino Chimico Farmaceutico, vol. 122(1) pp. 20-26, 1983 SciFinder. |
Bhavnani Bhagu R. et al., “Misconception and Concerns about Bioidentical Hormones Used for Custom-Compounded Hormone Therapy,” J Clin Endocrinol Metab, Mar. 2012, 97(3):756-759. |
Bhavnani et al., Structure Activity Relationships and Differential Interactions and Functional Activity of Various Equine Estrogens Mediated via Estrogen Receptors (ERs) ERα and ERβ, Endocrinology, Oct. 2008, 149(10):4857-4870. |
Bhavnani, B.R., Stanczyk, F.Z., Pharmacology of conjugated equine estrogens: Efficacy, safety and mechanism of action, J. Steroid Biochem. Mol. Biol. (2013), Elsevier. |
Bhavnani, B.R., Stanczyk, F.Z., Use of medroxyprogesterone acetate for hormone therapy in postmenopausal women: Is it safe? J. Steroid Biochem. Mol. Biol. (2013), Elsevier. |
BioMed Central, Solubility of Progesterone in Organic Solvents, Online PDF, http://www.biomedcentral.com/content/supplementary/1475-2859-ll-106-S2.pdf. |
Blake et al., Single and multidose pharmacokinetic study of a vaginal micronized progesterone insert (Endometrin) compared with vaginal gel in healthy reproductiveaged female subjects, Fertility and Sterility# vol. 94, No. 4, Sep. 2010, Elsevier. |
Borka, Laszlo, Crystal Polymorphism of Pharmaceuticals, Acta Pharm. Jugosl., vol. 40 pp. 71-94, 1990. |
Brinton, L.A., Felix, A.S., Menopausal hormone therapy and risk of endometrial cancer, J. Steroid Biochem. Mol. Biol. (2013), Elsevier. |
British Pharmacocopoeia 2014 Online, Refined Maize Oil, Ph. Eur. Monograph 1342, vol. I & II, Monographs: Medicinal and Pharmaceutical Substances, http://www.pharmacopoeia.co.uk/bp2014/ixbin/bp.cgi?a=print&id=740&tab=a-z%20index [Feb. 3, 2014 1:37:50 PM]. |
Burry, Kenneth A, Percutaneous absorption of progesterone in postmenopausal women treated with transdermal estrogen, Am J Obstet Gynecol, vol. 180(6) part 1, pp. 1504-1511, 1999. |
Busetta, Par Bernard, Structure Cristalline et Moleculair de l'Oestradiol Hemihydrate, Acta Cryst., B28 pp. 560, 1972, Bis(dimethyl-o-thiolophenylarsine)palladium(II). |
Busetta, Par Bernard, Structure Cristalline et Moleculaire du Complexe Oestradiol-Propanol, Acta Cryst., B28 pp. 1349, 1972, J.A. Kanters and J. Kroon. |
Campsteyn, Par H, et al., Structure Cristalline et Molcculaire de la Progesterone C21H30O2, Acta Cryst., B28 pp. 3032-3042, 1972. |
Cendejas-Santana, G, et al., Growth and characterization of progesterone crystallites, Revista Mexicana de Fisica, 50, Suplemento 1 pp. 1-3, 2004. |
ChemPro, Top-Notch Technology in Production of Oils and Fats, Chempro-Edible-Oil-Refining-ISO-TUV-Austria. |
Christen et al., Phase I/Pharmacokinetic Study of High-Dose Progesterone and Doxorubicin, J Clin Oncol 11:2417-2426, 1993. |
Christensson et al., Limonene hydroperoxide analogues differ in allergenic activity, Contact Dermatitis 2008: 59: 344-352. |
Christensson et al., Limonene hydroperoxide analogues show specific patch test reactions, Contact Dermatitis, 70, 291-299, 2014. |
Christensson et al., Positive patch test reactions to oxidized limonene: exposure and relevance , Contact Dermatitis, 71, 264-272, 2014. |
Chun et al., Transdermal Delivery of Estradiol and Norethrindrone Acetate: Effect of Vehicles . . . , J. Kor. Pharm. Sci., vol. 35, No. 3, pp. 173-177 (2005). |
Cicinelli et al., Direct Transport of Progesterone From Vagina to Uterus, Obstetrics & Gynecology, vol. 95, No. 3, Mar. 2000, pp. 403-406. |
Cole, Wayne & Julian, Percy L, Sterols. I. A Study of the 22-Ketosteroids, Cont. of the Research Lab. of the Glidden Co., Soya Prod. Div., vol. 67 pp. 1369-1375, Aug. 1945, Chicago. |
Committee Opinion, Incidentally Detected Short Cervical Length, Committee of Obstetric Practice, Obstetrics & Gynecology, ACOG, vol. 119, No. 4, Apr. 2012, pp. 879-882. |
Commodari, Fernando, Comparison of 17β-estradiol structures from x-ray diffraction and solution NMR, Magn. Reson. Chem., vol. 43, pp. 444-450, 2005, Wiley InterScience. |
Cooper, A, et al., Systemic absorption of progesterone from Progest cream in postmenopausal women, The Lancet, vol. 351, pp. 1255-1256, Research Letters, Apr. 25, 1998. |
Corbett et al., “Trends in Pharmacy Compounding for Women's Health in North Carolina: Focus on Vulvodynia,” Southern Medical Journal, vol. 107, No. 7, Jul. 2014, pp. 433-436. |
Corn Refiners Association, Corn Oil, 5th Edition, Washington, D.C., 2006. |
Critchley et al., Estrogen Receptor β, But Not Estrogen Receptor α, Is Present in the Vascular Endothelium of the Human and Nonhuman Primate Endometrium, The Journal of Clinical Endocrinology & Metabolism, 2001, vol. 86, No. 3,pp. 1370-1378. |
Dauqan, Eqbil M. A., et al., Fatty Acids Composition of Four Different Vegetable Oils (Red Palm Olein, Palm Olein, Corn Oil, IPCBEE, vol. 14, 2011, IACSIT Press, Singapore. |
Dideberg, O, et al., Crystal data on progesterone (C21H30O2), desoxycorticosterone (C21H30O3), corticosterone (C21H30O4) and aldosterone . . . , J. Appl. Cryst. vol. 4 pp. 80, 1971. |
Diramio, Jackie A., Polyethylene Glycol Methacrylate/Dimetacrylate Hydrogels for Controlled Release of Hydrophobic Drugs, Masters of Science Thesis, University of Georgia, Athens, Georgia, 2002, 131 pages. |
Drakulic, Branko J, Role of complexes formation between drugs and penetration enhancers in transdermal . . . , Inter. Journal of Pharmaceutics, Elsevier, vol. 363, pp. 40-49, 2009. |
Du et al., Percutaneous progesterone delivery via cream or gel application in postmenopausal women: a randomized cross-over study of progesterone levels in serum, whole blood, saliva, and capillary blood, Menopause: The Journal of The North American Menopause Society, 2013, vol. 20, No. 11, pp. 1-7. |
Duax, William L, et al., Conformation of Progesterone Side Chain: Conflict between X-ray Data and Force-Field Calculations, J. Am. Chem. Soc., vol. 103 pp. 6705-6712, Jun. 1981. |
Duclos, R, et al., Polymorphism of Progesterone: Influence of the carrier and of the solid dispersion manufacturing . . . , J. Thermal Anal., vol. 37 pp. 1869-1875, 1991, Wiley. |
Ebian, A.R., Ebian Article: Polymorphism and solvation of ethinyl estradiol, SciFinder, Pharmaceutica Acta Helvetiae, vol. 54(4), pp. 111-114, 1979, Alexandria, Egypt. |
Eisenberger, A., Westhoff, C., Hormone replacement therapy and venous thromboembolism, J. Steroid Biochem. Mol. Biol. (2013), Elsevier. |
Engelhardt et al., Conceptus Influences the Distribution of Uterine Leukocytes During Early Porcine Pregnancy, Biology of Reproduction 66, 1875-1880 (2002). |
Estradiol, The Merck Index Online, Royal Society of Chemistry, https://www.rsc.org/Merck-Index/monograph/mono1500003758/estradiol?q=unauthorize. |
Ettinger et al., Comparison of endometrial growth produced by unopposed conjugated estrogens or by micronized estradiol in postmenopausal women, Am J Obstet Gynecol 1997; 176:112-117. |
Excipients for Pharmaceuticals, Sasol Olefins & Surfactants Gmbh, 2010, 28 pages. |
Faassen, Fried, Physicochemical Properties and Transport of Steroids across Caco-2 Cells, Pharmaceutical Research, vol. 20(2), 2003, Plenum Pub. Corp. |
FDA, Draft Guidance on Progesterone, Recommended Apr. 2010, Revised Feb. 2011 http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM209294.pdf. |
Ferrari, Roseli AP., et al., Oxidative Stability of Biodiesel From Soybean Oil Fatty Acid Ethyl Esters, Sci. Agric., vol. 62(3), pp. 291-295, 2005, PiracicaBl, Braz. |
Filipsson et al., Concise International Chemical Assessment Document 5: Limonene, first draft, World Health Organization, Geneva, 1998, 36 pages. |
Final Report on the Safety Assessment of BHT, International Journal of Toxicology, 21(Suppl. 2): 19-94, 2002/. |
