The present invention relates to a reactor and a method for reaction, in which an organic matter and others contained in a solution, mainly such as a waste liquid, are decomposed by means of oxidation or reduction.
Colored waste water emitted from a dye house can be changed to colorless, clean water by oxidatively decomposing an organic matter such as dye contained in the waste water. For realization of such a treatment, there has been developed a bubbling method for jetting an oxidative gas, such as ozone, in a state of a bubble into the waste liquid. The bubbled ozone serves as an oxidative gas to decompose and decolorize the dye contained in the waste water. This method makes the waste water clean under the oxidative reaction of the solution, which is caused by a gas-liquid contact. In this method, a tower called a bubble tower is filled with the waste water, and fine bubbles are injected from a bottom portion of the tower. The bubbles go up in the waste water within the bubble tower, and in the course of the bubbles going up to reach the liquid surface, the oxidative gas contained in the bubbles oxidatively decomposes the dye and others to make the waste water clean.
This method, however, presents the following drawbacks.
(1) A finer bubble has to be produced to enlarge a surface area of the bubble, because a speed of reaction is dependent on the surface area of the bubble, i.e., on a diameter of each individual bubble. In order to produce fine bubbles, however, an involved structure does not only become complicated but energy consumption becomes larger accordingly. Further, even when the bubbles are initially fine enough, the bubbles contact one another in the waste water to coalesce, being prone to have an enlarged bubble radius. For such reasons, there exists a problem that a gas-liquid interfacial area decreases which stipulates the speed of reaction.
(2) Further, even if a fine bubble is to be injected, the oxidative gas in the bubble is only able to express an oxidation power to the extent of a gas amount contained in the bubble. That is to say, when the oxidative gas contained in the fine bubble has been exhausted after consumption, the oxidation power is lost even if the bubble goes up while in contact with the waste water. The amount of oxidative gas decreases in accordance with a smaller size of the bubble. For this reason, the smaller the bubble diameter is, the faster the consumption of the oxidative gas is, which means that the oxidation power becomes lost within a shorter time while the bubble goes up in the waste water. As a result, an oxidative gas concentration in the waste water is higher only in the vicinity of the bubble producing unit, making it difficult or impossible for the oxidative gas concentration to be distributed uniformly in the waste water.
(3) Furthermore, when a reaction progresses near a gas-liquid interface, two kinds of transfer phenomena have to be simultaneously proceeded that are a supply of a pre-oxidized substance and a removal of an oxidized product between the oxidative gas in the bubble and the surface of the waste liquid. In order to prompt the reaction, a mixed phase of the waste water and the bubble has to be vehemently agitated so that the two kinds of transfer phenomena may be accelerated. However, there are limits to the speed of transfer for the substance contained in the waste water, which constitutes a factor that the speed of transfer limits the speed of reaction involved in the entire reactor.
As a reaction method to remedy such drawbacks, there has been developed a method of spraying a solution into an ozone gas. Refer to the Patent Documents 1 and 2.
Problem to be Solved by the Invention
Described in the Patent Document 1 is a waste water treatment system of removing a contaminant in waste water which is oxidized and decomposed by means of a UV ray and ozone. In the waste water treatment system, the waste water is sprayed from a spraying nozzle in a spraying type reaction tank into a reaction tank. The contaminant dissolved in a sprayed fine particle comes in contact with and absorbs the UV ray irradiated from the UV light and the ozone gas delivered from an ozone supply unit, so that the contaminant is decomposed and removed under the effect of synergistic oxidation. Further, a volatile organic chlorine compound and others, which are vaporized and separated within the spraying type reaction tank, are introduced via a condenser into a gas phase reaction tank, together with an unused ozone gas. The gaseous contaminant sent into the gas phase reaction tank comes in contact with and absorbs the unused ozone (when an ozone concentration is found to be suffering shortage by using an ozone concentration sensor, the ozone is partially replenished from an ozonizer) under exposure to the UV ray irradiated from the UV light, and the contaminant is decomposed and removed under the effect of a synergistically oxidative decomposition reaction.
Further described in the Patent Document 2 is a method of decolorizing a dye waste liquid. In the method, the dye waste liquid is sprayed into the ozone atmosphere, and the ozone is allowed to contact with the dye waste liquid, so that after a dye in the dye waste liquid is oxidatively decolorized, the ozone is decomposed and removed. The involved reactor includes an ozonizer, a reaction vessel into which the ozone produced by the ozonizer is supplied, a dye waste liquid sprayer for spraying the dye waste liquid into the reaction vessel, and an ozone eliminator for decomposing and eliminating the ozone in the reaction vessel.