Flyvholm, Sensitizing risk of butylated hydroxytoluene Blsed on exposure and effect data, Contact Dermatitis 1990: 23: 341-345. |
Fotherby, K., Bioavailability of Orally Administered Sex Steroids Used in Oral Contraception and Hormone Replacement Therapy, Contraception, 1996; 54:59-69. |
Franklin et al., Characterization of immunoglobulins and cytokines in human cervical mucus: influence of exogenous and endogenous hormones, Journal of Reproductive Immunology 42 (1999) 93-106, Elsevier. |
Franz et al., Use of Excised Human Skin to Assess the Bioequivalence of Topical Products, Skin Pharmacol Physiol 2009;22:276-286. |
Freedman, R.R., Menopausal hot flashes: Mechanisms, endocrinology, treatment, J. Steroid Biochem. Mol. Biol.(2013), Elsevier. |
Fuchs et al., The Effects of an Estrogen and Glycolic Acid Cream on the Facial Skin of Postmenopausal Women: A Randomized Histologic Study, Cutis. Jun. 2003;71(6):481-8. |
Fugh-Berman, Adriane, Bioidentical Hormones for Menopausal Hormone Therapy: Variation on a Theme, Journal of General Internal Medicine, vol. 22, pp. 1030-1034, 2007. |
Furness et al., Hormone therapy in postmenopausal women and risk of endometrial hyperplasia (Review), 2012, pp. 1-204, The Cochrane Collaboration. Published by JohnWiley & Sons, Ltd. |
Gäfvert et al., Free radicals in antigen formation: reduction of contact allergic response to hydroperoxides by epidermal treatment with antioxidants, British Journal of Dermatology 2002; 146: 649-656. |
Ganam-Quintanar et al., Evaluation of the transepidermal permeation of diethylene glycol monoethyl ether and skin water loss, International Journal of Pharmaceutics, vo. 147, No. 2, Feb. 28, 1997, pp. 165-171 (abstract only). |
Gattefossé SAS, Material Safety Data Sheet, Gelot 64, 2012, 8 pages. |
Gattefossé SAS, Regulatory Data Sheet, Gelot 64, 2012, 6 pages. |
Gattefossé SAS, Regulatory Data Sheet, Lauroglycol 90, 2012, 5 pages. |
Gattefossé, “Excipients for Safe and Effective Topical Delivery, Drug Development and Delivery” Jul./Aug. 2012, http://drug-dev.com/Main/B1ck-Issues/Transdermal-Topical-Subcutaneous-NonInvasive-Deliv-5.aspx#. |
Geelen, Math J.H et al., “Dietary medium-chain fatty acids raise and (n-3) polyunsaturated fatty acids lower hepatic triacylglycerol synthesis in rats,” The Journal of Nutrition, 1995, 125(10):2449-2456. |
Gillet et al., Induction of amenorrhea during hormone replacement therapy: optimal micronized progesterone dose. A multicenter study, Maturitas 19 (1994) 103-115. |
Giron-Forest, D, et al., Thermal analyis methods for pharmacopoeial materials, J. Pharmaceutical & Biomedical Anal., vol. 7(12)pp. 1421-1433, 1989, Pergamon Press, Gr. Britain. |
Giron-Forest, D, Thermal analysis and calorimetric methods in the characterisation of polymorphs and solvates, Thermochimica Acta, vol. 248 pp. 1-59, 1995, Elsevier. |
Glaser et al., Pilot Study: Absorption and Efficacy of Multiple Hormones Delivered in a Single Cream Applied to the Mucous Membranes of the Labia and Vagina, Gynecol Obstet Invest 2008;66:111-118. |
Golatowski et al., Comparative evaluation of saliva collection methods for proteome analysis, Clinica Chimica Acta 419 (2013)42-46. |
Graham et al., Physiological Action of Progesterone in Target Tissues, Endocrine Reviews, 1997, vol. 18, No. 4, pp. 502-519. |
Groothuis et al., Estrogen and the endometrium: lessons learned from gene expression profiling in rodents and human, Human Reproduction Update, vol. 13, No. 4 pp. 405-417, 2007. |
Gunstone, Frank D, et al., Vegetable Oils in Food Technology: Composition, Properties and Uses, Blackwell Publishing, CRC Press, 2002. |
Gurney, E.P. et al., The Women's Health Initiative trial and related studies: 10 years later: A clinician's view, J.Steroid Biochem. Mol. Biol. (2013), Elsevier. |
Hamid et al., The effects of common solubilizing agents on the intestinal membrane Blrrier functions and membrane toxicity in rats, International Journal of Pharmaceutics 379 (2009) 100-108, Elsevier. |
Haner, Barbara, Crystal data (I) for some pregnenes and pregnadienes, Acta Cryst., vol. 17 pp. 1610, 1964. |
Hapgood, J.P., et al., Potency of progestagens used in hormonal therapy: Toward understanding differential actions, J. Steroid Biochem. Mol. Biol. (2013), Elsevier. |
Hargrove et al., Menopausal Hormone Replacement Therapy with Continuous Daily Oral Micronize Estradiol and Progesterone, Obstet Gynecol, vol. 73, No. 4, Apr. 1989, pp. 606-612. |
Hatton et al., “Safety and efficacy of a lipid emulsion containing medium-chain triglycerides,” Clinical Pharmacy, 1990, vol. 9, No. 5, pp. 366-371. |
He et al., Apoptotic Signaling Pathways in Uteri of Rats with Endometrial Hyperplasia Induced by Ovariectomy Combined with Estrogen, Gynecol Obstet Invest 2013;76:51-56. |
Helbling, Ignacio M, et al., The Optimization of an Intravaginal Ring Releasing Progesterone Using a Mathematical Model, Phann Res, vol. 31 pp. 795-808, 2014, Springer Science. |
Helmy et al., Estrogenic Effect of Soy Phytoestrogens on the Uterus of Ovariectomized Female Rats, Clinic Pharmacol Biopharmaceut, 2014, S2, 7 pages. |
Henderson, V.W., Alzheimer's disease: Review of hormone therapy trials and implications for treatment and prevention after . . . , J. Steroid Biochem. Mol. Biol. (2013), Elsevier. |
Henriksen, Thormod, et al., An ENDOR Sturdy of Radiation-Induced Molecular Damage to Progesterone, Jour, of Mag. Resonance, vol. 63, pp. 333-342, 1985, Acedemic Press, Inc. |
Herman, Anna et al., “Essential oils and their constituents as skin penetration enhancer for transdermal drug delivery: a review,” 2014 Royal Pharmaceutical Society, Journal of Pharmacy and Pharmacology, pp. 1-13. |
Hodis, H.N., Mack, W.J., Hormone replacement therapy and the association with heart disease and overall mortality: Clinical . . . , J. Steroid Biochem. Mol. Biol. (2013), Elsevier. |
Hospital, Michel, et al., X-ray Crystallography of Estrogens and Their Binding to Receptor Sites, Mol. Pharmacology, vol. 8 pp. 438-445, Acedemic Press, Inc., 1972. |
Hostynek, JJ Predictinga bsorptiono f fragrancec hemicalst hrough human skin, j. Soc.C osmeCt. hem.,4 6, 221-229 (Jul./Aug. 1995). |
Hulsmann, Stefan, Stability of Extruded 17B-Estradiol Solid Dispersions, Pharmaceutical Development and Tech., vol. 6(2) pp. 223-229, 2001, Marcel Dekker, Inc. |
Hurn et al., Estrogen as a Neuroprotectant in Stroke, Journal of Cerebral Blood Flow and Metabolism 20:631-652, 2000, Lippincott Williams & Wilkins, Inc., Philadelphia. |
Hyder et al., Synthetic Estrogen 17α-Ethinyl Estradiol Induces Pattern of Uterine Gene Expression Similar to Endogenous Estrogen 17β-Estradiol, JPET 290(2):740-747, 1999. |
Idder, Salima, et al., Physicochemical properties of Progesterone, SciFinder, pp. 1-26, Feb. 24, 2014, American Chern. Society & US Natl. Lib. of Med. |
ISR, ISR (App. No. PCT/US12/66406). |
ISR, ISR (App. No. PCT/US13/023309). |
ISR, ISR and written opinion for PCT/US/13/46442, dated Nov. 1, 2013. |
ISR, ISR and written opinion for PCT/US/13/46443, dated Oct. 31, 2013. |
ISR, ISR and written opinion for PCT/US/13/46444, dated Oct. 31, 2013. |
ISR, ISR and written opinion for PCT/US/13/46445, dated Nov. 1, 2013. |
Johanson, Gunnar, Toxicity Review of Ethylene Glycol Monomethyl Ether and its Acetate Ester, Critical Reviews in Toxicology, 2000, vol. 30, No. 3 , pp. 307-345 (abstract only). http://informahealthcare.com/doi/abs/10.1080/10408440091159220. |
Johnson, William S, et al., Racemic Progesterone, Tetrahedron Letters No. 4, pp. 193-196, 1963, Pergamon Press Ltd., Great Britain. |
Joshi et al., Detection and synthesis of a progestagen-dependent protein in human endometrium, J Reprod Fert K1980) 59, 273-285. |
Kanno et al., The OECD Program to Validate the Rat Uterotrophic Bioassay to Screen Compounds for in Vivo Estrogenic Responses: Phase 1, Environmental Health Perspectives ⋅ vol. 109 | No. 8 | Aug. 2001, pp. 785-794. |
Karlberg et al., Air oxidation of d-limonene (the citrus solvent) creates potent allergens, Contact Dermatitis, 1992: 26: 332-340. |
Karlberg et al., Influence of an anti-oxidant on the formation of allergenic compounds during auto-oxication of d-limonene, Ann. Occup. Hyg., vol. 38, No. 2, pp. 199-207, 1994. |
Kauniiz, Andrew M., Extended duration use of menopausal hormone therapy, Menopause: The Journal of The North American Menopause Society, 2014, vol. 21, No. 6, pp. 1-3. |
Khalil, Sah, Stability and Dissolution Rates of Corticosteroids in Polyethylene Glycol Solid Dispersions, Drug Dev. & Indus. Pharm., vol. 10(5) pp. 771-787, 1984, Marcel Dekker. |
Kharode et al., The Pairing of a Selective Estrogen Receptor Modulator, Bl zedoxifene, with Conjugated Estrogens as a New Paradigm for the Treatment of Menopausal Symptoms and Osteoporosis Prevention, Endocrinology 149(12):6084 6091,2008. |
Kim et al., Safety Evaluation and Risk Assessment Of d-Limonene, Journal of Toxicology and Environmental Health, Part B: Critical Reviews, 2013, 16:1, 17-38 http://dx.doi.org/10.1080/10937404.2013.769418. |
Kincl et al., Increasing Oral Bioavailability of Progesterone by Formulation, Journal of Steroid Biochemistry, 1978, vol. 9, pp. 83-84. |
Knuth et al., Hydrogel delivery systems for vaginal and oral applications: Formulation and biological considerations, Advanced Drug Delivery Reviews, vol. 11, No. 1-2, Jul.-Aug. 1993, pp. 137-167 (abstract only). |
Koga et al., Enhancing mechanism of Labrasol on intestinal membrane permeability of the hydrophilic drug gentamicin sulfate, European Journal of Pharmaceutics and Biopharmaceutics 64 (2006) 82-91. |
Komm et al., Blzedoxilene Acetate: A Selective Estrogen Receptor Modulator with Improved Selectivity, Endocrinology 146(9):3999-4008, 2005. |
Korkmaz, Filiz, Byophysical Studies of Progesterone-Model Membrane Interactions, Thesis, Grad. School of Nat. and App. Sci. of The Middle East Tech. University, Sep. 2003. |
Kotiyan, P.N., Stability indicating HPTLC method for the estimation of estradiol, Journal of Pharmaceutical and Biomedical Analysis, vol. 22 pp. 667-671, 2000, Elsevier. |
Krzyminiewski, R, et al., EPR Study of the Stable Radical in a y-Irradiated Single Crystal of Progesterone, Jour, of Mag. Resonance, vol. 46 pp. 300-305, 1982, Acedemic Press. |
Kubli-Garfias, C, et al., Ab initio calculations of the electronic structure of glucocorticoids, Jour. of Mol. Structure, Theochem, vol. 454 pp. 267-275, 1998, Elsevier. |
Kubli-Garfias, Carlos, Ab initio study of the electronic structure of progesterone and related progestins, Jour. of Mol. Structure, Theochem vol. 425, pp. 171-179, 1998, Elsevier (abstract only). |
Kuhnert-Brandstaetter and Grimm. Zur Unterscheidung von losungsmittelhaltigen pseudopolymorphen Kristallformen und polymorphen Modifikationen bei Steroidhormonen.II, Mikrochimica Acta, vol. 1, pp. 127-139, 1968. |
Kuhnert-Brandstaetter and Junger and Kofler. Thermo-microscopic and spectrophotometric: Determination of steroid hormones, Microchemical Journal 9, pp. 105-133, 1965. |
Kuhnert-Brandstaetter and Kofler. Zur mikroskopischen Identitatsprufung und zur Polymorphie der Sexualhormone, Mikrochimica Acta, vol. 6, pp. 847-853, 1959. |
Kuhnert-Brandsaetter and Linder. Zur Hydratbildung bei Steroidhormonen, Sci. Pharm, vol. 41(2),pp. 109-116, 1973. |
Kumasaka et al., Effects of Various Forms of Progestin on the the Estrogen-Primed, Ovariectomized Rat, Endocrine Journal 1994, 41(2), 161-169. |
Kuon et al., A Novel Optical Method to Assess Cervical Changes during Pregnancy and Use to Evaluate the Effects of Progestins on Term and Preterm Labor, Am J Obstet Gynecol. Jul. 2011 ; 205(1): 82.el5-82.e20. |
Kuon et al., Actions of progestins for the inhibition of cervical ripening and uterine contractions to prevent preterm birth, FVV in OBGYN, 2012, 4 (2): 110-119. |
Kuon et al., Pharmacological actions of progestins to inhibit cervical ripening and prevent delivery depend upon their properties, the route of administration and the vehicle, Am J Obstet Gynecol. May 2010 ; 202(5): 455. el-455.e9. |
Labrie, et al., Intravaginal prasterone (DHEA) provides local action without clinically significant changes in serum concentrations of estrogens or androgens, Journal of Steroid Biochemistry & Molecular Biology, vol. 138, pp. 359-367, 2013, Elsevier. |
Lacey, J.V. Jr., The WHI ten year's later: An epidemiologist's view, J. Steroid Biochem. Mol. Biol. (2013), Elsevier. |
Lahiani-Skibl, Malika, Solubility and Dissolution Rate of Progesterone-Cyclodextrin . . . , Drug Development and Industrial Pharmacy, Informa Healthcare vol. 32, pp. 1043-1058, 2006. |
Lancaster, Robert W, et al., The Polymorphism of Progesterone: Stabilization of a ‘Disappearing’ Polymorph by . . . , Jour. of Pharm. Sci., vol. 96(12) pp. 3419-3431, 2007, Wiley-Liss. |
Land, Laura M, The influence of water content of triglyceride oils on the solubility of steriods, Pharmaceutical Research, vol. 22(5) May 2005, Springer Science+Business Media. |
Lauer et al., “Evaluation of the hairless rat as a model for in vivo percutaneous absorption,” Journal of Pharmaceutical Sciences, vol. 86, No. 1, Jan. 1997, pp. 13-18. |
Leonetti et al., Transdermal progesterone cream as an alternative progestin in hormone therapy, Alternative Therapies, Nov./Dec. 2005, vol. 11, No. 6, pp. 36-38. |
Leonetti, Helene B, et al., Topical progesterone cream has an antiproliferative effect on estrogen-stimulated endometrium, Fertility and Sterility, vol. 79(1), Jan. 2003. |
Lewis, John G. et al., Caution on the use of saliva measurements to monitor absorption of progesterone from transdermal creams in postmenopausal women, Maturitas, The European Menopause Journal, vol. 41, pp. 1-6, 2002. |
Li, Guo-Chian, Solid-state NMR analysis of steroidal conformation of 17a- and 17B-estradiol in the absence and presence of lipi . . . , Steroids, Elsevier, vol. 77, pp. 185-192, 2012. |
Lobo, R.A., Foreword, J. Steroid Biochem. Mol. Biol. (2014), Elsevier. |
López-Belmonte, Corrigendnm to “Comparative uterine effects on ovariectomized rats after repeated treatment with different vaginal estrogen formulations” [Maturitas 72 (2012) 353-358], Maturitas 74 (2013) 393, Elsevier. |
Lucy et al., Gonadotropin-releasing hormone at estrus: lutenizing hormone, estradiol, and progesterone during . . . Biol Reprod Sep. 1986;35(2):300-311 (abstract only). |
Lvova, M. SH., et al., Thermal Analysis in the Quality Control and Standardization of Some Drugs, J Thermal Anal., vol. 40 pp. 405-411, 1993, Wiley. |
Madishetti et al., Development of domperidone bilayered matrix type transdermal patches: physicochemical, in vitro and ex vivo characterization, DARU vol. 18, No. 3, 2010, pp. 221-229. |
Magness, R.R., et al., Estrone, Estradiol-17β and Progesterone Concentrations in Uterine Lymph and Systematic Blood throughout the Porcine Estrone Estrous Cycle, Journal of Animal Science, vol. 57, pp. 449-455, ISU, 1983. |
Manson, JoAnn E. et al., “Menopausal hormone therapy and health outcomes during the intervention and extended poststoping phases of the women's health initiative randomized trials,” JAMA, Oct. 2, 2013, vol. 310, No. 13, pp. 1353-1368. |
McGuffy, Irena, Softgel Technology as a Lipid-Blsed Delivery Tool for Bioavailability Enhancement, Catalent Pharma Solutions, Somerset, NJ, Mar. 2011. |