The methods described in such documents respectively allow the solution such as the waste water and the dye waste liquid to be sprayed in a state of fine mists into the ozone gas and ozone atmosphere, so that the mists are in contact with the ozone to chemically change the solution as undergoing the oxidation, decomposition and decolorization. When compared with the bubbling method of allowing the ozone to float in a state of bubbles in the solution such as the waste water and waste liquid, the above described methods allow for a quick, chemical change by enlarging a size of contact area between the solution and the ozone. Further, since the solution is sprayed in a state of fine mists into the ozone, the chemical change is made possible while in contact with the ozone until the solution has been chemically changed.
It should be noted, however, that these methods are unable to achieve fully satisfactory efficiency of chemically changing the solution in every kind of application. In particular, the treatment of the waste water and waste liquid is required to efficiently dispose of a huge amount of solution within a shorter time, which means that a further improved method is needed for chemically changing the solution by means of the ozone in a more efficient and quicker manner.
The present invention has been made in order to realize such a requirement. It is the primary object of the present invention to provide a reactor and a reaction method for allowing for a chemical reaction of the component contained in the solution by means of a reactant gas in a very efficient and quick manner, which is made possible by designing to keep the solution and the reactant gas in a state of ideal gas-liquid interface.
Means for Solving Problems
The solution reactor according to the first aspect of the present invention is so designed as to allow a solution L to contact with a reactant gas G so that a component contained in the solution L is chemically changed by means of the reactant gas G. The reactor includes a nozzle 41 for spraying the solution L into a state of mists M; and a pressure feed unit 42 for feeding into the nozzle 41 the reactant gas G which is pressurized. Further, in regard to the reactor, the pressure feed unit 42 feeds such pressurized reactant gas G into the nozzle 41 and allows the gas to flow fast; the nozzle 41 allows such fast flowing reactant gas G to contact with the solution L; the solution L is broken into the mists M and jetted out of the nozzle 41; and thus the component contained in the solution L is chemically changed by the reactant gas G.
The nozzle 41 may include an injection path 46 for jetting the pressurized reactant gas G through the path; and a solution path 47 for feeding the solution L to the injection path 46. The nozzle 41 is so designed that the solution L fed out of the solution path 47 is atomized into the mists M by means of the reactant gas G which is jetted through the injection path 46.
The nozzle 41 can include a smooth surface 60 in the nozzle for allowing the fed solution L to flow along the smooth surface in a flowing direction; and the injection path 46 for jetting the reactant gas G in the flowing direction of the solution L along the smooth surface 60. The nozzle 41 is so designed that the solution L flowing along the smooth surface 60 is stretched in the flowing direction by means of the reactant gas G jetted through the injection path 60 along the smooth surface 60, so that the solution L is sprayed in the state of the mists M from a tip of the smooth surface 60.
Further, in the inventive solution reactor, the solution L may contain an organic substance which is oxidatively decomposable by contacting with ozone, and the reactant gas G may be air that contains ozone.
The method for solution reaction according to the second aspect of the present invention is so designed as to allow a solution L to contact with a reactant gas G so as to chemically change a component contained in the solution L by means of the reactant gas G. According to the reaction method, the reactant gas G, which is pressurized, is fed into a nozzle 41 for spraying the solution L in a state of mists M; the reactant gas G is flowed fast by the nozzle 41; such fast flowing reactant gas G is allowed to contact with the solution L; the solution L is broken into the mists M and jetted out of the nozzle 41; and thus the component contained in the solution L is chemically changed by the reactant gas G.
According to the inventive reaction method, the nozzle 41 allows the pressurized reactant gas G to be jetted to an injection path 46; the solution L is fed to the injection path 46; and thus the solution L can be atomized into the mists M by means of the reactant gas G.
According to the inventive reaction method, the nozzle 41 allows the fed solution L to flow along a smooth surface 60; the reactant gas G is jetted in a flowing direction of the solution L; the solution L flowing along the smooth surface 60 is stretched in the flowing direction by means the reactant gas G jetted along the smooth surface 60; and thus the mists M can be sprayed from a tip of the smooth surface 60.