Mesley, R.J., Clathrate Formation from Steroids, Chemistry and Industry, vol. 37 pp. 1594-1595, Sep. 1965. |
Miao, Wenbin, et al., Chemical Properties of Progesterone, SciFinder, 2014, American Chemical Society & US Natl. Lib. of Med. |
Miles et al., Pharmacokinetics and endometrial tissue levels of progesterone after administration bv'Intramuscular and vaginal routes: a comparative study, Fertility and Sterility, vol. 62, No. 3, Sep. 1994, pp. 485-490. |
Miller et al., Safety and Feasibility of Topical Application of Limonene as a Massage Oil to the Breast, Journal of Cancer Therapy, 2012, 3, 749-754. |
Mueck, A.O et al., Genomic and non-genomic actions of progestogens in the breast, J. Steroid Biochem. Mol.Biol. (2013), Elsevier. |
Muramatsu, Mitsuo, Thermodynamic Relationship between a- and B- Forms of Crystalline Progesterone, J. Pharmaceutical Sciences, vol. 68(2) pp. 175-178, 1979, Amer. Pharm. Assoc. |
Ng, Jo-Han et al., Advances in biodiesel fuel for application in compression ignition engines, Clean Techn Environ Policy, vol. 12, pp. 459-493, 2010, Springer-Verlag. |
Nicklas, Martina, Preparation and characterization of marine sponge collagen nanoparticles and employment for the trans . . . , Drug Devel. & Indust. Pharmacy,35(9) pp. 1035, 2009. |
Nilsson et al., Analysis of Contact Allergenic Compounds in Oxidized d-Limonene, Chromatographia vol. 42, No. 3/4, Feb. 1996,pp. 199-205. |
Notelovitz, Morris, et al., Initial 17-b-Estradiol Dose for Treating Vasomotor Symptoms, Obstetrics & Gynecology, vol. 95(5), pp. 726-731, part 1, May 2000, Elsevier. |
Nugen, What is NuGen HP Hair Growth System. |
NuGest900, NuGest 900™. |
O'Leary, Peter, Salivary, but not serum or urinary levels of progesterone are elevated after topical application of pregersterone cream to pre-and post-menopausal women, Clinical Endocrinology, vol. 53 pp. 615-620, Blackwell Science 2000. |
Opinion on the Diethylene Glycol Momoethyl Ether (DEGEE), Scientific Committee on Consumer Products, Dec. 19, 2006, 27 pages. |
Outterson, K., The Drug Quality and Security Act—Mind the Gaps, n engl j med 370;2 nejm.org Jan. 9, 2014, pp. 97-99. |
Palamakula et al., Preparation and In Vitro Characterization of Self-Nanoemulsified Drug Delivery Systems of Coenzyme Q10 Using Chiral Essential Oil Components, Pharmaceutical Technology Oct. 2004, pp. 74-88. |
Panay et al., The 2013 British Menopause Society & Women's Health Concern recommendations on hormone Yeplacement therapy, Menopause International: The Integrated Journal of Postreproductive Health, published online May 23, 2013, Sage Publications, http://min.sagepub.com/content/early/2013/05/23/17540453 13489645.1. |
Panchangnula et al., Development and evaluation of an intracutaneous depot formulation of corticosteroids using Transcutol . . . , J Pharm Pharmacol. Sep. 1991;43(9):609-614 (abstract only). |
Parasuraman et al., Blood sample collection in small laboratory animals, Journal of Pharmacology & Pharmacotherapeutics | July-Dec. 2010 | vol. 1 | Issue 2, pp. 87-93. |
Park, Jeong-Sook, Solvent effects on physicochemical behavior of estradiols recrystalized for transdermal delivery, Arch Pharm Res, vol. 31(1), pp. 111-116, 2008. |
Park, Jeong-Sook, Use of CP/MAS solid-state NMR for the characterization of solvate . . . , European Journal of Pharmaceutics and Biopharmaceutics, vol. 60, pp. 407-412, 2005. |
Parrish, Damon A., A new estra-1,3,5(10)-triene-3,17b-diol solvate: estradiol-methanol-water. Crystal Structure Comm., Intn'l Union of Crystallography, ISSN 0108-2701, 2003. |
Patel et al., Transdermal Drug Delivery System: A Review, www.thepharmajournal.com, vol. 1, No. 4, 2012, pp. 78-87. |
Payne, R.S., et al., Examples of successful crystal structure prediction: polymorphs of primidone and progesterone, Intl. Jour. of Pharma., vol. 177 pp. 231-245, 1999, Elsevier. |
PCCA, Apothogram, PCCA, May 2014, Houston, TX. |
Persson, Linda C, et al., Physicochemical Properties of Progesterone Selecte, SciFinder, pp. 1-5, Feb. 24, 2014, American Chem. Society & US Natl. Lib. of Med. |
Pfaus et al., Selective facilitation of sexual solicitation in the female rat by a melanocortin receptor agonist, PNAS, Jul. 6, 2004, vol. 101, No. 27, pp. 10201-10204. |
Pheasant, Richard, Polymorphism of 17-Ethinylestradiol, Schering Corporation, Bloomfield, NJ, May 1950. |
Pickles, VR, Cutaneous reactions to injection of progesterone solutions into the skin, Br Med Journal, Aug. 16, 1952, pp. 373-374. |
Pinkerton et al., What are the concerns about custom-compounded “bioidentical” hormone therapy? Menopause: The Journal of The North American Menopause Society, vol. 21, No. 12, 2014,pp. 1-3. |
Pinkerton, J.V., Thomas, S., Use of SERMs for treatment in postmenopausal women, J. Steroid Biochem. Mol. Biol. (2014), Elsevier. |
Pisegna, Gisia L, A High-pressure Vibrational Spectroscopic Study of Polymorphism in Steroids . . . , Thesis, McGill University, Dept. of Chem, Nov. 1999, Natl. Lib. of Canada. |
Portman, David et al., One-year treatment persistence with local estrogen therapy in postmenopausal women diagnosed as having vaginal atrophy, Menopause, vol. 22, No. 11, 2015, p. 000/000 (8 pages). |
Position Statement, Management of symptomatic vulvovaginal atrophy: 2013 position statement of the North American Menopause Society (NAMS), Menopause, vol. 20, No. 9, pp. 888-902. |
Practice Bulletin No. 141, Management of Menopausal Symptoms, Obstetrics & Gynecology, ACOG, vol. 123, No. 1, Jan. 2014, pp. 202-216. |
Prajapati, Hetal N, et al., A comparative Evaluation of Mono-, Di- and Triglyceride of Medium Chain Fatty Acids by Lipid/Surfactant/Water, Springerlink.com, pp. 1-21, Apr. 2011. |
Prausnitz et al., Transdermal drug delivery, Nat Biotechnol. Nov. 2008 ; 26(11): 1261-1268. |
Price, Sarah L, The computational prediction of pharmaceutical crystal structures and polymorphism, Adv. Drug Delivery Reviews, vol. 56 pp. 301-319, 2004, Elsevier. |
Product Information Sheet, Body B1lance Cream, Tahitian Noni International, 2013, 1 page. |
Product Safety Assessment: Diethylene Glycol Monoethyl Ether, Created: Sep. 24, 2007 The Dow Chemical Company Page, 5 pages. |
Progesterone, The Merck Index Online, Royal Society of Chemistry, 2013, search Feb. 17, 2014 https://www.rsc.org/Merck-Index/monograph/print/monol500007889/progesterone?q=authorize. |
Progynova TS 100, available online at file:///C:/Users/Call%20Family/Desktop/Progynova%20TS%20100%2012%20Patches_Pack%20%28Estradiol%20Hemihydrate%29.html, 2010. |
Provider Data Sheet, About Dried Blood Spot Testing, ZRT Laboratory, 2014, 3 pages. |
Rahn et al., Vaginal Estrogen for Genitourinary Syndrome of Menopause A Systematic Review, Obstet Gynecol 2014;124(6):1147-56. |
Rao, Rajeswara et al., “Intra Subject Variability of Progesterone 200 mg Soft Capsules in Indian Healthy Adult Postmenopausal Female Subjects under Fasting Conditions,” J Bioequiv Availab. 2014, 6: 139-143. |
Reisman et al., Topical Application of the Synthetic Triterpenoid RTA 408 Protects Mice from Radiation-Induced Dermatitis, Radiation Research 181, 512-520(2014). |
Rosilio, V, et al., Physical Aging of Progesterone-Loaded Poly(D,L,-lactide-co-glycolide) Microspheres, Pharmaceutical Research, vol. 15(5) pp. 794-799,1998, Plenum Pub. Corp. |
Ross et al., Randomized, double-blind, dose-ranging study of the endometrial effects of a vaginal progesterone gel in estrogen-treated postmenopausal women, AnnJ Obstet Gynecol, Oct. 1997, vol. 177, No. 4, pp. 937-941. |
Ruan et al., Systemic progesterone therapy—Oral, vaginal, injections and even transdermal? Maturitas 79 (2014) 248-255, Elsevier. |
Salem, HF, Sustained-release progesterone nanosuspension following intramuscular injection in ovariectomized Yats, International Journal of Nanomedicine 2010:5 943-954, Dove Press. |
Salole, Eugene G., Estradiol, Analytical Profiles of Drug Sub stances, vol. 15, pp. 283-318, 1986. |
Salole, Eugene G., The physicochemical properties of oestradiol, Journal of Pharmaceutical & Biomedical Analysis, vol. 5, No. 7, pp. 635-648, 1987. |
Santen, R.J., Menopausal hormone therapy and breast cancer, J. Steroid Biochem. Mol. Biol. (2013), Elsevier. |
Santen, RJ, Vaginal administration of estradiol: effects of dose, preparation and timing on plasma estradiol Tevels, CLIMACTERIC 2014;17:1-14. |
Sarkar, Bisu, et al., Chemical Stability of Progesterone in Compounded Topical Preparations using PLO Transdermal Cream™ and HRT Cream™ Blse . . . , J Steroids Horm Sci, 4:2, 2013. |
Sarrel, et al., The Mortality Toll of Estrogen Avoidance: An Analysis of Excess Deaths Among Hysterectomized Women Aged 50 to 59 Years, American Journal of Public Health, Research and Practice, e1-e6. Published online ahead of print Jul. 18, 2013. |
Satyanarayana, D, et al., Aqueous Solubility Predictions of Aliphatic Alcohols, Alkyl Substituted Benzoates and Steroids, Asian J. Chem., vol. 9 (3) pp. 418-426, 1997. |
Scavarelli, Rosa Maria, et al., Progesterone and Hydrate or Solvate, SciFinder, pp. 1-2, Feb. 24, 2014, American Chem. Society. |
Schindler, A.E., The “newer” progestagens and postmenopausal hormone therapy (HRT), J. Steroid Biochem.Mol. Biol. (2013), Elsevier. |
Schindler, Aldof E. et al., Classification and pharmacology of progestins, Maturitas 46S1 (2003) S7-S16. |
Schutte et al., A tissue engineered human endometrial stroma that responds to cues for secretory differentiation, decidualization and menstruation, Fertil Steril. Apr. 2012 ; 97(4): 997-1003, Elsevier. |
Schweikart et al., Comparative Uterotrophic Effects of Endoxifen and Tamoxifen in Ovariectomized Sprague-Dawley Rats, Toxicologic Pathology, 42: 1188-1196, 2014. |
SciFinder Scholar Prednisone Chemical Properties, SciFinder, 2014, pp. 1-7, National Library of Medicine. |
SciFinder Scholar Prednisone Physical Properties, SciFinder, 2014, pp. 1-10, Natioinal Library of Medicine. |
SciFinder Scholar Progesterone Experimental Properties, SciFinder, pp. 1-9, Feb. 24, 2014, American Chern. Society. |
Serantoni, Foresti, et al., 4-Pregnen-3,20-dione (progesterone, form II), Crystal Structure Comm., vol. 4(1) pp. 189-192, 1975, CAPLUS DataBlse. |
Shao et al., Review Open Access Direct effects of metformin in the endometrium: a hypothetical mechanism for the treatment of women with PCOS and endometrial carcinoma, Journal of Experimental & Clinical Cancer Research 2014, 33(1):41, 11 pages. |
Sharma, H.C., et al., Physical Properties of Progesterone Selected Refer, SciFinder, pp. 1-5, Feb. 24, 2014, American Chern. Society & US Natl. Lib. of Med. |
Shrier et al., “Mucosal Immunity of the Adolescent Female Genital Tract,” Journal of Adolescent Health, 2003 32:183-186. |
Shufelt et al., Hormone therapy dose, formulation, route delivery, and risk of cardiovascular events in women findings from the Women's Health Initiative Observational Study, Menopause: The Journal of The North American Menopause Society, vol. 21, No. 3, 2014, pp. 1-7, 2013. |
Siew, Adeline, moderator, Bioavailability Enhancement with Lipid-Blsed Drug-Delivery Systems, Pharmaceutical Technology, Aug. 2014, pp. 28, 30-31. |
Sigma-Aldrich, Progesterone-Water Soluble: powder, BioReagent, suitable for cell culture), MSDS available online http://www.sigmaaldrich.com/catalog/product/sigma/p7556. |
Simon et al., Effective Treatment of Vaginal atrophy with an Ultra-low-dose estradiol vaginal tablet, Obstetrics & Gynocology, vol. 112, No. 5, Nov. 2008, pp. 1053-1060. |
Simon, James A., What if the Women's Health Initiative had used transdermal estradiol and oral progesterone instead? Menopause: The Journal of The North American Menopause Society, 2014, vol. 21, No. 7, pp. 1-15. |
Sitruk-Ware et al., Progestogens in hormonal replacement therapy: new molecules, risks, and benefits, Menopause: The Journal of The North American Menopause Society. vol. 9, No. 1, pp. 6-15, 2002. |
Sitruk-Ware, Regine, “Pharmacological profile of progestins,” Maturitas 47 (2004) 277-283. |
Sitruk-Ware, Regine, Oral Micronized Progesterone—Bioavailability pharmacokinetics, pharmacological and therapeutic implications—A review, Contraception, Oct. 1987, vol. 36, No. 4, pp. 373-402. |
Smith et al., Lower Risk of Cardiovascular Events in Postmenopausal Women Taking Oral Estradiol Compared with Oral Conjugated Equine Estrogens, JAMA Internal Medicine, Published online Sep. 30, 2013, E1-E7. jamainternalmedicine.com. |
Smyth et al., Summary of Toxicological Data, a 2-YR Study of Diethylene Glycol Monoethyl Ether in Rats, Fd Cosmet. Toxicol. Vol. 2, pp. 641-642, 1964. |
Stanczyk et al., Thereaputically equivalent pharmacokinetic profile across three application sistes for AG200-15, a novel low-estrogen dose contraceptive patch, Contraception, 87 (2013) pp. 744-749. |
Stanczyk, F.Z. et al., “Percutaneous administration of progesterone: blood levels and endometrial protection,” Menopause: The Journal of The North American Menopause Society, 2005, vol. 12, No. 2, pp. 232-237. |
Stanczyk, F.Z. et al., Ethinyl estradiol and 17β-estradiol in combined oral contraceptives: pharmacokinetics, pharmacodynamics and risk assessment, Contraception 87 (Jun. 2013) vol. 87, No. 6, pp. 706-727. |
Stanczyk, F.Z., “All progestins are not created equal,” Steroids 68 (2003) 879-880. |
Stanczyk, F.Z., “Treatment of postmenopausal women with topical progesterone creams and gels: are they effective?” Climacteric 2014; 17 (Suppl 2):8-11. |
Stanczyk, F.Z., Bhavnani, B.R., Current views of hormone therapy for the management and treatment of postmenopausal women, J. Steroid Biochem. Mol. Biol. (2014), Elsevier. |
Stein, Emily A, et al., Progesterone Physical Properties, SciFinder, pp. 1-46, Feb. 24, 2014, American Chem. Society & US Natl. Lib. of Med. |
Stephenson et al., “Transdermal progesterone: Effects on Menopausal symptoms and on thrombotic, anticoagulant, and inflammatory factors in postmenopausal women,” Int J Pharmaceutical Compounding, vol. 12, No. 4, Jul./Aug. 2008, pp. 295-304. |
Strickley, Robert T., Solubilizing excipients in oral and injectable formulations, Pharmaceutical Research Feb. 2004, vol. 21, Issue 2, pp. 201-230 (abstract only). |
Strocchi, Antonino, Fatty Acid Composition, and Triglyceride Structure of Corn Oil, Hydrogenated Corn Oil, and Corn Oil Margarine, Journal of Food Science, vol. 47, pp. 36-39, 1981. |
Struhar, M, et al., Estradiol Benzoate: Preparation of an injection suspension . . . , SciFinder, Cesko-Slovenska Farmacie, vol. 27(6), pp. 245-249, 1978, Bratislava, Czech. |
Sullivan et al., “A review of the nonclinical safety of Transcutol®, a highly purified form of diethylene glycol monoethyl ether (DEGEE) used as a pharmaceutical excipient,” Food and Chemical Toxicology, 72 (2014) pp. 40-50. |
Sun, Jidong, D-Limonene: Safety and Clinical Applications, Alternative Medicine Review vol. 12, No. 3, 2007, pp. 259-264. |
Tait, Alex D, Characterization of the Prod, from the Oxidation of Progesterone with Osmium Tetroxide, Dept of Investigative Med., Univ. Cambridge, Gt. Britain pp. 531-542, 1972. |
Takacs M. et al., The light sensitivity of corticosteroids in crystalline form, Phaimaceutica acta Helvetiae, vol. 66 (5-6) pp. 137-140, 1991, Hardin Library. |
Tan, Melvin S. et al., A Sensitive Method for the Determination of Progesterone in Human Plasma by LC-MS-MS, M1025, Cedra Corporation, Austin, Texas. |