The solution reactor according to the third aspect of the present invention is so designed as to allow a solution L to contact with a reactant gas G so as to chemically change a component contained in the solution L by means of the reactant gas G. The reactor includes an ultrasonic vibrator 2 for ultrasonically vibrating the solution L to be atomized into a state of mists M; an ultrasonic power source 3, connected to the ultrasonic vibrator 2, for supplying high-frequency electric power to the ultrasonic vibrator 2 to provide an ultrasonic vibration; and a reaction unit 31 for allowing the reactant gas G to contact with the mists M which are atomized by the ultrasonic vibrator 2. The reactor is so designed that the solution L is atomized by the ultrasonic vibrator 2 into the mists M; that such atomized mists M are allowed to contact with the reactant gas G; and thus a component contained in the solution L is chemically changed by means of the reactant gas G.
The solution reactor according to the fourth aspect of the present invention is so designed that a barrel 6 opened at a top end of a spray opening 12 is disposed superjacent to the ultrasonic vibrator 2, so that the ultrasonic vibrator 2 provides an ultrasonic vibration to the solution L toward the spray opening 12 of the barrel 6, and thus the solution L, atomized into a form of the mists M, is discharged from the spray opening 12. Further, the barrel 6 has a gas nozzle 14 opened for feeding the reactant gas G to the mists M sprayed from the spray opening 12; and the gas nozzle 14 is connected to the supply source 32 of the reactant gas G. The reactor is so designed that the reactant gas G fed out of the supply source 32 is fed from the gas nozzle 14 to the mists M; that the mists M sprayed from the spray opening 12 are fed into the reactant gas G; and thus the atomized mists M are allowed to contact with the reactant gas G.
The barrel 6 may be either cylindrical, or of a conical horn that is tapered off toward the spray opening 12, or of an exponential horn. Further, the barrel 6 may be formed with the gas nozzle 14 opened to circumferentially surround the spray opening 12.
Further, the inventive solution reactor may be so designed that the solution L contains an organic matter that is oxidatively decomposable by contacting with ozone, and that the reactant gas G is air that contains the ozone.
The method for solution reaction according to the fifth aspect of the present invention is so designed as to allow a solution L to contact with a reactant gas G so as to chemically change a component contained in the solution L by means of the reactant gas G. In the reaction method, the solution L is ultrasonically vibrated to be atomized in a state of mists M; the reactant gas G is allowed to contact with such atomized mists M; and thus the component contained in the solution L is chemically changed by means of the reactant gas G.
The method for solution reaction according to the sixth aspect of the present invention is so designed that the solution L is filled in a barrel 6 having a spray opening 12 opened at a top end of the spray opening; that an ultrasonic vibration is provided to the solution L within the barrel 6 toward the spray opening 12; that the solution L is atomized into the state of the mists M; such mists M are discharged from the spraying nozzle 12; that the reactant gas G is fed to the mists M sprayed from the spray opening 12; and thus the mists M sprayed from the spray opening 12 are allowed to contact with the reactant gas G.
A reactor according to the first and second aspect of the present invention carry the advantage that a gas-liquid interface between a solution and a reactant gas is maintained in an ideal state, so that a component contained in the solution can be subjected to a chemical reaction in a very efficient and quick manner. This is because the reactor and the reaction method allow the reactant gas, which is pressurized, to be fed to a nozzle for spraying the solution in a state of mists; the solution is allowed to contact with the reactant gas which is fast flown by means of the nozzle; the solution is broken into the mists to be jetted; and the component contained in the solution is chemically changed by means of the reactant gas. The reactor and the reaction method are designed to allow the fast flowing reactant gas to vehemently contact with the solution so that the solution is broken into pieces, and thus the solution is atomized into fine mists to be jetted. As a result, in the reactor and the reaction method, the solution and the reactant gas are allowed to contact each other in an ideal state of vehement agitation at the gas-liquid interface between the solution and the reactant gas, and thus the component contained in the solution can be chemically changed in a quick and efficient manner.
Further, a reactor in according to the third aspect of the present invention carry the advantage that a solution is ultrasonically vibrated to be atomized into a state of mists; a reactant gas is allowed to contact with such atomized mists; and a component contained in the solution is chemically changed by means of the reactant gas, so that a gas-liquid interface between the solution, atomized by means of an ultrasonic vibration into the mists, and the reactant gas is maintained in an ideal state, and thus the component contained in the solution can be subjected to a chemical reaction in a very efficient and quick manner.