Tang et al., Effect of Estrogen and Progesterone on the Development of Endometrial Hyperplasia in the Fischer Rat, Biology of Reproduction 31, 399-413 (1984). |
Tas et al., Comparison of antiproliferative effects of metformine and progesterone on estrogen-induced endometrial hyperplasia in rats, Gynecol Endocrinol, Early Online: 1-4, 2013. http://informahealthcare.com/gye. |
Tella, S.H., Gallagher, J.C., Prevention and treatment of postmenopausal osteoporosis, J. Steroid Biochem. Mol. Biol. (2013), Elsevier. |
Thomas, Joshua, et al., The effect of water solubility of solutes on their flux through human skin in vitro: An . . . , Intl. J. of Pharmaceut., vol. 339 pp. 157-167, 2007, Elsevier. |
Thomas, Peter, Characteristics of membrane progestin receptor alpha (mPRα) and progesterone membrane receptor component 1 (PGMRC1) and their roles in mediating rapid progestin actions, Frontiers in Neuroendocrinology 29 (2008) 292-312. |
Tripathi, R, et al., Study of Polymorphs of Progesterone by Novel Melt Sonocrystallization Technique: A Technical Note, AAPS PhamSciTech, vol. 11, No. 3, Sep. 2010. |
Trommer et al., Overcoming the stratum Corneum: The modulation of Skin Penetration, Skin Pharmacol Physiol 2006;19:106-121. |
Tuleu et al., “Comparative Bioavailability Study in Dogs of a Self-Emulsifying Formulation of Progesterone Presented in a Pellet and Liquid Form Compared with an Aqueous Suspension of Progesterone,” Journal of Pharmaceutical Sciences, vol. 93, No. 6, Jun. 2004, pp. 1495-1502. |
Ueda et al., Topical and Transdermal Drug Products, Pharmacopeial Forum, vol. 35(3) [May-Jun. 2009], 750-754. |
USP, 401 Fats and Fixed Oils, Chemical Tests, Second Suplement to USP36-NF 31, pp. 6141-6151, 2013. |
USP, Certificate-Corn Oil, Lot G0L404, Jul. 2013. |
USP, Lauroyl Polyoxylglycerides, Safety Data Sheet, US, 5611 Version #02, pp. 1-9, 2013. |
USP, Monographs: Progesterone, USP29, www.pharmacopeia.cn/v29240/usp29nf24s0_m69870.html, search done Feb. 25, 2014. |
USP, Official Monographs, Corn Oil, NF 31, pp. 1970-1971, Dec. 2013. |
USP, Official Monographs, Lauroyl Polyoxylglycerides, NF 31, pp. 2064-2066, Dec. 2013. |
USP, Official Monographs, Medium Chain Triglycerides, NF 31, pp. 2271-2272, Dec. 2013. |
USP, Official Monographs, Mono- and Di-glycerides, NF 31, pp. 2101, Dec. 2013. |
U.S. Appl. No. 12/561,515_Jan. 29, 2013_Advisory_Action. |
U.S. Appl. No. 12/561,515_Final Office Action dated Oct. 26, 2012 in U.S. Appl. No. 12/561,515. |
U.S. Appl. No. 12/561,515_Notice of Allowance dated Sep. 11, 2013 in U.S. Appl. No. 12/561,515. |
U.S. Appl. No. 12/561,515_Office Action dated Dec. 12, 2011 in U.S. Appl. No. 12/561,515. |
U.S. Appl. No. 13/684,002_Mar. 20, 2013_Non-Final_Office_Action. |
U.S. Appl. No. 13/684,002_Jul. 16, 2013_Final_Office_Action. |
U.S. Appl. No. 13/684,002_Dec. 6, 2013_Notice_of_Allowance. |
U.S. Appl. No. 13/843,362_Mar. 16, 2015_Restriction_Requirement. |
U.S. Appl. No. 13/843,428_Apr. 14, 2015_Restriction_Requirement. |
U.S. Appl. No. 14/099,545_Feb. 18, 2014_Non-Final_Office_Action. |
U.S. Appl. No. 14/099,545_Jul. 14, 2014_Notice_of_Allowance. |
U.S. Appl. No. 14/099,562_Feb. 20, 2014_Restriction_Requirement. |
U.S. Appl. No. 14/099,562_Mar. 27, 2014_Non-Final_Office_Action. |
U.S. Appl. No. 14/099,562_Jul. 2, 2014_Final_Office_Action. |
U.S. Appl. No. 14/099,562_Dec. 10, 2014_Notice_of_Allowance. |
U.S. Appl. No. 14/099,571_Mar. 28, 2014_Restriction_Requirement. |
U.S. Appl. No. 14/099,571_Jul. 15, 2014_Notice_of_Allowance. |
U.S. Appl. No. 14/099,582_Apr. 29, 2014_Restriction_Requirement. |
U.S. Appl. No. 14/099,582_Jun. 17, 2014_Non-Final_Office_Action. |
U.S. Appl. No. 14/099,582_Nov. 7, 2014_Notice_of_Allowance. |
U.S. Appl. No. 14/099,582_Jan. 22, 2015_Notice_of_Allowance. |
U.S. Appl. No. 14/099,598_May 13, 2014_Restriction_Requirement. |
U.S. Appl. No. 14/099,598_Jul. 3, 2014-07-03_Non-Final_Office_Action. |
U.S. Appl. No. 14/099,598_Dec. 10, 2014_Notice_of_Allowance. |
U.S. Appl. No. 14/099,612_Mar. 20, 2014_Restriction_Requirement. |
U.S. Appl. No. 14/099,612_Oct. 30, 2014_Non-Final_Office_Action. |
U.S. Appl. No. 14/099,612_Nov. 26, 2014_Notice_of_Allowance. |
U.S. Appl. No. 14/099,623_Mar. 5, 2014_Restriction_Requirement. |
U.S. Appl. No. 14/099,623_Jul. 18, 2014_Non-Final_Office_Action. |
U.S. Appl. No. 14/099,623_Dec. 15, 2014_Notice_of_Allowance. |
U.S. Appl. No. 14/103,355_Dec. 8, 2014_Non-Final_Office_Action. |
U.S. Appl. No. 14/106,655_Jul. 3, 2014_Restriction_Requirement. |
U.S. Appl. No. 14/125,554_Dec. 5, 2014_Restriction_Requirement. |
U.S. Appl. No. 14/125,554_Apr. 14, 2015_Non-Final_Office_Action. |
U.S. Appl. No. 14/136 048_Nov. 4, 2014_Restriction_Requirement. |
U.S. Appl. No. 14/136,048_Mar. 12, 2015_Non-Final_Office_Action. |
U.S. Appl. No. 14/475,814_Oct. 1, 2014_Non-Final_Office_Action. |
U.S. Appl. No. 14/475 814_Feb. 13, 2015_Notice_of_ Allowance. |
U.S. Appl. No. 14/475,864_Feb. 11, 2014_Notice_of_ Allowance. |
U.S. Appl. No. 14/475,864_Oct. 2, 2014_Non-Final_Office_Action. |
U.S. Appl. No. 14/476,040_Mar. 26, 2015_Restriction_Requirement. |
U.S. Appl. No. 14/521,230_Dec. 5, 2014_Restriction Requirement. |
U.S. Appl. No. 14/521,230_Feb. 18, 2015_Non-Final_Office_Action. |
U.S. Appl. No. 14/624,051_Apr. 7, 2015_Non-Final_Office_Action. |
Utian, Wulf H, et al., Relief of vasomotor symptoms and vaginal atrophy with lower doses of conjugated equine estrogens, Fertility and Sterility, vol. 75(6) p. 1065, Jun. 2001. |
Voegtline et al., Dispatches from the interface of salivary bioscience and neonatal research, Frontiers in Endocrinology, Mar. 2014, vol. 5, article 25, 8 pages. |
Waddell et al., Distribution and metabolism of topically applied progesterone in a rat model, Journal of Steroid Biochemistry & Molecular Biology 80 (2002) 449-455. |
Waddell et al., The Metabolic Clearance of Progesterone in the Pregnant Rat: Absence of a Physiological Role for the Lung, Biology of Reproduction 40, 1188-1193 (1989). |
Walter et al., The role of progesterone in endometrial angiogenesis in pregnant and ovariectomised mice, Reproduction (2005) 129 765-777. |
Weber, E.J., Corn Lipids, Cereal Chem., vol. 55(5), pp. 572-584, The American Assoc of Cereal Chem, Sep.-Oct. 1978. |
Weber, M.T., et al., Cognition and mood in perimenopause: A systematic review and meta-analysis, J. Steroid Biochem. Mol. Biol. (2013), Elsevier. |
Weintraub, Arlene, “Women fooled by untested hormones from compounding pharmacies,” Forbes, Feb. 20, 2015; retrieved online at http://onforb.es/1LIUm1V on Feb. 23, 2015, 3 pages. |
Whitehead et al., Absorption and metabolism of oral progesterone, The British Medical Journal, vol. 280, No. 6217 (Mar. 22, 1980), pp. 825-827, BMJ Publishing Group. |
Wiranidchapong, Chutima, Method of preparation does not affect the miscibility between steroid hormone and polymethacrylate, Thermochimica Acta 485, Elsevier, pp. 57, 2009. |
Wood et al., Effects of estradiol with micronized progesterone or medroxyprogesterone acetate on risk markers for breast cancer in postmenopausal monkeys, Breast Cancer Res Treat (2007) 101:125-134. |
Wren et al., Effect of sequential transdermal progesterone cream on endometrium, bleeding pattern, and plasma progesterone and salivary progesterone levels in postmenopausal women, Climacteric, 2000, 3(3), pp. 155-160. http://dx.doi.org/10.1080/13697130008500109. |
Wu et al., Gene Expression Profiling of the Effects of Castration and Estrogen Treatment in the Rat Uterus, Biology of Reproduction 69, 1308-1317 (2003). |