In particular, a reactor according to the fourth and fifth aspect of the present invention allow a solution to be filled in a barrel which has a spray opening opened at a top end of the barrel, so that an ultrasonic vibration is provided to the solution in the barrel to allow the solution to be atomized into a state of mists and discharged from the spray opening, and thus the solution can be atomized by means of the ultrasonic vibration into a state of the mists in an efficient manner. Therefore, while the reactor and the reaction method allow the solution to be atomized by means of the ultrasonic vibration into the state of the mists, such atomized mists can be subjected to a chemical reaction by means of the reactant gas in a quick and efficient manner.
Embodiments in accordance with the present invention shall be described hereinafter in conjunction with the accompanying drawings. It should be noted, however, that the ensuing description of embodiments is merely illustrative of a solution reactor and a reaction method only to embody technical ideas conceived in the present invention and that the invention shall in no way be limited to the reactor and reaction method as described below.
To add, in the present disclosure, reference numerals corresponding to members shown in the embodiments are affixed to members shown in the “CLAIMS” and “MEANS FOR SOLVING PROBLEMS” in order to facilitate a better understanding of the claims. However, those members shown in the claims shall in no way be specified to those members shown in the embodiments.
The inventive reactor is so designed as to allow a solution to contact with a reactant gas, so that a component contained in the solution is chemically changed by means of the reactant gas. The solution to be used is a waste water and others that are emitted from factories and contain a hazardous substance, and the solution is the one in which the hazardous substance can be reacted and decomposed by means of a reactant gas. When the solution is a waste water emitted from a factory, the hazardous substance contained in the waste water can be oxidized, reduced or decomposed to be eliminated, or can be detoxified for treatment of the waste water. On the other hand, when the solution is dye waste water, the hazardous substance contained in a colorized, dye waste water can be chemically reacted as by means of oxidation, reduction or decomposition for treatment into colorless, clean waste water. However, the solution is not specifically limited to a waster water, and every kind of reactive solution may be used that can be reacted by allowing a contained component to contact with the reactant gas.
The reactor shown in
The nozzle 41 atomizes the solution L into a state of the mists M by means of the fast flowing reactant gas G and jets the solution L. At this stage, the reactant gas G vehemently contacts the solution L and breaks the solution L into pieces, and further the solution L is broken into fine mists M. As a result, the solution L is vehemently agitated by the reactant gas G at the gas-liquid interface as well as being broken into the fine mists M. For this reason, the solution L and the reactant gas G are in an ideal contact with each other at the gas-liquid interface, so that the component contained in the solution L is chemically changed by means of the reactant gas G in a quick and efficient manner.
The pressure feed unit 42 serves to feed the pressurized reactant gas G to the injection path 46 of the nozzle 41. The reactant gas G to be used is a gas which conducts a chemical reaction such as oxidation, reduction and decomposition of the component contained in the solution L. The reactant gas G for oxidizing the component contained in the solution L can be air that contains ozone. The ozone has a strong oxidation power next to fluorine, and decomposed ozone becomes oxygen, which is harmless to the surroundings and the human body. The ozone also has a property of selectively breaking a double bond of an organic substance, and is easier to be generated. Therefore, the air containing the ozone is optimally used as a reactant gas G for oxidizing the component contained in the solution L. It should be noted that the ozone can also be used alone as the reactant gas. In regard to the reactant gas for oxidizing the component contained in the solution L, it is also possible to use various kinds of oxidants other than the ozone, such as a gas of chlorine, alone or alternatively being blended in air. Further, as a reactant gas for reducing the component contained in the solution L, various kinds of reducing agents such as a gas of hydrogen can be used alone or in a state of being blended in air.
The pressure feed unit 42 shown in
A collection unit 45 coagulates the fine mists M, which are chemically changed by means of the reactant gas G, and the coagulated mists M are collected. The reactor shown in
In the nozzle 41 in
The nozzle 41 in
The inner ring 57 is of a circular wall at the outer contour, and the middle ring 58 is of a circular wall at the inner contour, so that the solution path 47 in a slit shape with a certain breadth is provided between the inner ring 57 and the middle ring 58. The solution path 47 is formed in a ring shape, with its slit breadth being designed to be of such a breadth as the solution L does not become clogged. The nozzle 41 does not require the solution L to be fed in a thin film state out of the solution path 47. This is because the solution L is stretched to be a thin film along the smooth surface 60 and is jetted out in fine particles. Therefore, the slit breadth of the solution path 47 is optimally designed, with a flowing amount of fed solution L, a length of the smooth surface 60, a velocity of the reactant gas G jetted along the smooth surface 60, an inner diameter of the solution path 47 and other factors being taken into consideration.
The diameter of the solution path 47 is optimally designed in view of the flowing amount of the jetted solution L, the size of the slit breadth and other factors. The diameter of the solution path 47 is designed to be about 50 mm(D, for example in the nozzle 41 for jetting the solution L at a rate of 1000 g/min. When the flowing amount is larger, the solution path 47 is designed to have an enlarged diameter, and when the flowing amount is smaller, the diameter is made smaller.
The upper circumference of the inner ring 57 and the tip surface of the middle ring 58 are cut into a tapered state to form a smooth surface 60. The smooth surfaces 60 at the inner ring 57 and the middle ring 58 are formed in a flush or coplanar state so that the flowing air jetted along the smooth surface 60 at the inner ring 57 may not become turbulent in the boundary between the inner ring 57 and the middle ring 58. The flush or coplanar state of the smooth surfaces 60 at the inner ring 57 and the middle ring 58 means the state in which the smooth surfaces 60 both at the inner ring 57 and at the middle ring 58 are not stepped, and that the air flows straightly along the smooth surface 60 at the inner ring 57 to the smooth surface 60 at the middle ring 58. Thus, when the smooth surfaces 60 at the inner ring 57 and at the middle ring 58 are to be tapered to become coplanar, it suffices that the inner ring 57 and the middle ring 58 are interconnected and then cut into a tapered state. Further, the smooth surface 60 is a smooth surface 60 running along the flowing direction of the solution L, so that the flowing solution L may not become turbulent. The smooth surface 60 of the nozzle 41, as illustrated, is finished into a conical, smooth surface 60 in its entirety.
When the inner ring 57 and the middle ring 58 are provided with a smooth surface 60 respectively, the solution path 47 is opened in the intermediate portion of the smooth surface 60. An angle of inclination a of the smooth surface 60 provided at the inner ring 57 and the middle ring 58 is designed to form an obtuse angle with respect to the smooth surface 60 of the solution path 47, for example at 100-170 degrees, preferably 120-160 degrees, more preferably 130-160 degrees, and optimally about 150 degrees. When the angle of inclination a is larger, the flow of liquid becomes stabilized. However, an optimal value of the angle of inclination a is dependent on the slit breadth. The angle of inclination a is preferably designed not to exceed 2 mm in the opening width of the solution path 47 at the smooth surface 60.
A center pole 56 is disposed in the center of the inner ring 57, and a jet orifice 61 is opened between a tip of the center pole 56 and the inner ring 57. The center pole 56 has its outer circumferential surface formed to be tapered along the smooth surface 60 of the inner ring 57. The jet orifice 61 formed between the center pole 56 and the inner ring 57 is in a slit state, through which the pressurized air is jetted in a state of laminar flow to be flown fast along the smooth surface 60.
The injection path 46 of the inner ring 57 is connected to the pressure feed unit 42. The jet orifice 61 serves to jet the reactant gas G flowing along the smooth surface 60. The pressure feed unit 42 feeds into the jet orifice 61 the reactant gas of, for example, 3-20 kg/cm2, preferably 4-15 kg/cm2, more preferably 4-10 kg/cm2, and optimally about 6.5 kg/cm2. When a gas pressure of the reactant gas G is elevated, the velocity of the reactant gas G flowing fast along the smooth surface 60 is increased, so that the solution L is stretched to become thinner in a more effective manner, and thus the solution L can be made into fine particles of mists M.
Further, the nozzle 41 shown in
The nozzle 41 which jets two reactant gases G to be collided at the tip has a sharp-pointed edge 63 at the tip of the smooth surface 60. The middle ring 58 has the smooth surface 60 provided at the tip face, and the outer circumference of the tip is made cylindrical and is provided with the edge 63 at the tip of the smooth surface 60. The middle ring 58 in this shape can form the sharp-pointed edge 63 (180 degrees minus the angle of inclination α) at the tip of the smooth surface 60. However, the nozzle, although not illustrated, can also adjust the angle value of the edge by processing the outer circumference of the middle ring in a tapered state.
The nozzle 41 shown in
For example, when the solution L is fed to the solution path 47 by allowing the reactant gas G to flow along the smooth surface 60 at a velocity of Mach 1.5, and if the velocity of the stream of thin film T at its tip is 1/20 of the reactant gas G, the velocity of 25.5 m/s is obtained. When the diameter of the edge 63 provided at the tip of the smooth surface 60 is 50 mm, the film pressure of the stream of thin film T is 4 μm, based on a supply of 1 liter/min of the solution L.