Yalkowsky, Samuel H, & Valvani, Shri C, Solubility and Partitioning I: Solubility of Nonelectrolytes in Water, J. of Pharmaceutical Sciences, vol. 69(8) pp. 912-922, 1980. |
Yalkowsky, Samuel H, Handbook of Acqueous Solubility Data, Solutions, pp. 1110-1111, CRC Press, Boca Raton, London, New York, Wash. D.C. |
Yue, W., Genotoxic metabolites of estradiol in breast: potential mechanism of estradiol induced carcinogenesis, Journal of Steroid Biochem & Mol Biology, vol. 86 pp. 477-486, 2003. |
Zava, David T. et al., Percutaneous absorption of progesterone, Maturitas 77 (2014) 91-92, Elsevier. |
Zava, David T., Topical Progesterone Delivery and Levels in Serum, Saliva, Capillary Blood, and Tissues, Script, ZRT Laboratory, pp. 4-5. http://www.zrtlab.com/component/docman/cat_view/10-publications?Itemid. |
Castelo-Branco Camil et al., “Treatment of atrophic vaginitis,” Therapy, 2007, vol. 4, No. 3, pp. 349-353. |
Chambin et al., Interest of Multifunctional Lipid Excipients: Case of Gelucire® 44/14, Drug Development and Industrial Pharmacy, vol. 31, No. 6, pp. 527-534 (Year: 2005). |
Cho, Y.A. et al., Transdermal Delivery of Ketorolac Tromethamine: Effects of Vehicles and Penetration Enhancers, Drug Development and Industrial Pharmacy, 30(6):557-564, Jun. 2004. |
Cicinelli et al., “First uterine pass effect” is observed when estradiol is placed in the upper but not lower third of the vagina, Fertility and Sterility, vol. 81, No. 5, May 2004, pp. 1414-1416. |
Cicinelli, Intravaginal oestrogen and progestin administration: advantages and disadvantages, Best Practices & Research Clinical Obstretrics and Gynaecology vol. 22, No. 2, 2008, pp. 391-405. |
Crandall, Carolyn, “Vaginal Estrogen Preparations: A Review of Safety and Efficacy for Vaginal Atrophy,” Journal of Women's Health, 2002, vol. 11, No. 10, pp. 857-877. |
Cremer Care, “MIGLYOL® 810, 812 INCI: Caprylic/Capric Triglyceride,” Cremer Oleo GmbH & Co. KG, pp. 1-7, available at. http://s3.amazonaws.com/petercremerna/procducts/spec_sheets/159/339/301/originai/M IGL YOL_810_812_ TDS.pdf?1389204 445 (Mar. 2013) accessed on Dec. 30, 2016. |
Garad S. et al., “Preclinical Development for Suspensions,” A.K. Kulshreshtha et al. (eds.), Pharmaceutical Suspensions: From Formulation Development to Manufacturing, Springer, New York 2010, pp. 127-176. |
Holm et al., “Examination of oral absorption and lymphatic transport of halofantrine in a triple-cannulated canine model after administration in self-microemulsifying drug delivery systems (SMEDDS) containing structured triglycerides,” European Journal of Pharmaceutical Sciences 20 (2003) 91-97. |
Humberstone, Andrew et al., “Lipid-based vehicles for the oral delivery of poorly water soluble drugs,” Advanced Drug Delivery Reviews, 25(1997)103-128. |
Karande, et al., Enhancement of transdermal drug delivery via synergistic action of chemicals, Biochimica et Biophysica Acta, 1788:2362-2373, Sep. 2009. |
Knuth et al., Hydrogel delivery systems for vaginal and oral applications: Formulation and biological considerations, Advanced Drug Delivery Reviews, vol. 11, No. 1-2, Jul.-Aug. 1993, pp. 137-167. |
Lane, Majella E., “Skin penetration enhancers,” International Journal of Pharmaceutics 447 (2013) 12-21. |
Lindmark, Tuulikki et al., “Absorption Enhancement through Intracellular Regulation of Tight Junction Permeability by Medium Chain Fatty Acids in Caco-2 Cells,” JPET 284(1):362-369, 1998. |
Lindmark, Tuulikki et al., “Mechanisms of Absorption Enhancement by Medium Chain Fatty Acids in Intestinal Epithelial Caco-2 Cell Monolayers,” JPET 275(2):958-964, 1995. |
Lopes, Luciana B. et al., Enhancement of transdermal delivery of progesterone using medium-chain mono and diglycerides as skin penetration enhancers, Pharmaceutical Development and Technology, 14:5, 524-529, Mar. 2009. |
Monti, D. et al., Effect of different terpene-containing essential oils on permeation of estradiol through hairless mouse skin, International Journal of Pharmaceutics, 237:209-24, 2002. |
Pachman et al., “Management of menopause-associated vasomotor symptoms: Current treatment options, challenges and future directions,” International Journal of Women's Health, May 7, 2010. |
Potluri, Praveen and Guru V. Betageri, “Mixed-micellar proliposomal systems for enhanced oral delivery of progesterone,” Drug Delivery, 2006, vol. 13, No. 3, pp. 227-232. |
Prajapati Hetal N. et al., “A Comparative Evaluation of Mono-, Di-and Triglyceride of Medium Chain Fatty Acids by Lipid/Surfactant/Water Phase Diagram, Solubility Determination and Dispersion Testing for Application in Pharmaceutical Dosage Form Development,” Pharm Res. Jan. 2012; 29(1): 285-305. Published online Aug. 23, 2011. doi: 10.1007/s11095-011-0541-3. |
Prajapati Hetal N. et al., “Effect of Difference in Fatty Acid Chain Lengths of Medium-Chain Lipids on Lipid/Surfactant/Water Phase Diagrams and Drug Solubility,” J. Excipients and Food Chem. 2 (3) 2011:73-88. |
Rao, R. et al., “The Affect of Capmul, Labrafil and Transcutol on Progesterone 100 Mg Soft Capsules Bioavailability in Indian Healthy Adult Postmenopausal Female Subjects Under Fasting Conditions,” Bioequivalence & Bioavailability, 7(2):095-107, 2015. |
Sallee, Verney L. et al., “Determinants of intestinal mucosal uptake of short- and medium-chain fatty acids and alcohols,” Journal of Lipid Research, 1973, vol. 14, 475-484. |
Sarpal, K. et al., “Self emulsifying drug delivery systems: a strategy to improve oral bioavailability,” Current Research & Information on Pharmaceuticals Sciences (CRIPS), 2010, vol. 11, No. 3, pp. 42-49. |
Search Report, Extended European Search Report for EP13741053.6, dated Jul. 1, 2015. |
Search Report, Extended European Search Report for EP13807188.1, dated Nov. 23, 2015. |
Search Report, International Search Report and Written Opinion for PCT/US14/61811, dated Jan. 21, 2015. |
Search Report, International Search Report and Written Opinion for PCT/US15/23041, dated Jun. 30, 2015. |
Search Report, International Search Report and Written Opinion for PCT/US15/42621, dated Oct. 29, 2015. |
U.S. Appl. No. 12/561,515, Dec. 12, 2011 Non-Final Office Action. |
U.S. Appl. No. 12/561,515, Oct. 26, 2012 Final Office Action. |
U.S. Appl. No. 12/561,515, Sep. 11, 2013 Notice of Allowance. |
U.S. Appl. No. 13/843,428, Jul. 2, 2015 Non-Final Office Action. |
U.S. Appl. No. 14/106,655, Jun. 19, 2015 Final Office Action. |
U.S. Appl. No. 14/690,955, Feb. 1, 2016 Non-Final Office Action. |
Ettinger et al., “Measuring symptom relief in studies of vaginal and vulvar atrophy: the most bothersome symptom approach,” Menopause, vol. 15, No. 5, 2008, pp. 885-889. |
Eugster-Hausmann et al., “Minimized estradiol absorption with ultra-low-dose 10 μg 17β-estradiol vaginal tablets,” Climacteric 2010; 13:219-227. |
Martelli, Mary Elizabeth, “Vaginal Medicine Administration,” The Gale Encyclopedia of Nursing and Allied Health, Gale Group, 2002, pp. 2542-2543. |
Regidor, P., “Progesterone in Peri- and Postmenopause: A Review,” Geburtshilfe Frauenheilkd, Nov. 2014. 74(11):995-1002. |
Simon, James A. et al., “A vaginal estradiol softgel capsule, TX-004HR, has negligible to verylow systemic absorption of estradiol: Efficacy and pharmacokineticdata review,” Maturitas 99 (2017) 51-58. |
Stefanick, “Estrogens and progestins: background and history, trends in use, and guidelines and regimens approved by the US Food and Drug Administration,” The American Journal of Medicine (2005) vol. 118 (12B), 64S-73S. |
Hitchcock, C. L. et al., “Oral micronized progesterone for vasomotor symptoms-a placebo-controlled randomized trial in healthy postmenopausal women,” Menopause: the Journal of the North American Menopause Society, 19(8):886-893, the North American Menopause Society, United States (Aug. 2012). |
Hosmer, J. et al., “Microemulsions Containing Medium-Chain Glycerides as Transdermal Delivery Systems for Hydrophilic and Hydrophobic Drugs,” AAAPS PharmSciTech, 10(2): 589-596, American Association of Pharmaceutical Scientists, United States (2009). |
March, C. M. et al., “Roles of Estradiol and Progesterone in Eliciting the Midcycle Luteinizing Hormone and Follicle-Stimulating Hormone Surges,” The Journal of Clinical Endocrinology & Metabolism, 49(4):507-513, The Endocrine Society, United States (Oct. 1, 1979). |
Sofi, S. H., et al., “Gelucire: A Versatile Formulation Excipient,” Ijppr.Human, 10(3): 55-73 (2017). |
Tang, O.S., et al., “Pharmacokinetics of different routes of administration of misoprostol,” Human Reproduction, 17(2):332-226, European Society if Human Reproduction and Embryology, Belgium (2002). |
Wang, H., et al., “Pharmacokinetics of hard micronized progesterone capsules via vaginal or oral route compared with soft micronized capsules in healthy postmenopausal women: a randomized open-label clinical study,” Drug Des Devel Ther., 13:2475-2482, Dove Press, England (2019). |
Co-pending U.S. Appl. No. 16/833,213, Inventor, Bernick, B.A., filed Mar. 27, 2020 (Not Published). |
Co-pending U.S. Appl. No. 16/837,929, Inventor, Bernick, B.A., filed Apr. 1, 2020 (Not Published). |
Co-pending U.S. Appl. No. 16/837,933, Inventor, Bernick, B.A., filed Apr. 1, 2020 (Not Published). |
Co-pending U.S. Appl. No. 16/834,780, Inventor, Bernick, B.A., filed Mar. 30, 2020 (Not Published). |
Co-pending U.S. Appl. No. 16/834,844, Inventor, Bernick, B.A., filed Mar. 30, 2020 (Not Published). |
Co-pending U.S. Appl. No. 16/833,186, Inventor, Bernick, B.A., filed Mar. 27, 2020 (Not Published). |
Co-pending U.S. Appl. No. 16/833,188, Inventor, Bernick, B.A., filed Mar. 27, 2020 (Not Published). |
Office Action dated Jan. 30, 2017, in U.S. Appl. No. 14/489,818 Inventors, Bernick, B.A., filed Jun. 4, 2015, 12 pages. |
Office Action dated Nov. 2, 2017, in U.S. Appl. No. 14/489,818 Inventors, Bernick, B.A., filed Jun. 4, 2015, 21 pages. |
Office Action dated Jun. 15, 2018, in U.S. Appl. No. 14/489,818 Inventors, Bernick, B.A., filed Jun. 4, 2015, 21 pages. |
Office Action dated Jun. 3, 2017, in U.S. Appl. No. 14/489,818 Inventors, Bernick, B.A., filed Jun. 4, 2015, 15 pages. |
Office Action dated Jan. 5, 2016, in U.S. Appl. No. 14/521,002 Inventors, Bernick, B.A., filed Oct. 22, 2014, 9 pages. |
Office Action dated Jan. 6, 2017, in U.S. Appl. No. 14/521,002 Inventors, Bernick, B.A., filed Oct. 22, 2014, 10 pages. |
Office Action dated Oct. 5, 2017, in U.S. Appl. No. 14/521,002 Inventors, Bernick, B.A., filed Oct. 22, 2014, 13 pages. |
Office Action dated Jul. 20, 2018, in U.S. Appl. No. 14/521,002 Inventors, Bernick, B.A., filed Oct. 22, 2014, 16 pages. |
Office Action dated Jun. 3, 2019, in U.S. Appl. No. 14/521,002 Inventors, Bernick, B.A., filed Oct. 22, 2014, 12 pages. |
Office Action dated Jan. 5, 2016, in U.S. Appl. No. 14/521,002 Inventors, Bernick, B.A., filed Apr. 2, 2020, 6 pages. |
Kingsburg, S.A. et al., “Treating dyspareunia caused by vaginal atrophy: a review of treatment options using vaginal estrogen therapy,” International Journal of Women's Health 1:105-111, Dove Press, England (2009). |
Activella® (estradiol/ norethindrone acetate) prescribing information (Nov. 2017) FDA Label, 39 pages. |
Prometrium® (progesterone, USP) prescribing information (Jun. 2009) FDA Label, 33 pages. |
Vagifem® (estradiol vaginal tablets) prescribing information (Nov. 2009) FDA Label, 14 pages. |
MacBride, M.B., et al., “Vulvovaginal Atrophy,” Mayo Clinic Proceedings, 85(1): 87-94, Elsevier, Netherlands (2010). |
De Vries, T.P.G.M., et al, “Guide to Good Prescribing: A Practical Manual,” Essential Medicines and Health Products Information Portal, World Health Organization, Annex 3 (“How to explain the use of some dosage forms”), Checklist 11 (“Vaginal tablet without applicator”) available at https://apps.who.int/iris/handle/10665/59001 (4 pages)(1994). |
Rioux, J.E., et al “17 beta-Estradiol Vaginal Tablet Versus Conjugated Equine Estrogen Vaginal Cream to Relieve Menopausal Atrophic Vaginitis,” Menopause, 7(3): 156-161, The North American Menopause Society, United States (2000). |
Cicinelli, E. et al “Placement of the vaginal 17 beta-estradiol tablets in the inner or outer one third of the vagina affects the preferential delivery of 17 beta-estradiol toward the uterus or periurethral areas, thereby modifying efficacy and endometrial safety,” Am. J. Obstet. Gynecol, 189: 55-58 (2003). |
Office Action dated Apr. 8, 2021, in U.S. Appl. No. 16/677,831, Bernick, B. A., et al., filed Nov. 8, 2019, 19 pages. |
Office Action dated Apr. 7, 2021, in U.S. Appl. No. 16/746,434, Bernick, B. A., et al., filed Jan. 17, 2020, 14 pages. |
Office Action dated Apr. 8, 2021, in U.S. Appl. No. 16/833,188, Bernick, B. A., et al., filed Mar. 27, 2020, 16 pages. |
Office Action dated Aug. 7, 2020, in U.S. Appl. No. 16/833,213, Bernick, B. A., et al., filed Mar. 27, 2020, 14 pages. |
Notice of Allowance dated Oct. 7, 2020, in U.S. Appl. No. 16/833,213, Bernick, B. A., et al., filed Mar. 27, 2020, 5 pages. |
Office Action dated Jun. 25, 2020, in U.S. Appl. No. 16/834,844, Bernick, B. A., et al., filed Mar. 30, 2020, 12 pages. |
Notice of Allowance dated Aug. 21, 2020, in U.S. Appl. No. 16/834,844, Bernick, B. A., et al., filed Mar. 30, 2020, 6 pages. |
Office Action dated Nov. 27, 2020, in U.S. Appl. No. 16/837,929, Bernick, B. A., et al., filed Apr. 1, 2020, 15 pages. |
Notice of Allowance dated Mar. 12, 2021, in U.S. Appl. No. 16/837,929, Bernick, B. A., et al., filed Apr. 1, 2020, 8 pages. |
Office Action dated Apr. 30, 2021, in U.S. Appl. No. 16/875,030, Bernick, B. A., et al., filed Apr. 30, 2021, 17 pages. |
Office Action dated Oct. 6, 2020, in U.S. Appl. No. 16/837,933, Bernick, B. A., et al., filed Apr. 1, 2020, 14 pages. |
Final Office Action dated Feb. 4, 2021, in U.S. Appl. No. 16/837,933, Bernick, B. A., et al., filed Apr. 1, 2020, 15 pages. |
Notice of Allowance dated Mar. 12, 2021, in U.S. Appl. No. 16/837,933, Bernick, B. A., et al., filed Apr. 1, 2020, 7 pages. |
Notice of Allowance dated Sep. 8, 2020, in U.S. Appl. No. 14/521,002, Bernick, B. A., et al., filed Oct. 22, 2014, 6 pages. |
Bassi, P., and Kaur, G., “Innovations in bioadhesive vaginal drug delivery system,” Expert Opinion on Therapeutic Patents 22(9): 1019-1032, Taylor and Francis Ltd., United Kingdom (published online Aug. 2012, published in print Sep. 2012). |
UNC School of Pharmacy, “Preparation of Suppositories,” PharmLabs.unc.edu, accessed at http://pharmlabs.unc.edu/labs/suppository/inserting.htm on Apr. 16, 2021, 1 page. |
Office Action dated Apr. 30, 2021, in U.S. Appl. No. 16/834,780, Bernick, B. A., et al., filed Apr. 30, 2021, 13 pages. |
Dugal et al., “Comparison of usefulness of estradiol vaginal tablets and estriol vagitories for treatment of vaginal atrophy” Acta Obstericia et Gynecologia Scandinavica, 79, 2000, pp. 293-297. |
Rodriguez-Tenreiro, C. et al., “Cyclodextrin/carbopol micro-scale interpenetrating networks for drug delivery” J. of Controlled Release 123, 2007, pp. 56-66. |
Rodriguez-Tenreiro, C. et al., “Estradiol sustained release from high affinity cyclodextrin hydrogels” Eur. J. of Pharmaceutics and Biopharmaceutics 66, 2007, 55-62. |
Number | Date | Country | |
---|---|---|---|
20200230154 A1 | Jul 2020 | US |
Number | Date | Country | |
---|---|---|---|
61745313 | Dec 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14649818 | US | |
Child | 16837937 | US |