(3) The stream of thin film T of 4 μm is unable to remain in a state of film, due to being too thin, when passing through the edge 63 of the smooth surface 60, and is broken into pieces by the effect of a surface tension, and thus the mists M of fine particles are formed.
Further, the reactors in accordance with alternative embodiments of the present invention are shown in
The illustrated reactor includes an ultrasonic atomizer 1 for atomizing the solution L by means of an ultrasonic vibration, and a collection unit 5 for chemically changing the mists M atomized by the ultrasonic atomizer 1 by means of the reactant gas G and then coagulating and collecting the mists M. The ultrasonic atomizer 1 includes a closed-structure ultrasonic atomization chamber 4 into which the solution L is fed, a plurality of ultrasonic vibrators 2 for ultrasonically vibrating the solution L in the ultrasonic atomization chamber 4 to be atomized into the mists M, a barrel 6 disposed superjacent to each ultrasonic vibrator 2, and an ultrasonic power source 3 connected to the ultrasonic vibrator 2.
In the case of the reactor in
These reactors allow the mists M of the solution L atomized in the ultrasonic atomization chamber 4 to flow into the closed-structure collection unit 5. The collection unit 5 collects the solution by coagulating the fine mists M and chemically changing the component contained in the solution L. Since the mists M are not in a form of gas, the mists M can be collected by coagulating without necessarily having to be cooled. However, when the mists M are to be cooled, a quicker collection is made possible.
The solution L is fed to the ultrasonic atomization chamber 4 by using a pump 10. The ultrasonic atomization chambers 4 shown in
The solution L in the ultrasonic atomization chamber 4 is atomized into the mists M by using the ultrasonic atomizer 1. At this stage, for example, when the component contained in the solution has a tendency to transfer to a surface of the solution L, or when the component is easier to be vaporized than the solution L, the mists M atomized by using the ultrasonic atomizer 1 becomes higher than the solution L in terms of the concentration of the component. Therefore, the solution L containing a component having such a nature is atomized into the mists by using the ultrasonic atomizer 1, and then after the atomized mists M are oxidized, reduced and decomposed by means of the reactant gas G, a collection is made after coagulation, so that the component is selectively removed from the solution L in an efficient manner, and thus the removed component can be collected by chemically changing as by oxidation, reduction and decomposition.
As described above, when the component is selectively atomized from the solution L into the mists M, and the atomized component is chemically changed as by oxidation, reduction and decomposition, the whole solution L fed to the ultrasonic atomization chamber 4 does not necessarily have to be atomized into the mists M. This is because as the solution L fed to the ultrasonic atomization chamber 4 decreases by being atomized into the mists M, so the concentration of the component decreases. For this reason, in the ultrasonic atomization chamber 4, when the solution L is atomized and the concentration of the component decreases, it is possible to replenish a new solution L. In such reactor, for example, the solution is changed in a method of replacing with a new solution after a certain time course, that is, in a batch system. As indicated by arrow A in
Further, in regard to the solution L fed to the ultrasonic atomization chamber 4, the whole of the fed solution L can also be atomized into the mists M, regardless of the nature of the component contained in the solution L (for example, the component has the tendency to transfer to the surface of the solution, or is easier to be vaporized than the solution, or the like). The reactor, while continuing to feed the solution L from the stock solution tank 11 to the ultrasonic atomization chamber 4, continuously drives the ultrasonic atomizer 1, atomizes the solution into the mists M efficiently, and thus the component contained in the solution L can be chemically changed as by oxidation, reduction, and decomposition.
Further, the reactors in
The interior contour of the barrel 6 at its bottom opening portion is made smaller or larger than the exterior contour of the ultrasonic vibrator 2 so that the ultrasonic vibration can be transferred efficiently inside, and thus an ultrasonically vibrated liquid column P is able to rise along the interior surface. For example, the inner diameter of the lower end opening of the barrel 6 is 50-150%, preferably 60-100%, of the outer diameter of the ultrasonic vibrator 2.
Further, the height of the barrel 6 and the size of the spray opening 12 are so designed that a layer of air is not formed along the inside of the barrel 6 or, in other words, between the interior surface of the barrel 6 and the liquid column P of the solution L, and the liquid column P caused by the ultrasonic vibration rises along the inside of the barrel 6 and is dispersed, in the form of mists M, in the vicinity of the spray opening 12. Alternatively, it is also possible to arrange that the tip of liquid column P projects outside the spray opening 12 or, in other words, the barrel 6 is lower in height than is the liquid column P Thus, the height of the barrel 6 and the size of the spray opening 12 are designed to obtain optimal values in accordance with factors such as the size, output power and frequency regarding the ultrasonic vibrator 2.
The illustrated barrel 6 has its lower end disposed below the liquid surface of the solution L and its spray opening 12 is disposed above the liquid surface. The barrel 6 guides the ultrasonic vibration below the liquid surface into its inside and allows the liquid to be dispersed in the form of mists M through the spray opening 12 which is superjacent to the liquid surface.
The barrel 6 in
Further, the barrel 6 in
Further, the barrel 6 has a gas nozzle 14 opened for supplying the reactant gas G to the mists M being atomized through the spray opening 12, and the gas nozzle 14 is connected to a supply source 32. The supply source 32 supplies the pressurized reactant gas G to the barrel 6. As describe previously, the reactant gas G to be used is the gas in which the component contained in the solution L is chemically reacted as by oxidation, reduction and decomposition. The supply source 32 can be of the same structure as the above-described pressure feed unit. When a reactant gas G to be fed is, for example, air that contains ozone, the supply source 32, although not shown, may include a compressor for forcibly blowing air, and an ozonizer for generating ozone in the air which is forcibly blown. The reactant gas G fed out of the supply source 32 is supplied to the mists M from the gas nozzle 14, and the mists M sprayed from the spraying nozzle 12 is atomized into the reactant gas G. The mists M thus atomized in this state are coagulated at the collection unit 5, and the solution L is collected.
The barrels 6 in
The barrels 6 in
The barrels 6 in
Further, each of these illustrated barrels 6 has an ultrasonic vibrator 2 removably connected to the barrel 6 via a removable connector 24. Provided inside the removable connector 24 is a mounting chamber 25 that opens upwardly. The ultrasonic vibrator 2 is fixed in this mounting chamber 25. The illustrated removable connector 24 also accommodates, in the mounting chamber 25, a power supply circuit component 26 for driving the ultrasonic vibrator 2. The power supply circuit component 26 is connected to the ultrasonic vibrator 2 via a lead wire 27 and outputs an ultrasonic power of electrical signal to the ultrasonic vibrator 2. The ultrasonic vibrator 2 seals the opening of the mounting chamber 25 air-tightly. Accordingly, the periphery of the ultrasonic vibrator 2 is in firm contact with the rim of the opening of the mounting chamber 25 via a gasket 28. The power supply circuit component 26 is received in the mounting chamber 25 which is sealed water-tightly by the ultrasonic vibrator 2. Because of this structure, the power supply circuit component 26 is not required to be of a watertight structure. Because the illustrated removable connector 24 incorporates the ultrasonic vibrator 2 and the power supply circuit component 26 in the mounting chamber 25, the removable connector 24 carries the advantage that the ultrasonic vibrator 2 and the power supply circuit component 26 can be replaced easily. Alternatively, however, the removable connector can be so designed that only the ultrasonic vibrator is received in the mounting chamber, and that the lead wire, connecting to the ultrasonic vibrator, can be led outside the removable connector to be connected to a power supply circuit. In such a removable connector, the ultrasonic vibrator does not necessarily have to be fixed in a manner of a watertight structure.
The removable connector 24 is removably connected to a connecting recess 29 defining an inverted opening in the lower end of the barrel 6. The removable recess 29 has a female thread provided on its inner face. The removable connector 24 is so exteriorly profiled as to be inserted into the removable recess 29 and is exteriorly threaded to be screwed into the female thread of the removable recess 29. By screwing the male thread into the female thread, the removable connector 24 is connected to the removable recess 29. Because the removable recess 29 is communicated with the inside of the barrel 6, the removable connector 24 must be connected to the barrel 6 in a manner of liquid-tight structure. For this purpose, the O-ring 30 is interposed between the inner circumference of the removable recess 29 and the outer circumference of the removable connector 24. Owing to the O-ring 30 being liquid-tightly connected to the removable connector 24, the removable recess 29 in the lower end of the barrel 6 is sealed liquid-tightly by the removable connector 24.
In the ultrasonic atomizer 1 as described above, the ultrasonic vibrator 2 is ultrasonically vibrated and the solution L is dispersed through the spray opening 12 of the barrel 6 in the form of mists M. The solution L is dispersed in the form of mists M from the spray opening 12 by being ultrasonically vibrated within the barrel 6. In the illustrated ultrasonic atomizer 1, the ultrasonic vibrator 2 is disposed to face upwardly. The ultrasonic vibrator 2 radiates an ultrasonic wave upwardly from the bottom toward the inside of the barrel 6, ultrasonically vibrates the solution L, and pushes up the solution L, inside the barrel 6, to be dispersed in the form of mists M through the spray opening 12. The ultrasonic vibrator 2 emits the ultrasonic wave in a vertical direction.
The ultrasonic atomizers 1 shown in
The mists M of the solution L atomized in the ultrasonic atomization chamber 4 are allowed to flow into the collection unit 5 after chemically changing the component contained in the solution L by means of the reactant gas G. To allow the mists M to flow into the collection unit 5, in the reactor shown in
Further, in the reactor shown in
The reactor in
The collection unit 5 shown in
In the illustrated reactor, the nozzles 36 are disposed at the top and at the sides of the collection unit 5. The nozzles 36 at the top spray the solution L downwardly. The nozzles 36 at the sides spray the solution L horizontally. The solution L sprayed from the nozzles 36 is in droplets amply larger than the mists M atomized in the ultrasonic atomizer 1 and falls rapidly inside the collection unit 5, and as the droplets fall, they collide with the mists M floating inside the collection unit 5 and collects the mists M while falling. Therefore, the mists M floating in the collection unit 5 can be collected rapidly with good efficiency.
Although the illustrated reactor has the nozzles 36 disposed at the upper portion and at the lateral portions of the collection unit 5, the nozzles may also be disposed at the bottom portion of the collection unit 5. The nozzles at the bottom spray the solution L upwardly. The nozzle sprays the solution at such a speed that the solution hits the ceiling of the collection unit, or at such a speed that the solution ascends to the proximity of the ceiling. Because the solution sprayed so as to ascend to the proximity of the ceiling turns its direction to a downward orientation in the proximity of the ceiling and falls, the solution comes in contact with the mists M while the solution rises and falls, and thus the mists M can be collected effectively.
Further, in the reactors shown in
Further, a plurality of baffle plates 37 are disposed inside the collection unit 5 shown in
Further, the collection unit 5 in
In the reactor shown in
Since the ultrasonic wave is a frequency ranging higher than a frequency audible to the human, the ultrasonic sound is not audible. For this reason, the vibrator 39 of the mists M for emitting the ultrasonic wave is sonically harmless to the human when the gas is vehemently vibrated in the collection unit 5, that is, when the output from the electrical-to-mechanical oscillation converter is extremely increased. As such, the ultrasonic wave carries the advantage that the mists M can be vehemently vibrated by the ultrasonic wave and efficiently collided with one another for a rapid collection.
Since the above-described reactor is so constructed and arranged that a device for condensing the mists M efficiently is disposed in the collection unit 5, the mists M can be condensed into a highly concentrated solution L more rapidly. Further, although not illustrated, the inventive reactor can have a nozzle for spraying the solution, a fan for agitating the mists, and a vibrator for vibrating the mists, in a full set incorporated inside the collection unit, so that the mists can be condensed with the highest efficiency. Alternatively, two units of such devices for condensing the mists may be incorporated to condense the mists efficiently.
Industrial Applicability
The present invention is applicable for a variety of reactors and reaction methods for chemically reacting the reactant gas with the component contained in the solution. In particular, the invention can be advantageously used for a reactor and reaction method for oxidizing or reducing to decompose an organic substance contained in a solution such as a waste liquid.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2006/311126 | 6/2/2006 | WO | 00 | 12/3/2007 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2006/129807 | 12/7/2006 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4308241 | deVries | Dec 1981 | A |
4465234 | Maehara et al. | Aug 1984 | A |
5845846 | Watanabe et al. | Dec 1998 | A |
6287465 | Watanabe et al. | Sep 2001 | B1 |
6338472 | Shimazu et al. | Jan 2002 | B1 |
6587465 | Dempo | Jul 2003 | B1 |
6901926 | Yamamoto et al. | Jun 2005 | B2 |
Number | Date | Country |
---|---|---|
50-6154 | Jan 1975 | JP |
53-6274 | Jan 1978 | JP |
54-8706 | Jan 1979 | JP |
8-281155 | Oct 1996 | JP |
09-239383 | Sep 1997 | JP |
10-165757 | Jun 1998 | JP |
2003-326285 | Nov 2003 | JP |
Number | Date | Country | |
---|---|---|---|
20080190862 A1 | Aug 2008 | US |